1,719
Views
63
CrossRef citations to date
0
Altmetric
Reviews

Recent developments in applications of radio frequency heating for improving safety and quality of food grains and their products: A review

, & ORCID Icon

References

  • Awuah, G., H. Ramaswamy, and J. Tang. 2015. Radio-frequency baking and roasting of food products. In Radio frequency heating in food processing: Principles and applications, eds. J. Tang and G. B. Awuah, 231–43. Boca Raton, FL: CRC Press.
  • Banga, K., N. Kotwaliwale, D. Mohapatra, and S. Giri. 2018. Techniques for insect detection in stored food grains: An overview. Food Control 94:167–76. doi: 10.1016/j.foodcont.2018.07.008.
  • Bansal, N., A. S. Dhaliwal, and K. Mann. 2016. Dielectric characterization of rapeseed (Brassica napus L.) from 10 to 3000 MHz. Biosystems Engineering 143:1–8. doi: 10.1016/j.biosystemseng.2015.12.014.
  • CanolaWatch, C. 2019. https://www.canolawatch.org/tag/insects/. Accessed April 25, 2019.
  • Cao, X., M. Zhang, B. Chitrakar, A. Mujumdar, Q. Zhong, Z. Wang, and L. Wang. 2019. Radio frequency heating for powder pasteurization of barley grass: Antioxidant substances, sensory quality, microbial load and energy consumption. Journal of the Science of Food and Agriculture 99 (9):4460. doi: 10.1002/jsfa.9683.
  • Chen, L., Z. Huang, K. Wang, W. Li, and S. Wang. 2016. Simulation and validation of radio frequency heating with conveyor movement. Journal of Electromagnetic Waves and Applications 30 (4):473–91. doi: 10.1080/09205071.2015.1121841.
  • Chen, L., K. Wang, W. Li, and S. Wang. 2015. A strategy to simulate radio frequency heating under mixing conditions. Computers and Electronics in Agriculture 118:100–10. doi: 10.1016/j.compag.2015.08.025.
  • Chen, L., X. Wei, S. Irmak, B. Chaves, and J. Subbiah. 2019. Inactivation of Salmonella enterica and Enterococcus faecium NRRL B-2354 in cumin seeds by radiofrequency heating. Food Control 103:59–69. doi: 10.1016/j.foodcont.2019.04.004.
  • Cserhalmi, Z., Z. Márkus, B. Czukor, Á. Baráth, and M. Tóth. 2000. Physico-chemical properties and food utilization possibilities of RF-treated mustard seed. Innovative Food Science & Emerging Technologies 1 (4):251–4. doi: 10.1016/S1466-8564(00)00028-X.
  • Doblado-Maldonado, A., O. Pike, J. Sweley, and D. Rose. 2012. Key issues and challenges in whole wheat flour milling and storage. Journal of Cereal Science 56 (2):119–26. doi: 10.1016/j.jcs.2012.02.015.
  • FAOSTAT. 2018. Food and Agriculture Organization. http://www.fao.org/faostat/en/#data/QC/visualize. Accessed April 30, 2019.
  • Ferrari-John, R., J. Katrib, E. Zerva, N. Davies, D. Cook, C. Dodds, and S. Kingman. 2017. Electromagnetic heating for industrial kilning of malt: A feasibility study. Food and Bioprocess Technology 10 (4):687–98. doi: 10.1007/s11947-016-1849-0.
  • Furrer, A., M. Chegeni, and M. Ferruzzi. 2018. Impact of potato processing on nutrients, phytochemicals, and human health. Critical Reviews in Food Science and Nutrition 58 (1):146–68. doi: 10.1080/10408398.2016.1139542.
  • Guo, C., X. Wang, and Y. Wang. 2018. Dielectric properties of soy protein isolate dispersion and its temperature profile during radio frequency heating. Journal of Food Processing and Preservation 42 (7):e13659–9. doi: 10.1111/jfpp.13659.
  • Guo, C., Z. Zhang, J. Chen, H. Fu, J. Subbiah, X. Chen, and Y. Wang. 2017. Effects of radio frequency heating treatment on structure changes of soy protein isolate for protein modification. Food and Bioprocess Technology 10 (8):1574–83. doi: 10.1007/s11947-017-1923-2.
  • Guo, W., S. Wang, G. Tiwari, J. Johnson, and J. Tang. 2010. Temperature and moisture dependent dielectric properties of legume flour associated with dielectric heating. LWT - Food Science and Technology 43 (2):193–201. doi: 10.1016/j.lwt.2009.07.008.
  • Ha, J., S. Kim, S. Ryu, and D. Kang. 2013. Inactivation of Salmonella enterica serovar Typhimurium and Escherichia coli O157: H7 in peanut butter cracker sandwiches by radio-frequency heating. Food Microbiology 34 (1):145–50. doi: 10.1016/j.fm.2012.11.018.
  • Hassan, A. 2012. Application of microwave and radio frequency energy to control Sitophilus zeamais (Coleoptera: Curculionidae) in maize grains. Unpublished Ph.D. thesis, Georg-August-University Göttingen, Germany.
  • Hassan, A., D. von Hoersten, and I. Ahmed. 2019. Effect of radio frequency heat treatment on protein profile and functional properties of maize grain. Food Chemistry 271:142–7. doi: 10.1016/j.foodchem.2018.07.190.
  • Headlee, T., and R. Burdette. 1929. Some facts relative to the effect of high frequency radio waves on insect activity. Journal of the New York Entomological Society 37:59–64.
  • Hou, L., J. Johnson, and S. Wang. 2016. Radio frequency heating for postharvest control of pests in agricultural products: A review. Postharvest Biology and Technology 113:106–18. doi: 10.1016/j.postharvbio.2015.11.011.
  • Hou, L., B. Ling, and S. Wang. 2014. Development of thermal treatment protocol for disinfesting chestnuts using radio frequency energy. Postharvest Biology and Technology 98:65–71. doi: 10.1016/j.postharvbio.2014.07.007.
  • Hou, L., Y. Wu, and S. Wang. 2019. Thermal death kinetics of Cryptolestes pusillus (Schonherr), Rhyzopertha dominica (Fabricius), and Tribolium confusum (Jacquelin du Val) using a heating block system. Insects 10 (5):119–3. doi: 10.3390/insects10050119.
  • Huang, Z., L. Chen, and S. Wang. 2015. Computer simulation of radio frequency selective heating of insects in soybeans. International Journal of Heat and Mass Transfer 90:406–17. doi: 10.1016/j.ijheatmasstransfer.2015.06.071.
  • Huang, Z., A. Datta, and S. Wang. 2018a. Modeling radio frequency heating of granular foods: Individual particle vs. effective property approach. Journal of Food Engineering 234:24–40. doi: 10.1016/j.jfoodeng.2018.04.008.
  • Huang, Z., F. Marra, J. Subbiah, and S. Wang. 2018b. Computer simulation for improving radio frequency (RF) heating uniformity of food products: A review. Critical Reviews in Food Science and Nutrition 58 (6):1033–57. doi: 10.1080/10408398.2016.1253000.
  • Huang, Z., B. Zhang, F. Marra, and S. Wang. 2016. Computational modelling of the impact of polystyrene containers on radio frequency heating uniformity improvement for dried soybeans. Innovative Food Science & Emerging Technologies 33:365–80. doi: 10.1016/j.ifset.2015.11.022.
  • Içier, F., and T. Baysal. 2004a. Dielectrical properties of food materials-1: Factors affecting and industrial uses. Critical Reviews in Food Science and Nutrition 44 (6):465–71. doi: 10.1080/10408690490886692.
  • Içier, F., and T. Baysal. 2004b. Dielectrical properties of food materials-2: Measurement techniques. Critical Reviews in Food Science and Nutrition 44:473–8. doi: 10.1080/10408690490892361.
  • International Grains Council (IGC). 2019. Global market report. https://www.igc.int/en/gmr_summary.aspx. GMR496-21 February 2019.
  • Jiang, Y., S. Wang, F. He, Q. Fan, Y. Ma, W. Yan, Y. Tang, R. Yang, and W. Zhao. 2018. Inactivation of lipoxygenase in soybean by radio frequency treatment. International Journal of Food Science & Technology 53 (12):2738–47. doi: 10.1111/ijfs.13885.
  • Jiao, S., J. Johnson, J. Tang, G. Tiwari, and S. Wang. 2011. Dielectric properties of cowpea weevil, black-eyed peas and mung beans with respect to the development of radio frequency heat treatments. Biosystems Engineering 108 (3):280–91. doi: 10.1016/j.biosystemseng.2010.12.010.
  • Jiao, S., J. Johnson, J. Tang, and S. Wang. 2012. Industrial-scale radio frequency treatments for insect control in lentils. Journal of Stored Products Research 48:143–8. doi: 10.1016/j.jspr.2011.12.001.
  • Jiao, S., W. Sun, T. Yang, Y. Zou, X. Zhu, and Y. Zhao. 2017. Investigation of the feasibility of radio frequency energy for controlling insects in milled rice. Food and Bioprocess Technology 10 (4):781–8. doi: 10.1007/s11947-017-1865-8.
  • Jiao, S., H. Zhang, S. Hu, and Y. Zhao. 2019. Radio frequency inactivation kinetics of Bacillus cereus spores in red pepper powder with different initial water activity. Food Control 105:174–9. doi: 10.1016/j.foodcont.2019.05.038.
  • Jiao, S., Y. Zhong, and Y. Deng. 2016. Hot air-assisted radio frequency heating effects on wheat and corn seeds: Quality change and fungi inhibition. Journal of Stored Products Research 69:265–71. doi: 10.1016/j.jspr.2016.09.005.
  • Jiao, Y., H. Shi, J. Tang, F. Li, and S. Wang. 2015. Improvement of radio frequency (RF) heating uniformity on low moisture foods with polyetherimide (PEI) blocks. Food Research International 74:106–14. doi: 10.1016/j.foodres.2015.04.016.
  • Jiao, Y., J. Tang, Y. Wang, and T. Koral. 2018. Radio-frequency applications for food processing and safety. Annual Review of Food Science and Technology 9 (1):105–27. doi: 10.1146/annurev-food-041715-033038.
  • Johnson, J., K. Valero, S. Wang, and J. Tang. 2004. Thermal death kinetics of red flour beetle (Coleoptera: Tenebrionidae). Journal of Economic Entomology 97 (6):1868–73. doi: 10.1093/jee/97.6.1868.
  • Johnson, J., S. Wang, and J. Tang. 2003. Thermal death kinetics of fifth-instar plodia interpunctella (Lepidoptera: Pyralidae). Journal of Economic Entomology 96 (2):519–24. doi: 10.1093/jee/96.2.519.
  • Johnson, J., S. Wang, and J. Tang. 2010. Radio frequency treatments for insect disinfestation of dried legumes. Stored Products Protection International Working Conference Proceedings, Estoril, Portugal, 688–94.
  • Koklamaz, E., T. Palazoğlu, T. Kocadağlı, and V. Gökmen. 2014. Effect of combining conventional frying with radio-frequency post-drying on acrylamide level and quality attributes of potato chips. Journal of the Science of Food and Agriculture 94 (10):2002–8. doi: 10.1002/jsfa.6516.
  • Kou, X., R. Li, L. Hou, L. Zhang, and S. Wang. 2018. Identifying possible non-thermal effects of radio frequency energy on inactivating food microorganisms. International Journal of Food Microbiology 269:89–97. doi: 10.1016/j.ijfoodmicro.2018.01.025.
  • Lagunas-Solar, M., Z. Pan, N. Zeng, T. Truong, R. Khir, and K. Amaratunga. 2007. Application of radio frequency power for non-chemical disinfestation of rough rice with full retention of quality attributes. Applied Engineering in Agriculture 23:647.
  • Li, M., Q. Sun, and K. Zhu. 2017. Delineating the quality and component changes of whole-wheat flour and storage stability of fresh noodles induced by microwave treatment. LWT - Food Science and Technology 84:378–84. doi: 10.1016/j.lwt.2017.06.001.
  • Li, W., K. Wang, L. Chen, J. Johnson, and S. Wang. 2015a. Tolerance of Sitophilus zeamais (Coleoptera: Curculionidae) to heated controlled atmosphere treatments. Journal of Stored Products Research 62:52–7. doi: 10.1016/j.jspr.2015.04.001.
  • Li, Y., S. Chen, and M. Yao. 2015b. Effects of radio frequency heating on disinfestation and pasteurization of rice flour. Taiwanese Journal of Agricultural Chemistry and Food Science 53:125–34.
  • Ling, B., W. Guo, L. Hou, R. Li, and S. Wang. 2015a. Dielectric properties of pistachio kernels as influenced by frequency, temperature, moisture and salt content. Food and Bioprocess Technology 8 (2):420–30. doi: 10.1007/s11947-014-1413-8.
  • Ling, B., L. Hou, R. Li, and S. Wang. 2016. Storage stability of pistachios as influenced by radio frequency treatments for postharvest disinfestations. Innovative Food Science & Emerging Technologies 33:357–64. doi: 10.1016/j.ifset.2015.10.013.
  • Ling, B., J. Lyng, and S. Wang. 2018a. Effects of hot air-assisted radio frequency heating on enzyme inactivation, lipid stability and product quality of rice bran. LWT - Food Science and Technology 91:453–9.
  • Ling, B., J. Lyng, and S. Wang. 2018b. Radio-frequency treatment for stabilization of wheat germ: Dielectric properties and heating uniformity. Innovative Food Science & Emerging Technologies 48:66–74. doi: 10.1016/j.ifset.2018.05.012.
  • Ling, B., X. Liu, L. Zhang, and S. Wang. 2018c. Effects of temperature, moisture, and metal salt content on dielectric properties of rice bran associated with radio frequency heating. Scientific Reports 8:4427.
  • Ling, B., S. Ouyang, and S. Wang. 2019a. Effect of radio frequency treatment on functional, structural and thermal behaviors of protein isolates in rice bran. Food Chemistry 289:537–44.
  • Ling, B., S. Ouyang, and S. Wang. 2019b. Radio-frequency treatment for stabilization of wheat germ: Storage stability and physicochemical properties. Innovative Food Science & Emerging Technologies 52:158–65. doi: 10.1016/j.ifset.2018.12.002.
  • Ling, B., J. Tang, F. Kong, E. Mitcham, and S. Wang. 2015b. Kinetics of food quality changes during thermal processing: A review. Food and Bioprocess Technology 8 (2):343–58. doi: 10.1007/s11947-014-1398-3.
  • Ling, B., G. Tiwari, and S. Wang. 2015c. Pest control by microwave and radio frequency energy: Dielectric properties of stone fruit. Agronomy for Sustainable Development 35 (1):233–40. doi: 10.1007/s13593-014-0228-3.
  • Liu, S., S. Ozturk, J. Xu, F. Kong, P. Gray, M. Zhu, S. Sablani, and J. Tang. 2018. Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies. Journal of Food Engineering 217:68–74. doi: 10.1016/j.jfoodeng.2017.08.013.
  • Liu, S., R. Rojas, P. Gray, M. Zhu, and J. Tang. 2018. Enterococcus faecium as a Salmonella surrogate in the thermal processing of wheat flour: Influence of water activity at high temperatures. Food Microbiology 74:92–9. doi: 10.1016/j.fm.2018.03.001.
  • Liu, Y., J. Tang, and Z. Mao. 2009. Analysis of bread dielectric properties using mixture equations. Journal of Food Engineering 93 (1):72–9. doi: 10.1016/j.jfoodeng.2008.12.032.
  • Liu, Y., J. Tang, Z. Mao, J. Mah, S. Jiao, and S. Wang. 2011. Quality and mold control of enriched white bread by combined radio frequency and hot air treatment. Journal of Food Engineering 104 (4):492–8. doi: 10.1016/j.jfoodeng.2010.11.019.
  • Liu, Y., S. Wang, Z. Mao, J. Tang, and G. Tiwari. 2013. Heating patterns of white bread loaf in combined radio frequency and hot air treatment. Journal of Food Engineering 116 (2):472–7. doi: 10.1016/j.jfoodeng.2012.11.029.
  • Luechapattanaporn, K., Y. Wang, J. Wang, M. Al-Holy, D. Kang, J. Tang, and L. Hallberg. 2006. Microbial safety in radio-frequency processing of packaged foods. Journal of Food Science 69 (7):201–6. doi: 10.1111/j.1365-2621.2004.tb13621.x.
  • Macana, R., and O. Baik. 2018. Disinfestation of insect pests in stored agricultural materials using microwave and radio frequency heating: A review. Food Reviews International 34 (5):483–510. doi: 10.1080/87559129.2017.1359840.
  • Macana, R., T. Moirangthem, and O. Baik. 2018. 50-ohm RF technology based applicator design and fabrication for disinfestation of insect pests in stored grains. 2018 ASABE Annual International Meeting, Detroit, MI.
  • Manzocco, L., M. Anese, and M. C. Nicoli. 2008. Radiofrequency inactivation of oxidative food enzymes in model systems and apple derivatives. Food Research International 41 (10):1044–9. doi: 10.1016/j.foodres.2008.07.020.
  • Marra, F., L. Zhang, and J. G. Lyng. 2009. Radio frequency treatment of foods: Review of recent advances. Journal of Food Engineering 91 (4):497–508. doi: 10.1016/j.jfoodeng.2008.10.015.
  • Miano, A., and P. Augusto. 2018. The hydration of grains: A critical review from description of phenomena to process improvements. Comprehensive Reviews in Food Science and Food Safety 17 (2):352–70. doi: 10.1111/1541-4337.12328.
  • Mirhoseini, S., M. Heydari, A. Shoulaie, and A. Seidavi. 2009. Investigation on the possibility of foodstuff pest control using radiofrequency based on dielectric heating (case study: Rice and wheat flour pests). Journal of Biological Sciences 9:43–51. doi: 10.3923/jbs.2009.283.287.
  • Mohapatra, D., S. Kumar, N. Kotwaliwale, and K. Singh. 2017. Critical factors responsible for fungi growth in stored food grains and non-chemical approaches for their control. Industrial Crops and Products 108:162–82. doi: 10.1016/j.indcrop.2017.06.039.
  • Moyer, J., and E. Stotz. 1945. The electronic blanching of vegetables. Science (New York, N.Y.) 102 (2638):68–9. doi: 10.1126/science.102.2638.68-a.]
  • Nelson, S. 2004. RF and microwave permittivities of insects and some applications. URSI EMTS International Symposium on Electromagnetic Theory, 1224–6.
  • Nelson, S., P. Bartley, and K. Lawrence. 1998. RF and microwave dielectric properties of stored-grain insects and their implications for potential insect control. Transactions of the ASAE 41:685–92.
  • Nelson, S., and S. Trabelsi. 2006. Dielectric spectroscopy of wheat from 10 MHz to 1.8 GHz. Measurement Science and Technology 17 (8):2294–8. doi: 10.1088/0957-0233/17/8/034.
  • Nesci, A., M. Passone, P. Barra, N. Girardi, D. Garcia, and M. Etcheverry. 2016. Prevention of aflatoxin contamination in stored grains using chemical strategies. Current Opinion in Food Science 11:56–60. doi: 10.1016/j.cofs.2016.09.010.
  • Onwude, D., N. Hashim, and G. Chen. 2016. Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology 57:132–45. doi: 10.1016/j.tifs.2016.09.012.
  • Ozturk, S., F. Kong, R. Singh, J. Kuzy, and C. Li. 2017. Radio frequency heating of corn flour: Heating rate and uniformity. Innovative Food Science & Emerging Technologies 44:191–201. doi: 10.1016/j.ifset.2017.05.001.
  • Ozturk, S., S. Liu, J. Xu, J. Tang, J. Chen, R. Singh, and F. Kong. 2019. Inactivation of Salmonella Enteritidis and Enterococcus faecium NRRL B-2354 in corn flour by radio frequency heating with subsequent freezing. LWT - Food Science and Technology 111:782–9. doi: 10.1016/j.lwt.2019.04.090.
  • Palazoglu, T., and W. Miran. 2018. Experimental investigation of the combined translational and rotational movement on an inclined conveyor on radio frequency heating uniformity. Innovative Food Science & Emerging Technologies 47:16–23. doi: 10.1016/j.ifset.2018.01.003.
  • Petruzzi, L., D. Campaniello, B. Speranza, M. Corbo, M. Sinigaglia, and A. Bevilacqua. 2017. Thermal treatments for fruit and vegetable juices and beverages: A literature overview. Comprehensive Reviews in Food Science and Food Safety 16 (4):668–91. doi: 10.1111/1541-4337.12270.
  • Piyasena, P., C. Dussault, T. Koutchma, H. Ramaswamy, and G. Awuah. 2003. Radio frequency heating of foods: Principles, applications and related properties-a review. Critical Reviews in Food Science and Nutrition 43 (6):587–606. doi: 10.1080/10408690390251129.
  • Poudel, R., and D. Rose. 2018. Changes in enzymatic activities and functionality of whole wheat flour due to steaming of wheat kernels. Food Chemistry 263:315–20. doi: 10.1016/j.foodchem.2018.05.022.
  • Rachon, G., W. Peñaloza, and P. Gibbs. 2016. Inactivation of Salmonella, Listeria monocytogenes and Enterococcus faecium NRRL B-2354 in a selection of low moisture foods. International Journal of Food Microbiology 231:16–25. doi: 10.1016/j.ijfoodmicro.2016.04.022.
  • Ramírez-Jiménez, A. K., J. Rangel-Hernández, E. Morales-Sánchez, G. Loarca-Piña, and M. Gaytán-Martínez. 2019. Changes on the phytochemicals profile of instant corn flours obtained by traditional nixtamalization and ohmic heating process. Food Chemistry 276:57–62. doi: 10.1016/j.foodchem.2018.09.166.
  • Routray, W., and V. Orsat. 2018. Recent advances in dielectric properties-measurements and importance. Current Opinion in Food Science 23:120–6. doi: 10.1016/j.cofs.2018.10.001.
  • Schuster-Gajzago, I., A. Kiszter, M. Tothmarkus, A. Barath, Z. Markusbednarik, and B. Czukor. 2006. The effect of radio frequency heat treatment on nutritional and colloid-chemical properties of different white mustard (Sinapis Alba L.) varieties. Innovative Food Science and Emerging Technologies 7:74–9.
  • Shi, H., Z. Sun, Z. Yan, and J. Ren. 2017. Influence of electrode distance on heating behaviour associated to radio frequency processing of low moisture foods. Acta Alimentaria 46 (4):517–26. doi: 10.1556/066.2017.46.4.15.
  • Shrestha, B., and O. D. Baik. 2013. Radio frequency selective heating of stored-grain insects at 27.12 MHz: A feasibility study. Biosystems Engineering 114 (3):195–204. doi: 10.1016/j.biosystemseng.2012.12.003.
  • Shrestha, B., and O. D. Baik. 2019. Multi-physics computer simulation of radio frequency heating to control pest insects in stored-wheat. Engineering in Agriculture, Environment and Food 12 (1):71–80. doi: 10.1016/j.eaef.2018.09.005.
  • Shrestha, B., D. Yu, and O. D. Baik. 2013. Elimination of Cryptolestes ferrungineus S. in wheat by radio frequency dielectric heating at different moisture contents. Progress in Electromagnetics Research 139:517–38. doi: 10.2528/PIER13021406.
  • Shrestha, B. L., and O. D. Baik. 2015. Dielectric behaviour of whole-grain wheat with temperature at 27.12 MHz: A novel use of a liquid dielectric test fixture for grains. International Journal of Food Properties 18 (1):100–12. doi: 10.1080/10942912.2013.793198.
  • Smelt, J., and S. Brul. 2014. Thermal inactivation of microorganisms. Critical Reviews in Food Science and Nutrition 54 (10):1371–85. doi: 10.1080/10408398.2011.637645.
  • Song, C., W. Yan, S. Wang, and Z. Cui. 2016. Temperature and moisture dependent dielectric properties of Chinese steamed bread using mixture equations related to microwave heating. International Journal of Food Properties 19 (11):2522–35. doi: 10.1080/10942912.2015.1104508.
  • Sosa-Morales, M., L. Valerio-Junco, A. López-Malo, and H. García. 2010. Dielectric properties of foods: Reported data in the 21st century and their potential applications. LWT - Food Science and Technology 43 (8):1169–79. doi: 10.1016/j.lwt.2010.03.017.
  • Stephany, M., P. Eckert, S. Bader-Mittermaier, U. Schweiggert-Weisz, and R. Carle. 2016. Lipoxygenase inactivation kinetics and quality-related enzyme activities of narrow-leafed lupin seeds and flakes. LWT - Food Science and Technology 68:36–43. doi: 10.1016/j.lwt.2015.11.052.
  • Syamaladevi, R., J. Tang, R. Villa-Rojas, S. Sablani, B. Carter, and G. Campbell. 2016. Influence of water activity on thermal resistance of microorganisms in low-moisture foods: A review. Comprehensive Reviews in Food Science and Food Safety 15 (2):353–70. doi: 10.1111/1541-4337.12190.
  • Taylor, M., H. Tsai, B. Rasco, J. Tang, and M. Zhu. 2018. Stability of Listeria monocytogenes in wheat flour during extended storage and isothermal treatment. Food Control 91:434–9. doi: 10.1016/j.foodcont.2018.04.008.
  • Terefe, N., R. Buckow, and C. Versteeg. 2014. Quality-related enzymes in fruit and vegetable products: Effects of novel food processing technologies, part 1: High-pressure processing. Critical Reviews in Food Science and Nutrition 54 (1):24–63. doi: 10.1080/10408398.2011.566946.
  • Tiwari, G., S. Wang, J. Tang, and S. Birla. 2011a. Analysis of radio frequency (RF) power distribution in dry food materials. Journal of Food Engineering 104 (4):548–56. doi: 10.1016/j.jfoodeng.2011.01.015.
  • Tiwari, G., S. Wang, J. Tang, and S. Birla. 2011b. Computer simulation model development and validation for radio frequency (RF) heating of dry food materials. Journal of Food Engineering 105 (1):48–55. doi: 10.1016/j.jfoodeng.2011.01.016.
  • Tournas, V., and N. Niazi. 2018. Potentially toxigenic fungi from selected grains and grain products. Journal of Food Safety 38 (1):e12422–6. doi: 10.1111/jfs.12422.
  • Uemura, K., C. Takahashi, and I. Kobayashi. 2010. Inactivation of Bacillus subtilis spores in soybean milk by radio-frequency flash heating. Journal of Food Engineering 100 (4):622–6. doi: 10.1016/j.jfoodeng.2010.05.010.
  • Uemura, K., C. Takahashi, and I. Kobayashi. 2014. Inactivation of enzymes in packed miso paste by radio-frequency heating. Nippon Shokuhin Kagaku Kogaku Kaishi 61 (2):95–9. doi: 10.3136/nskkk.61.95.
  • Vearasilp, S., S. Thanapornpoonpong, N. Krittigamas, S. Suriyong, P. Akaranuchat, and D. von Hoersten. 2015. Vertical operating prototype development supported radio frequency heating system in controlling rice weevil in milled rice. 1st International Conference on Asian Highland Natural Resources Management, Vol. 5, 184–92. doi: 10.1016/j.aaspro.2015.08.028.
  • Villa-Rojas, R., M. Zhu, B. Marks, and J. Tang. 2017. Radiofrequency inactivation of Salmonella Enteritidis PT 30 and Enterococcus faecium in wheat flour at different water activities. Biosystems Engineering 156:7–16. doi: 10.1016/j.biosystemseng.2017.01.001.
  • Wang, S., J. Tang, J. A. Johnson, E. Mitcham, J. D. Hansen, G. Hallman, S. R. Drake, and Y. Wang. 2003. Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosystems Engineering 85 (2):201–12. doi: 10.1016/S1537-5110(03)00042-4.
  • Wang, S., G. Tiwari, S. Jiao, J. Johnson, and J. Tang. 2010. Developing postharvest disinfestation treatments for legumes using radio frequency energy. Biosystems Engineering 105 (3):341–9. doi: 10.1016/j.biosystemseng.2009.12.003.
  • Wangspa, W., Y. Chanbang, and S. Vearasilp. 2015. Radio frequency heat treatment for controlling rice weevil in rough rice cv. Khao Dawk Mali 105. Chiang Mai University Journal of Natural Sciences 14 (2):189–97. doi: 10.12982/CMUJNS.2015.0081.
  • Xia, T., M. Gou, G. Zhang, W. Li, and H. Jiang. 2018. Physical and structural properties of potato starch modified by dielectric treatment with different moisture content. International Journal of Biological Macromolecules 118:1455–62. doi: 10.1016/j.ijbiomac.2018.06.149.
  • Xu, B., B. Wei, X. Ren, Y. Liu, H. Jiang, C. Zhou, H. Ma, M. Chalamaiah, Q. Liang, and Z. Wang. 2018. Dielectric pretreatment of rapeseed 1: Influence on the drying characteristics of the seeds and physico-chemical properties of cold-pressed oil. Food and Bioprocess Technology 11 (6):1236–47. doi: 10.1007/s11947-018-2091-8.
  • Xu, J., S. Liu, J. Tang, S. Ozturk, F. Kong, and D. Shah. 2018. Application of freeze-dried Enterococcus faecium NRRL B-2354 in radio-frequency pasteurization of wheat flour. LWT - Food Science and Technology 90:124–31. doi: 10.1016/j.lwt.2017.12.014.
  • Xu, J., J. Tang, Y. Jin, J. Song, R. Yang, S. Sablani, and M. Zhu. 2019. High temperature water activity as a key factor influencing survival of Salmonella Enteritidis PT30 in thermal processing. Food Control 98:520–8. doi: 10.1016/j.foodcont.2018.11.054.
  • Yan, R., Z. Huang, H. Zhu, J. Johnson, and S. Wang. 2014. Thermal death kinetics of adult Sitophilus oryzae and effects of heating rate on thermotolerance. Journal of Stored Products Research 59:231–6. doi: 10.1016/j.jspr.2014.03.006.
  • Yan, R., Z. Huang, H. Zhu, J. Johnson, and S. Wang. 2016. Simulation of heating uniformity in a heating block system modified for controlled atmosphere treatments. Journal of Stored Products Research 65:19–29. doi: 10.1016/j.jspr.2015.11.003.
  • Yang, C., Y. Zhao, Y. Tang, R. Yang, W. Yan, and W. Zhao. 2018. Radio frequency heating as a disinfestation method against Corcyra cephalonica and its effect on properties of milled rice. Journal of Stored Products Research 77:112–21. doi: 10.1016/j.jspr.2018.04.004.
  • Yang, L., L. Zhongxin, W. Ma, S. Yan, and K. Cui. 2015. Thermal death kinetics of fifth-instar Corcyras cephalonica (Lepidoptera: Galleriidae). Journal of Insect Science 15 (1):15–24. doi: 10.1093/jisesa/iev012.
  • Yılmaz, F., N. Yılmaz Tuncel, and N. Tuncel. 2018. Stabilization of immature rice grain using infrared radiation. Food Chemistry 253:269–76. doi: 10.1016/j.foodchem.2018.01.172.
  • Yu, D., B. Shrestha, and O. D. Baik. 2015. Radio frequency dielectric properties of bulk canola seeds under different temperatures, moisture contents, and frequencies for feasibility of radio frequency disinfestation. International Journal of Food Properties 18 (12):2746–63. doi: 10.1080/10942912.2015.1013630.
  • Yu, D., B. Shrestha, and O. D. Baik. 2016a. Radio frequency (RF) control of red flour beetle (Tribolium castaneum) in stored rapeseeds (Brassica napus L.). Biosystems Engineering 151:248–60. doi: 10.1016/j.biosystemseng.2016.09.006.
  • Yu, D., B. Shrestha, and O. D. Baik. 2016b. Temperature distribution in a packed-bed of canola seeds with various moisture contents and bulk volumes during radio frequency (RF) heating. Biosystems Engineering 148:55–67. doi: 10.1016/j.biosystemseng.2016.05.006.
  • Yu, D., B. Shrestha, and O. D. Baik. 2017. Thermal death kinetics of adult red flour beetle Tribolium castaneum (Herbst) in canola seeds during radio frequency heating. International Journal of Food Properties 20 (12):3064–75. doi: 10.1080/10942912.2016.1272609.
  • Zhang, S., L. Zhang, R. Lan, X. Zhou, X. Kou, and S. Wang. 2018a. Thermal inactivation of Aspergillus flavus in peanut kernels as influenced by temperature, water activity and heating rate. Food Microbiology 76:237–44. doi: 10.1016/j.fm.2018.05.015.
  • Zhang, S., L. Zhou, B. Ling, and S. Wang. 2016. Dielectric properties of peanut kernels associated with microwave and radio frequency drying. Biosystems Engineering 145:108–17. doi: 10.1016/j.biosystemseng.2016.03.002.
  • Zhang, Z., C. Guo, T. Gao, H. Fu, Q. Chen, and Y. Wang. 2018b. Pilot-scale radio frequency blanching of potato cuboids: Heating uniformity. Journal of the Science of Food and Agriculture 98 (1):312–20. doi: 10.1002/jsfa.8473.
  • Zhang, Z., J. Wang, X. Zhang, Q. Shi, L. Xin, H. Fu, and Y. Wang. 2018c. Effects of radio frequency assisted blanching on polyphenol oxidase, weight loss, texture, color and microstructure of potato. Food Chemistry 248:173–82. doi: 10.1016/j.foodchem.2017.12.065.
  • Zhao, Y., B. Flugstad, E. Kolbe, J. Park, and J. Wells. 2000. Using capacitive (radio frequency) dielectric heating in food processing and preservation-a review. Journal of Food Process Engineering 23 (1):25–55. doi: 10.1111/j.1745-4530.2000.tb00502.x.
  • Zheng, A., B. Zhang, L. Zhou, and S. Wang. 2016. Application of radio frequency pasteurization to corn (Zea mays L.): Heating uniformity improvement and quality stability evaluation. Journal of Stored Products Research 68:63–72. doi: 10.1016/j.jspr.2016.04.007.
  • Zheng, A., L. Zhang, and S. Wang. 2017. Verification of radio frequency pasteurization treatment for controlling Aspergillus parasiticus on corn grains. International Journal of Food Microbiology 249:27–34. doi: 10.1016/j.ijfoodmicro.2017.02.017.
  • Zhong, Y., Z. Wang, and Y. Zhao. 2015. Impact of radio frequency, microwaving, and high hydrostatic pressure at elevated temperature on the nutritional and antinutritional components in black soybeans. Journal of Food Science 80 (12):C2732–2739. doi: 10.1111/1750-3841.13131.
  • Zhou, H., C. Guo, and S. Wang. 2017. Performance comparison between the free running oscillator and 50 Ω radio frequency systems. Innovative Food Science & Emerging Technologies 39:171–8. doi: 10.1016/j.ifset.2016.12.003.
  • Zhou, H., and S. Wang. 2019. Developing a screw conveyor in radio frequency systems to improve heating uniformity in granular products. International Journal of Agricultural and Biological Engineering 12 (3):174–9. doi: 10.25165/j.ijabe.20191203.4227.
  • Zhou, L., B. Ling, A. Zheng, B. Zhang, and S. Wang. 2015. Developing radio frequency technology for postharvest insect control in milled rice. Journal of Stored Products Research 62:22–31. doi: 10.1016/j.jspr.2015.03.006.
  • Zhou, L., and S. Wang. 2016a. Industrial-scale radio frequency treatments to control Sitophilus oryzae in rough, brown, and milled rice. Journal of Stored Products Research 68:9–18. doi: 10.1016/j.jspr.2016.03.002.
  • Zhou, L., and S. Wang. 2016b. Verification of radio frequency heating uniformity and Sitophilus oryzae control in rough, brown, and milled rice. Journal of Stored Products Research 65:40–7. doi: 10.1016/j.jspr.2015.12.003.
  • Zhu, H., D. Li, S. Li, and S. Wang. 2017. A novel method to improve heating uniformity in mid-high moisture potato starch with radio frequency assisted treatment. Journal of Food Engineering 20:23–36. doi: 10.1016/j.jfoodeng.2017.03.001.
  • Zhu, Z., and W. Guo. 2017. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy. Scientific Reports 7 (1):9311. doi: 10.1038/s41598-017-09197-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.