1,584
Views
85
CrossRef citations to date
0
Altmetric
Reviews

Phenylpropanoids and its derivatives: biological activities and its role in food, pharmaceutical and cosmetic industries

, &

References

  • Abdel-Moneim, A., S. M. A. El-Twab, M. B. Ashour, and A. I. Yousef. 2016. Hepato-renal protective effects of gallic acid and p-coumaric acid in nicotinamide/streptozotocin-induced diabetic rats. International Journal of Bioassays 5 (06):4641. doi: 10.21746/ijbio.2016.06.0011.
  • Abdel-Moneim, A., S. M. A. El-Twab, A. I. Yousef, E. S. A. Reheim, and M. B. Ashour. 2018. Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p -coumaric acid: the role of adipocytokines and PPARγ. Biomedicine & Pharmacotherapy 105:1091–7. doi: 10.1016/j.biopha.2018.06.096.
  • Adeniji, S. E., S. Uba, and A. Uzairu. 2018. Quantitative structure–activity relationship and molecular docking of 4-Alkoxy-Cinnamic analogues as anti-mycobacterium tuberculosis. Journal of King Saud University – Science. doi: 10.1016/j.jksus.2018.02.005.
  • Akdemir, F., Albayrak, M. Çalik, M. Y. Bayir, and I. Gülçin. 2017. The protective effects of p-coumaric acid on acute liver and kidney damages induced by cisplatin. Biomedicines 5 (4):18. doi: 10.3390/biomedicines5020018.
  • Alkan, D., and A. Yemenicioğlu. 2016. Potential application of natural phenolic antimicrobials and edible film technology against bacterial plant pathogens. Food Hydrocolloids 55:1–10. doi: 10.1016/j.foodhyd.2015.10.025.
  • Alves, M. M., M. P. Gonçalves, and C. M. R. Rocha. 2017. Effect of ferulic acid on the performance of soy protein isolate-based edible coatings applied to fresh-cut apples. Lebensmittel-Wissenschaft & Technologie 80:409–15. doi: 10.1016/j.lwt.2017.03.013.
  • Amalan, V., N. Vijayakumar, D. Indumathi, and A. Ramakrishnan. 2016. Antidiabetic and antihyperlipidemic activity of p -coumaric acid in diabetic rats, role of pancreatic GLUT 2: in vivo approach. Biomedicine & Pharmacotherapy 84:230–6. doi: 10.1016/j.biopha.2016.09.039.
  • Amano, R., A. Yamashita, H. Kasai, T. Hori, S. Miyasato, S. Saito, H. Yokoe, K. Takahashi, T. Tanaka, T. Otoguro, et al. 2017. Cinnamic acid derivatives inhibit hepatitis C virus replication via the induction of oxidative stress. Antiviral Research 145:123–30. doi: 10.1016/j.antiviral.2017.07.018.
  • Ambika, S., R. Saravanan, and K. Thirumavalavan. 2013. Antidiabetic and antihyperlipidemic effect of p-hydroxycinnamic acid on streptozotocin-induced diabetic wistar rats. Biomedicine & Aging Pathology 3 (4):253–7. doi: 10.1016/j.biomag.2013.09.004.
  • Anantharaju, P. G., D. B. Reddy, M. A. Padukudru, C. H. M. K. Chitturi, M. G. Vimalambike, and S. V. Madhunapantula. 2017. Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of histone deacetylases (HDAC). Plos ONE 12 (11):e0186208. doi: 10.1371/journal.pone.0186208.
  • Andreasen, M. F., A.-K. Landbo, L. P. Christensen, Å. Hansen, and A. S. Meyer. 2001. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins. Journal of Agricultural and Food Chemistry 49 (8):4090–6. doi: 10.1021/jf0101758.
  • Anlar, H. G., M. Bacanli, T. Çal, S. Aydin, N. Ari, Ü. Ündeğer Bucurgat, A. A. Başaran, and A. N. Başaran. 2018. Effects of cinnamic acid on complications of diabetes. Turkish Journal of Medical Sciences 48:168–77. doi: 10.3906/sag-1708-8.
  • Ansari, M. A., M. Raish, A. Ahmad, S. F. Ahmad, S. Mudassar, K. Mohsin, F. Shakeel, H. M. Korashy, and S. A. Bakheet. 2016. Sinapic acid mitigates gentamicin-induced nephrotoxicity and associated oxidative/nitrosative stress, apoptosis, and inflammation in rats. Life Sciences 165:1–8. doi: 10.1016/j.lfs.2016.09.014.
  • Ansari, M. A., M. Raish, A. Ahmad, K. M. Alkharfy, S. F. Ahmad, S. M. Attia, A. M. S. Alsaad, and S. A. Bakheet. 2017. Sinapic acid ameliorate cadmium-induced nephrotoxicity: in vivo possible involvement of oxidative stress, apoptosis, and inflammation via NF-κB downregulation. Environmental Toxicology and Pharmacology 51:100–7. doi: 10.1016/j.etap.2017.02.014.
  • Arranz, S., and F. Saura Calixto. 2010. Analysis of polyphenols in cereals may be improved performing acidic hydrolysis: a study in wheat flour and wheat bran and cereals of the diet. Journal of Cereal Science 51 (3):313–8. doi: 10.1016/j.jcs.2010.01.006.
  • Aswar, U., U. Mahajan, G. Nerurkar, and M. Aswar. 2013. Amelioration of cardiac hypertrophy induced by abdominal aortic banding in ferulic acid treated rats. Biomedicine & Aging Pathology 3 (4):209–17. doi: 10.1016/j.biomag.2013.08.001.
  • Azay-Milhau, J., K. Ferrare, J. Leroy, J. Aubaterre, M. Tournier, A.-D. Lajoix, and D. Tousch. 2013. Antihyperglycemic effect of a natural chicoric acid extract of chicory (Cichorium intybus L.): A comparative in vitro study with the effects of caffeic and ferulic acids. Journal of Ethnopharmacology 150 (2):755–60. doi: 10.1016/j.jep.2013.09.046.
  • Babotă, M., A. Mocan, L. Vlase, O. Crișan, I. Ielciu, A.-M. Gheldiu, D. Vodnar, G. Crișan, and R. Păltinean. 2018. Phytochemical analysis, antioxidant and antimicrobial activities of Helichrysum arenarium (L.) Moench. and Antennaria dioica (L.) Gaertn. flowers. Molecules 23 (2):409. doi: 10.3390/molecules23020409.
  • Balupillai, A., R. P. Nagarajan, K. Ramasamy, K. Govindasamy, and G. Muthusamy. 2018. Caffeic acid prevents UVB radiation induced photocarcinogenesis through regulation of PTEN signaling in human dermal fibroblasts and mouse skin. Toxicology and Applied Pharmacology 352:87–96. doi: 10.1016/j.taap.2018.05.030.
  • Balupillai, A., R. N. Prasad, K. Ramasamy, G. Muthusamy, M. Shanmugham, K. Govindasamy, and S. Gunaseelan. 2015. Caffeic acid inhibits UVB-induced inflammation and photocarcinogenesis through activation of peroxisome proliferator-activated receptor-γ in mouse skin. Photochemistry and Photobiology 91 (6):1458–68. doi: 10.1111/php.12522.
  • Basanta, M. F., A. M. Rojas, M. R. Martinefski, V. P. Tripodi, M. D. De’Nobili, and E. N. Fissore. 2018. Cherry (Prunus avium) phenolic compounds for antioxidant preservation at food interfaces. Journal of Food Engineering 239:15–25.
  • Basile, D. P., M. D. Anderson, and T. A. Sutton. 2012. Pathophysiology of acute kidney injury. Comprehensive Physiology 2 (2):1303–53.
  • Borges, A., C. Ferreira, M. J. Saavedra, and M. Simões. 2013. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance 19 (4):256–65. doi: 10.1089/mdr.2012.0244.
  • Bouzaiene, N. N., S. Kilani Jaziri, H. Kovacic, L. Chekir-Ghedira, K. Ghedira, and J. Luis. 2015. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. European Journal of Pharmacology 766:99–105. doi: 10.1016/j.ejphar.2015.09.044.
  • Burns, E. M., K. L. Tober, J. A. Riggenbach, D. F. Kusewitt, G. S. Young, and T. M. Oberyszyn. 2013. Differential effects of topical vitamin E and C E ferulic® treatments on ultraviolet light B-induced cutaneous tumor development in skh-1 mice. PLoS ONE 8 (5):e63809. doi: 10.1371/journal.pone.0063809.
  • Cai, H., X. Huang, S. Xu, H. Shen, P. Zhang, Y. Huang, J. Jiang, Y. Sun, B. Jiang, X. Wu, et al. 2016. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. European Journal of Medicinal Chemistry 108:89–103. doi: 10.1016/j.ejmech.2015.11.013.
  • Cha, H., S. Lee, J. H. Lee, and J.-W. Park. 2018. Protective effects of p-coumaric acid against acetaminophen-induced hepatotoxicity in mice. Food and Chemical Toxicology 121:131–9. doi: 10.1016/j.fct.2018.08.060.
  • Chacko, S. M., K. G. Nevin, R. Dhanyakrishnan, and B. P. Kumar. 2015. Protective effect of p -coumaric acid against doxorubicin induced toxicity in H9c2 cardiomyoblast cell lines. Toxicology Reports 2:1213–21. doi: 10.1016/j.toxrep.2015.08.002.
  • Chaiprasongsuk, A., T. Onkoksoong, T. Pluemsamran, S. Limsaengurai, and U. Panich. 2016. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biology 8:79–90. doi: 10.1016/j.redox.2015.12.006.
  • Cheah, H.-L., V. Lim, and D. Sandai. 2014. Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS ONE 9 (4):e95951. doi: 10.1371/journal.pone.0095951.
  • Chen, P. X., Y. Tang, M. F. Marcone, P. K. Pauls, B. Zhang, R. Liu, and R. Tsao. 2015. Characterization of free, conjugated and bound phenolics and lipophilic antioxidants in regular- and non-darkening cranberry beans (Phaseolus vulgaris L.). Food Chemistry 185:298–308. doi: 10.1016/j.foodchem.2015.03.100.
  • Chen, Y.-L., S.-T. Huang, F.-M. Sun, Y.-L. Chiang, C.-J. Chiang, C.-M. Tsai, and C.-J. Weng. 2011. Transformation of cinnamic acid from trans- to cis-form raises a notable bactericidal and synergistic activity against multiple-drug resistant Mycobacterium tuberculosis. European Journal of Pharmaceutical Sciences 43 (3):188–94. doi: 10.1016/j.ejps.2011.04.012.
  • Cheng, Q., Y.-W. Li, C.-F. Yang, Y.-J. Zhong, H. He, F. Zhu, and L. Li. 2018. Methyl ferulic acid attenuates ethanol-induced hepatic steatosis by regulating AMPK and FoxO1 pathways in rats and L-02 cells. Chemico-Biological Interactions 291:180–9. doi: 10.1016/j.cbi.2018.06.028.
  • Cherng, Y. G., C. C. Tsai, H. H. Chung, Y. W. Lai, S. C. Kuo, and J. T. Cheng. 2013. Antihyperglycemic action of sinapic acid in diabetic rats. Journal of Agricultural and Food Chemistry 61 (49):12053–9. doi: 10.1021/jf403092b.
  • Chowdhury, S., S. Ghosh, K. Rashid, and P. C. Sil. 2016. Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats. Food and Chemical Toxicology 97:187–98. doi: 10.1016/j.fct.2016.09.011.
  • Commisso, M., K. Toffali, P. Strazzer, M. Stocchero, S. Ceoldo, B. Baldan, M. Levi, and F. Guzzo. 2016. Impact of phenylpropanoid compounds on heat stress tolerance in carrot cell cultures. Frontiers in Plant Science 7:1439. doi: 10.3389/fpls.2016.01439.
  • Cui, K., W. Lu, L. Zhu, X. Shen, and J. Huang. 2013. Caffeic acid phenethyl ester (CAPE), an active component of propolis, inhibits Helicobacter pylori peptide deformylase activity. Biochemical and Biophysical Research Communications 435 (2):289–94. doi: 10.1016/j.bbrc.2013.04.026.
  • De Vita, D., L. Friggeri, F. D. D’Auria, F. Pandolfi, F. Piccoli, S. Panella, A. T. Palamara, G. Simonetti, L. Scipione, R. Di Santo, et al. 2014. Activity of caffeic acid derivatives against Candida albicans biofilm. Bioorganic & Medicinal Chemistry Letters 24 (6):1502–5. doi: 10.1016/j.bmcl.2014.02.005.
  • Deepa, P., K. Sowndhararajan, S. Kim, and S. J. Park. 2018. A role of ficus species in the management of diabetes mellitus: A review. Journal of Ethnopharmacology 215:210–32. doi: 10.1016/j.jep.2017.12.045.
  • Deshmukh, R., Kaundal, M. V. Bansal, and  Samardeep. 2016. Caffeic acid attenuates oxidative stress, learning and memory deficit in intra-cerebroventricular streptozotocin induced experimental dementia in rats. Biomedicine & Pharmacotherapy 81:56–62.
  • Destani, F., A. Cassano, A. Fazio, J.-P. Vincken, and B. Gabriele. 2013. Recovery and concentration of phenolic compounds in blood orange juice by membrane operations. Journal of Food Engineering 117 (3):263–71. doi: 10.1016/j.jfoodeng.2013.03.001.
  • Devi, A., V. K. Das, and D. Deka. 2018. Evaluation of the effectiveness of potato peel extract as a natural antioxidant on biodiesel oxidation stability. Industrial Crops and Products 123:454–60. doi: 10.1016/j.indcrop.2018.07.022.
  • Dizdar, M., D. Vidic, F. Požgan, B. Štefane, and M. Maksimović. 2018. Acetylcholinesterase inhibition and antioxidant activity of N-trans-caffeoyldopamine and N-trans-feruloyldopamine. Scientia Pharmaceutica 86 (2):11. doi: 10.3390/scipharm86020011.
  • Dodos, G. S., C. E. Tsesmeli, and F. Zannikos. 2017. Evaluation of the antimicrobial activity of synthetic and natural phenolic type antioxidants in biodiesel fuel. Fuel 209:150–61. doi: 10.1016/j.fuel.2017.07.039.
  • Doss, H. M., C. Dey, C. Sudandiradoss, and M. K. Rasool. 2016. Targeting inflammatory mediators with ferulic acid, a dietary polyphenol, for the suppression of monosodium urate crystal-induced inflammation in rats. Life Sciences 148:201–10. doi: 10.1016/j.lfs.2016.02.004.
  • El-Ashmawy, N. E., N. F. Khedr, H. A. El-Bahrawy, and S. A. Helal. 2018. Upregulation of PPAR-γ mediates the renoprotective effect of omega-3 PUFA and ferulic acid in gentamicin-intoxicated rats. Biomedicine & Pharmacotherapy 99:504–10. doi: 10.1016/j.biopha.2018.01.036.
  • Eroğlu, C., E. Avcı, H. Vural, and E. Kurar. 2018. Anticancer mechanism of sinapic acid in PC-3 and LNCaP human prostate cancer cell lines. Gene 671:127–34. doi: 10.1016/j.gene.2018.05.049.
  • Ezhuthupurakkal, P. B., S. Ariraman, S. Arumugam, N. Subramaniyan, S. K. Muthuvel, P. K. Kumpati, B. Rajamani, and T. Chinnasamy. 2018. Anticancer potential of ZnO nanoparticle-ferulic acid conjugate on huh-7 and HepG2 cells and diethyl nitrosamine induced hepatocellular cancer on wistar albino rat. Nanomedicine: Nanotechnology, Biology and Medicine 14 (2):415–28. doi: 10.1016/j.nano.2017.11.003.
  • Filipe-Ribeiro, L., F. Cosme, and F. M. Nunes. 2018. Data on changes in red wine phenolic compounds and headspace aroma compounds after treatment of red wines with chitosans with different structures. Data in Brief 17:1201–17. doi: 10.1016/j.dib.2018.02.029.
  • Fu, R., Y. Zhang, Y. Guo, T. Peng, and F. Chen. 2016. Hepatoprotection using Brassica rapa var. Rapa L. seeds and its bioactive compound, sinapine thiocyanate, for CCl4-induced liver injury. Journal of Functional Foods 22:73–81. doi: 10.1016/j.jff.2016.01.013.
  • Gan, R.-Y., C.-L. Chan, Q.-Q. Yang, H.-B. Li, D. Zhang, Y.-Y. Ge, A. Gunaratne, J. Ge, and H. Corke. 2019. Bioactive compounds and beneficial functions of sprouted grains. In: Sprouted Grains, eds. H. Feng, B. Nemzer, and J. V. DeVries, 191–246. St. Paul, MN, USA: AACC International Press.
  • Gawlik-Dziki, U., D. Dziki, M. Świeca, and R. Nowak. 2017. Mechanism of action and interactions between xanthine oxidase inhibitors derived from natural sources of chlorogenic and ferulic acids. Food Chemistry 225:138–45. doi: 10.1016/j.foodchem.2017.01.016.
  • Ghosh, S., S. Chowdhury, P. Sarkar, and P. C. Sil. 2018. Ameliorative role of ferulic acid against diabetes associated oxidative stress induced spleen damage. Food and Chemical Toxicology 118:272–86. doi: 10.1016/j.fct.2018.05.029.
  • Guven, M., A. B. Aras, T. Akman, H. M. Sen, A. Ozkan, I. Sehitoglu, Y. Kalkan, C. Silan, M. Deniz, and M. Cosar. 2015. Neuroprotective effect of p-coumaric acid in rat model of embolic cerebral ischemia. Iranian Journal of Basic Medical Sciences 18 (4):8.
  • Hafizur, R. M., A. Hameed, M. Shukrana, S. A. Raza, S. Chishti, N. Kabir, and R. A. Siddiqui. 2015. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine 22 (2):297–300.
  • Hariono, M., N. Abdullah, K. V. Damodaran, E. E. Kamarulzaman, N. Mohamed, S. S. Hassan, S. Shamsuddin, and H. A. Wahab. 2016. Potential new H1N1 neuraminidase inhibitors from ferulic acid and vanillin: Molecular modelling, synthesis and in vitro assay. Scientific Reports 6:38692. doi: 10.1038/srep38692.
  • Hauck, D., I. Joachim, B. Frommeyer, A. Varrot, B. Philipp, H. M. Möller, Anne Imberty, T. E. Exner, and A. Titz. 2013. Discovery of two classes of potent glycomimetic inhibitors of Pseudomonas aeruginosa LecB with distinct binding modes. ACS Chemical Biology 8 (8):1775–84. doi: 10.1021/cb400371r.
  • Heleno, S. A., A. Martins, M. J. R. P. Queiroz, and I. C. F. R. Ferreira. 2015. Bioactivity of phenolic acids: Metabolites versus parent compounds: a review. Food Chemistry 173:501–13. doi: 10.1016/j.foodchem.2014.10.057.
  • Hemaiswarya, S., R. Soudaminikkutty, M. L. Narasumani, and M. Doble. 2011. Phenylpropanoids inhibit protofilament formation of Escherichia coli cell division protein FtsZ. Journal of Medical Microbiology 60 (9):1317–25. doi: 10.1099/jmm.0.030536-0.
  • Hernández-Chávez, G., A. Martinez, and G. Gosset. 2019. Metabolic engineering strategies for caffeic acid production in Escherichia coli. Electronic Journal of Biotechnology 38:19–26. doi: 10.1016/j.ejbt.2018.12.004.
  • Hseu, Y.-C., M. Korivi, F.-Y. Lin, M.-L. Li, R.-W. Lin, J.-J. Wu, and H.-L. Yang. 2018. Trans -cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblasts. Journal of Dermatological Science 90 (2):123–34. doi: 10.1016/j.jdermsci.2018.01.004.
  • Hu, Y.-H., Q.-X. Chen, Yi Cui, H.-J. Gao, L. Xu, X.-Y. Yu, Y. Wang, C.-L. Yan, and Q. Wang. 2016. 4-Hydroxy cinnamic acid as mushroom preservation: anti-tyrosinase activity kinetics and application. International Journal of Biological Macromolecules 86:489–95. doi: 10.1016/j.ijbiomac.2016.01.070.
  • Huang, D.-W., and S.-C. Shen. 2012. Caffeic acid and cinnamic acid ameliorate glucose metabolism via modulating glycogenesis and gluconeogenesis in insulin-resistant mouse hepatocytes. Journal of Functional Foods 4 (1):358–66. doi: 10.1016/j.jff.2012.01.005.
  • Ignatova, M., N. Manolova, I. Rashkov, and N. Markova. 2018. Antibacterial and antioxidant electrospun materials from poly(3-hydroxybutyrate) and polyvinylpyrrolidone containing caffeic acid phenethyl ester – “in” and “on” strategies for enhanced solubility. International Journal of Pharmaceutics 545 (1–2):342–56. doi: 10.1016/j.ijpharm.2018.05.013.
  • Ismail, A. F. M., N. H. Zaher, E. M. El-Hossary, and M. G. El-Gazzar. 2016. Modulatory effects of new curcumin analogues on gamma-irradiation – Induced nephrotoxicity in rats. Chemico-Biological Interactions 260:141–53. doi: 10.1016/j.cbi.2016.11.010.
  • Jia, Y., Y. He, and F. Lu. 2018. The structure-antioxidant activity relationship of dehydrodiferulates. Food Chemistry 269:480–5. doi: 10.1016/j.foodchem.2018.07.038.
  • Jia, Y.-L., J. Zheng, F. Yu, Y.-X. Cai, X.-L. Zhan, H.-F. Wang, and Q.-X. Chen. 2016. Anti-tyrosinase kinetics and antibacterial process of caffeic acid N -nonyl ester in Chinese olive (canarium album) postharvest. International Journal of Biological Macromolecules 91:486–95.
  • Kabała-Dzik, A., A. Rzepecka-Stojko, R. Kubina, Ż. Jastrzębska-Stojko, R. Stojko, R. Wojtyczka, and J. Stojko. 2017. Migration rate inhibition of breast cancer cells treated by caffeic acid and caffeic acid phenethyl ester: An in vitro comparison study. Nutrients 9 (10):1144. doi: 10.3390/nu9101144.
  • Kasetti, R. B., S. A. Nabi, S. Swapna, and C. Apparao. 2012. Cinnamic acid as one of the antidiabetic active principle(s) from the seeds of Syzygium alternifolium. Food and Chemical Toxicology 50 (5):1425–31. doi: 10.1016/j.fct.2012.02.003.
  • Kayama, Y., U. Raaz, A. Jagger, M. Adam, I. Schellinger, M. Sakamoto, H. Suzuki, K. Toyama, J. Spin, and P. Tsao. 2015. Diabetic cardiovascular disease induced by oxidative stress. International Journal of Molecular Sciences 16 (10):25234–63. doi: 10.3390/ijms161025234.
  • Kępa, M., M. Miklasińska-Majdanik, R. D. Wojtyczka, D. Idzik, K. Korzeniowski, J. Smoleń-Dzirba, and T. J. Wąsik. 2018. Antimicrobial potential of caffeic acid against Staphylococcus aureus clinical strains. BioMed Research International 2018:1–9. doi: 10.1155/2018/7413504.
  • Keyvanfard, M., H. Karimi-Maleh, and K. Alizad. 2013. Multiwall carbon nanotube paste electrode with 3,4-dihydroxy-cinnamic acid as mediator for the determination of glutathione in pharmaceutical and urine samples. Chinese Journal of Catalysis 34 (10):1883–9. doi: 10.1016/S1872-2067(12)60661-5.
  • Khatkar, A., A. Nanda, P. Kumar, and B. Narasimhan. 2015. Synthesis and antimicrobial evaluation of ferulic acid derivatives. Research on Chemical Intermediates 41 (1):299–309. doi: 10.1007/s11164-013-1192-2.
  • Khatkar, A., A. Nanda, P. Kumar, and B. Narasimhan. 2017. Synthesis, antimicrobial evaluation and QSAR studies of p-coumaric acid derivatives. Arabian Journal of Chemistry 10:S3804–S3815. doi: 10.1016/j.arabjc.2014.05.018.
  • Khatkar, A., A. Nanda, and B. Narasimhan. 2013. Evaluation of preservative effectiveness of p-coumaric acid derivatives in aluminium hydroxide gel-USP. Chronicles of Young Scientists 4 (2):144–7. doi: 10.4103/2229-5186.115554.
  • Kim, G. R., and K. H. Lim. 2018. Cytoprotective effects of sinapic acid on human keratinocytes (HaCaT) against ultraviolet B. Biomedical Dermatology 2:10. doi: 10.1186/s41702-018-0021-z.
  • Kim, J.-H., D. Yu, S.-H. Eom, S.-H. Kim, J. Oh, W. Jung, and Y.-M. Kim. 2017. Synergistic antibacterial effects of chitosan-caffeic acid conjugate against antibiotic-resistant acne-related bacteria. Marine Drugs 15 (6):167. doi: 10.3390/md15060167.
  • Kon, K. V., and M. K. Rai. 2012. Plant essential oils and their constituents in coping with multidrug-resistant bacteria. Expert Review of anti-Infective Therapy 10 (7):775–90. doi: 10.1586/eri.12.57.
  • Kristan, K.,. T. Bratkovič, M. Sova, S. Gobec, A. Preželj, and U. Urleb. 2009. Novel inhibitors of β-ketoacyl-ACP reductase from Escherichia coli. Chemico-Biological Interactions 178 (1–3):310–6. doi: 10.1016/j.cbi.2008.09.030.
  • Kumar, M., V. Dahiya, E. R. Kasala, L. N. Bodduluru, and M. Lahkar. 2017. The renoprotective activity of hesperetin in cisplatin induced nephrotoxicity in rats: Molecular and biochemical evidence. Biomedicine & Pharmacotherapy 89:1207–15. doi: 10.1016/j.biopha.2017.03.008.
  • Kumnerdkhonkaen, P., S. Saenglee, Md A. Asgar, G. Senawong, K. Khongsukwiwat, and T. Senawong. 2018. Antiproliferative activities and phenolic acid content of water and ethanolic extracts of the powdered formula of Houttuynia cordata thunb. Fermented broth and Phyllanthus emblica Linn. fruit. BMC Complementary and Alternative Medicine 18 (1):130. doi: 10.1186/s12906-018-2185-x.
  • Lampiasi, N., and G. Montana. 2016. The molecular events behind ferulic acid mediated modulation of IL-6 expression in LPS-activated raw 264.7 cells. Immunobiology 221 (3):486–93. doi: 10.1016/j.imbio.2015.11.001.
  • Lee, H., I.-N. Oh, J. Kim, D. Jung, N. P. Cuong, Y. Kim, J. Lee, O. Kwon, S. U. Park, Y. Lim, et al. 2018. Phenolic compound profiles and their seasonal variations in new red-phenotype head-forming chinese cabbages. Lebensmittel-Wissenschaft & Technologie 90:433–9. doi: 10.1016/j.lwt.2017.12.056.
  • Letsididi, K. S., Z. Lou, R. Letsididi, K. Mohammed, and B. L. Maguy. 2018. Antimicrobial and antibiofilm effects of trans -cinnamic acid nanoemulsion and its potential application on lettuce. Lebensmittel-Wissenschaft & Technologie 94:25–32.
  • Li, C., L. Li, C.-F. Yang, Y.-J. Zhong, D. Wu, L. Shi, L. Chen, and Y.-W. Li. 2017. Hepatoprotective effects of methyl ferulic acid on alcohol-induced liver oxidative injury in mice by inhibiting the NOX4/ROS-MAPK pathway. Biochemical and Biophysical Research Communications 493 (1):277–85. doi: 10.1016/j.bbrc.2017.09.030.
  • Li, D., X. Wang, Q. Huang, S. Li, Y. Zhou, and Z. Li. 2018. Cardioprotection of CAPE- o NO 2 against myocardial ischemia/reperfusion induced ROS generation via regulating the SIRT1/eNOS/NF-κB pathway in vivo and in vitro. Redox Biology 15:62–73. doi: 10.1016/j.redox.2017.11.023.
  • Li, J., D. He, B. Wang, L. Zhang, K. Li, Q. Xie, and L. Zheng. 2017. Synthesis of hydroxycinnamic acid derivatives as mitochondria-targeted antioxidants and cytotoxic agents. Acta Pharmaceutica Sinica B 7 (1):106–15.
  • Li, W., S. Yuan, J. Sun, Q. Li, W. Jiang, and J. Cao. 2018. Ethyl p-coumarate exerts antifungal activity in vitro and in vivo against fruit Alternaria alternata via membrane-targeted mechanism. International Journal of Food Microbiology 278:26–35.
  • Li, X., H. Liu, P. L. Fischhaber, and T.-S. Tang. 2015. Toward therapeutic targets for SCA3: Insight into the role of machado–joseph disease protein ataxin-3 in misfolded proteins clearance. Progress in Neurobiology 132:34–58. doi: 10.1016/j.pneurobio.2015.06.004.
  • Li, Yan, F. Dai, X.-L. Jin, M.-M. Ma, Y.-H. Wang, X.-R. Ren, and B. Zhou. 2014. An effective strategy to develop active cinnamic acid-directed antioxidants based on elongating the conjugated chains. Food Chemistry 158:41–7. doi: 10.1016/j.foodchem.2014.02.092.
  • Li, Y., X. Ren, C. Lio, W. Sun, K. Lai, Y. Liu, Z. Zhang, J. Liang, H. Zhou, L. Liu, et al. 2018. A chlorogenic acid-phospholipid complex ameliorates post-myocardial infarction inflammatory response mediated by mitochondrial reactive oxygen species in SAMP8 mice. Pharmacological Research 130:110–22. doi: 10.1016/j.phrs.2018.01.006.
  • Liang, G., B. Shi, W. Luo, and J. Yang. 2015. The protective effect of caffeic acid on global cerebral ischemia-reperfusion injury in rats. Behavioral and Brain Functions 11 (1):18. doi: 10.1186/s12993-015-0064-x.
  • Liao, Z., H. He, G. Zeng, D. Liu, L. Tang, D. Yin, D. Chen, and M. He. 2017. Delayed protection of ferulic acid in isolated hearts and cardiomyocytes: Upregulation of heat-shock protein 70 via NO-ERK1/2 pathway. Journal of Functional Foods 34:18–27. doi: 10.1016/j.jff.2017.04.012.
  • Lin, F.-H., J.-Y. Lin, R. D. Gupta, J. A. Tournas, J. A. Burch, M. Angelica Selim, N. A. Monteiro-Riviere, J. M. Grichnik, J. Zielinski, and S. R. Pinnell. 2005. Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. Journal of Investigative Dermatology 125 (4):826–32. doi: 10.1111/j.0022-202X.2005.23768.x.
  • Liu, J., Y. He, S. Wang, Y. He, W. Wang, Q. Li, and X. Cao. 2018. Ferulic acid inhibits advanced glycation end products (AGEs) formation and mitigates the AGEs-induced inflammatory response in HUVEC cells. Journal of Functional Foods 48:19–26.
  • Lou, Z., H. Wang, S. Rao, J. Sun, C. Ma, and J. Li. 2012. P-Coumaric acid kills bacteria through dual damage mechanisms. Food Control 25 (2):550–4.
  • MacDonald, M. C., P. Arivalagan, D. E. Barre, J. A. MacInnis, and G. B. D’Cunha. 2016. Rhodotorula glutinis phenylalanine/tyrosine ammonia lyase enzyme catalyzed synthesis of the methyl ester of para-hydroxycinnamic acid and its potential antibacterial activity. Frontiers in Microbiology 7:281. doi: 10.3389/fmicb.2016.00281.
  • Mallik, S. B., J. Mudgal, M. Nampoothiri, S. Hall, S. A. Dukie, G. Grant, … D. Arora. 2016. Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice. Neuroscience Letters 632:218–23. doi: 10.1016/j.neulet.2016.08.044.
  • Mandoulakani, B., E. Eyvazpour, and M. Ghadimzadeh. 2017. The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum basilicum L.). Phytochemistry 139:1–7. doi: 10.1016/j.phytochem.2017.03.006.
  • Maruf, A. A., H. Y. Lip, H. Wong, and P. J. O'Brien. 2015. Protective effects of ferulic acid and related polyphenols against glyoxal- or methylglyoxal-induced cytotoxicity and oxidative stress in isolated rat hepatocytes. Chemico-Biological Interactions 234:96–104. doi: 10.1016/j.cbi.2014.11.007.
  • Matboli, M., S. Eissa, D. Ibrahim, M. G. A. Hegazy, S. S. Imam, and E. K. Habib. 2017. Caffeic acid attenuates diabetic kidney disease via modulation of autophagy in a high-fat diet/streptozotocin- induced diabetic rat. Scientific Reports 7 (1):2263. doi: 10.1038/s41598-017-02320-z.
  • Mathew, S., T. E. Abraham, and Z. A. Zakaria. 2015. Reactivity of phenolic compounds towards free radicals under in vitro conditions. Journal of Food Science and Technology 52 (9):5790–8. doi: 10.1007/s13197-014-1704-0.
  • Maurya, D. K., and T. P. A. Devasagayam. 2010. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food and Chemical Toxicology 48 (12):3369–73. doi: 10.1016/j.fct.2010.09.006.
  • Mayengbam, S., A. Aachary, and U. Thiyam-Holländer. 2014. Endogenous phenolics in hulls and cotyledons of mustard and canola: A comparative study on its sinapates and antioxidant capacity. Antioxidants 3 (3):544–58. doi: 10.3390/antiox3030544.
  • Medina, I., M. J. González, J. Iglesias, and N. D. Hedges. 2009. Effect of hydroxycinnamic acids on lipid oxidation and protein changes as well as water holding capacity in frozen minced horse mackerel white muscle. Food Chemistry 114 (3):881–8. doi: 10.1016/j.foodchem.2008.10.031.
  • Meeprom, A., C. B. Chan, W. Sompong, and S. Adisakwattana. 2018. Isoferulic acid attenuates methylglyoxal-induced apoptosis in INS-1 rat pancreatic β-cell through mitochondrial survival pathways and increasing glyoxalase-1 activity. Biomedicine & Pharmacotherapy 101:777–85. doi: 10.1016/j.biopha.2018.01.017.
  • Mir, S. M., H. G. Ravuri, R. K. Pradhan, S. Narra, J. M. Kumar, M. Kuncha, R. Kanjilal and R. Sistla. 2018. Ferulic acid protects lipopolysaccharide-induced acute kidney injury by suppressing inflammatory events and upregulating antioxidant defenses in balb/c mice. Biomedicine & Pharmacotherapy 100:304–15. doi: 10.1016/j.biopha.2018.01.169.
  • Mizgier, P., A. Z. Kucharska, A. Sokół-Łętowska, J. Kolniak-Ostek, M. Kidoń, and I. Fecka. 2016. Characterization of phenolic compounds and antioxidant and anti-inflammatory properties of red cabbage and purple carrot extracts. Journal of Functional Foods 21:133–46. doi: 10.1016/j.jff.2015.12.004.
  • Moosavi, F., R. Hosseini, H. Rajaian, T. Silva, D. Magalhães e Silva, L. Saso, N. Edraki, R. Miri, F. Borges and O. Firuzi. 2017. Derivatives of caffeic acid, a natural antioxidant, as the basis for the discovery of novel nonpeptidic neurotrophic agents. Bioorganic & Medicinal Chemistry 25 (12):3235–46.
  • Mu, H.-N., Q. Li, C.-S. Pan, Y.-Y. Liu, L. Yan, B.-H. Hu, K. Sun, X. Chang, X.-R. Zhao, J.-Y. Fan, and J.-Y. Han. 2015. Caffeic acid attenuates rat liver reperfusion injury through sirtuin 3-dependent regulation of mitochondrial respiratory chain. Free Radical Biology and Medicine 85:237–49. doi: 10.1016/j.freeradbiomed.2015.04.033.
  • Murray, J. C., J. A. Burch, R. D. Streilein, M. A. Iannacchione, R. P. Hall, and S. R. Pinnell. 2008. A topical antioxidant solution containing vitamins C and E stabilized by ferulic acid provides protection for human skin against damage caused by ultraviolet irradiation. Journal of the American Academy of Dermatology 59 (3):418–25. doi: 10.1016/j.jaad.2008.05.004.
  • Nadal, J. M., M. L. S. Gomes, D. M. Borsato, M. A. Almeida, F. M. Barboza, S. F. Zawadzki, C. C. Kanunfre, P. V. Farago, and S. M. W. Zanin. 2016. Spray-dried eudragit® L100 microparticles containing ferulic acid: Formulation, in vitro cytoprotection and in vivo anti-platelet effect. Materials Science and Engineering: C 64:318–28. doi: 10.1016/j.msec.2016.03.086.
  • Narasimhan, A., M. Chinnaiyan, and B. Karundevi. 2015. Ferulic acid regulates hepatic GLUT2 gene expression in high fat and fructose-induced type-2 diabetic adult male rat. European Journal of Pharmacology 761:391–7. doi: 10.1016/j.ejphar.2015.04.043.
  • Narasimhan, B., D. Belsare, D. Pharande, V. Mourya, and A. Dhake. 2004. Esters, amides and substituted derivatives of cinnamic acid: Synthesis, antimicrobial activity and QSAR investigations. European Journal of Medicinal Chemistry 39 (10):827–34. doi: 10.1016/j.ejmech.2004.06.013.
  • Natella, F., M. Nardini, M. Di Felice, and C. Scaccini. 1999. Benzoic and cinnamic acid derivatives as antioxidants: Structure − activity relation. Journal of Agricultural and Food Chemistry 47 (4):1453–9. doi: 10.1021/jf980737w.
  • Navaneethan, D., and M. Rasool. 2014. P -Coumaric acid, a common dietary polyphenol, protects cadmium chloride-induced nephrotoxicity in rats. Renal Failure 36 (2):244–51. doi: 10.3109/0886022X.2013.835268.
  • Nićiforović, N., and H. Abramovič. 2014. Sinapic acid and its derivatives: Natural sources and bioactivity. Comprehensive Reviews in Food Science and Food Safety 13 (1):34–51. doi: 10.1111/1541-4337.12041.
  • Nićiforović, N.,. T. Polak, D. Makuc, N. Poklar Ulrih, and H. Abramovič. 2017. A kinetic approach in the evaluation of radical-scavenging efficiency of sinapic acid and its derivatives. Molecules 22 (3):375. doi: 10.3390/molecules22030375.
  • Nimse, S. B., D. Pal, A. Mazumder, and R. Mazumder. 2015. Synthesis of cinnamanilide derivatives and their antioxidant and antimicrobial activity. Journal of Chemistry 2015:1–5. doi: 10.1155/2015/208910.
  • Nithya, R., and S. Subramanian. 2017. Antioxidant properties of sinapic acid: In vitro and in vivo approach. Asian Journal of Pharmaceutical and Clinical Research 10 (6):255–62. doi: 10.22159/ajpcr.2017.v10i6.18263.
  • Oh, G.-W., S.-C. Ko, J.-Y. Je, Y.-M. Kim, J. Oh, and W.-K. Jung. 2016. Fabrication, characterization and determination of biological activities of poly(ε-caprolactone)/chitosan-caffeic acid composite fibrous mat for wound dressing application. International Journal of Biological Macromolecules 93:1549–58. doi: 10.1016/j.ijbiomac.2016.06.065.
  • Oresajo, C., T. Stephens, P. D. Hino, R. M. Law, M. Yatskayer, P. Foltis, S. Pillai, and S. R. Pinnell. 2008. Protective effects of a topical antioxidant mixture containing vitamin C, ferulic acid, and phloretin against ultraviolet-induced photodamage in human skin. Journal of Cosmetic Dermatology 7 (4):290–7. doi: 10.1111/j.1473-2165.2008.00408.x.
  • Otero, E., E. García, G. Palacios, L. M. Yepes, M. Carda, R. Agut, I. D. Vélez, W. I. Cardona, and S. M. Robledo. 2017. Triclosan-caffeic acid hybrids: Synthesis, leishmanicidal, trypanocidal and cytotoxic activities. European Journal of Medicinal Chemistry 141:73–83. doi: 10.1016/j.ejmech.2017.09.064.
  • Ou, S., and K.-C. Kwok. 2004. Ferulic acid: Pharmaceutical functions, preparation and applications in foods. Journal of the Science of Food and Agriculture 84 (11):1261–9. doi: 10.1002/jsfa.1873.
  • Palmieri, M. G. S., L. T. Cruz, F. S. Bertges, H. M. Húngaro, L. R. Batista, S. S. da Silva, M. J. V. Fonseca, M. P. Rodarte, F. M. P. Vilela, and M. da P. H. do Amaral. 2018. Enhancement of antioxidant properties from green coffee as promising ingredient for food and cosmetic industries. Biocatalysis and Agricultural Biotechnology 16:43–8. doi: 10.1016/j.bcab.2018.07.011.
  • Park, S.-H., J.-W. Ko, N.-R. Shin, D.-H. Shin, Y.-K. Cho, C.-S. Seo, J.-C. Kim, J.-S. Kim, and I.-S. Shin. 2017. 4-Hydroxycinnamic acid protects mice from cigarette smoke-induced pulmonary inflammation via MAPK pathways. Food and Chemical Toxicology 110:151–5. doi: 10.1016/j.fct.2017.10.027.
  • Patzke, H., and A. Schieber. 2018. Growth-inhibitory activity of phenolic compounds applied in an emulsifiable concentrate – Ferulic acid as a natural pesticide against Botrytis cinerea. Food Research International 113:18–23. doi: 10.1016/j.foodres.2018.06.062.
  • Peperidou, A., E. Pontiki, D. Hadjipavlou-Litina, E. Voulgari, and K. Avgoustakis. 2017. Multifunctional cinnamic acid derivatives. Molecules 22 (8):1247. doi: 10.3390/molecules22081247.
  • Peres, D. D., F. D. Sarruf, C. A. de Oliveira, M. V. R. Velasco, and A. R. Baby. 2018. Ferulic acid photoprotective properties in association with UV filters: Multifunctional sunscreen with improved SPF and UVA-PF. Journal of Photochemistry and Photobiology B: Biology 185:46–9. doi: 10.1016/j.jphotobiol.2018.05.026.
  • Pontiki, E., D. Hadjipavlou-Litina, K. Litinas, and G. Geromichalos. 2014. Novel cinnamic acid derivatives as antioxidant and anticancer agents: Design, synthesis and modeling studies. Molecules 19 (7):9655–74. doi: 10.3390/molecules19079655.
  • Prabhakar, P. K., R. Prasad, S. Ali, and M. Doble. 2013. Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. Phytomedicine 20 (6):488–94. doi: 10.1016/j.phymed.2012.12.004.
  • Quispe, G. Y., S. Hwang, Z. Wang, G. Zuo, and S. Lim. 2017. Screening in vitro targets related to diabetes in herbal extracts from Peru: Identification of active compounds in Hypericum laricifolium Juss. by offline high-performance liquid chromatography. International Journal of Molecular Sciences 18 (12):2512. doi: 10.3390/ijms18122512.
  • Rastogi, N., P. Domadia, S. Shetty, and D. Dasgupta. 2008. Screening of natural phenolic compounds for potential to inhibit bacterial cell division protein FtsZ. Indian Journal of Experimental Biology 46 (11):783–7.
  • Rathee, D., V. Lather, A. S. Grewal, and H. Dureja. 2018. Targeting matrix metalloproteinases with novel diazepine substituted cinnamic acid derivatives: Design, synthesis, in vitro and in silico studies. Chemistry Central Journal 12 (1):14. doi: 10.1186/s13065-018-0411-8.
  • Roller, S., and P. Seedhar. 2002. Carvacrol and cinnamic acid inhibit microbial growth in fresh-cut melon and kiwifruit at 4° and 8 °C. Letters in Applied Microbiology 35 (5):390–4. doi: 10.1046/j.1472-765X.2002.01209.x.
  • Rymenant, V. E., J. Van Camp, B. Pauwels, C. Boydens, L. Vanden Daele, K. Beerens, … J. Van de Voorde. 2017. Ferulic acid-4-O-sulfate rather than ferulic acid relaxes arteries and lowers blood pressure in mice. The Journal of Nutritional Biochemistry 44:44–51. doi: 10.1016/j.jnutbio.2017.02.018.
  • Saibabu, V., Z. Fatima, L. A. Khan, and S. Hameed. 2015. Therapeutic potential of dietary phenolic acids. Advances in Pharmacological Sciences 2015:1–10. doi: 10.1155/2015/823539.
  • Salami, M., M. Rahimmalek, and M. H. Ehtemam. 2016. Inhibitory effect of different fennel (Foeniculum vulgare) samples and their phenolic compounds on formation of advanced glycation products and comparison of antimicrobial and antioxidant activities. Food Chemistry 213:196–205. doi: 10.1016/j.foodchem.2016.06.070.
  • Samad, K. A., and N. Zainol. 2017. The use of factorial design for ferulic acid production by co-culture. Industrial Crops and Products 95:202–6. doi: 10.1016/j.indcrop.2016.10.028.
  • Sang, Z., W. Pan, K. Wang, Q. Ma, L. Yu, Y. Yang, P. Bai, C. Leng, Q. Xu, X. Li, et al. 2017. Design, synthesis and evaluation of novel ferulic acid-O-alkylamine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry 130:379–92. doi: 10.1016/j.ejmech.2017.02.039.
  • Santos, D. J. F. S., S. R. Tintino, T. S. de Freitas, F. F. Campina, I. R. de A. Menezes, J. P. Siqueira-Júnior, H. D. M. Coutinho, and F. A. B. Cunha. 2018. In vitro e in silico evaluation of the inhibition of Staphylococcus aureus efflux pumps by caffeic and gallic acid. Comparative Immunology, Microbiology and Infectious Diseases 57:22–8. doi: 10.1016/j.cimid.2018.03.001.
  • Sarkar, D., and K. Shetty. 2014. Metabolic stimulation of plant phenolics for food preservation and health. Annual Review of Food Science and Technology 5 (1):395–413. doi: 10.1146/annurev-food-030713-092418.
  • Sawada, Y., T. Honda, S. Nakamizo, A. Otsuka, N. Ogawa, Y. Kobayashi, M. Nakamura, and K. Kabashima. 2018. Resolvin E1 attenuates murine psoriatic dermatitis. Scientific Reports 8 (1):11873. doi: 10.1038/s41598-018-30373-1.
  • Schmidt, C. G., L. M. Gonçalves, L. Prietto, H. S. Hackbart, and E. B. Furlong. 2014. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus rizhopus oryzae. Food Chemistry 146:371–7. doi: 10.1016/j.foodchem.2013.09.101.
  • Senawong, T., S. Misuna, S. Khaopha, S. Nuchadomrong, P. Sawatsitang, C. Phaosiri, A. Surapaitoon, and B. Sripa. 2013. Histone deacetylase (HDAC) inhibitory and antiproliferative activities of phenolic-rich extracts derived from the rhizome of Hydnophytum formicarum Jack.: Sinapinic acid acts as HDAC inhibitor. BMC Complementary and Alternative Medicine 13 (1):232. doi: 10.1186/1472-6882-13-232.
  • Seo, Y. K., S. J. Kim, Y. C. Boo, J. H. Baek, S. H. Lee, and J. S. Koh. 2011. Effects of p-Coumaric acid on erythema and pigmentation of human skin exposed to ultraviolet radiation. Clinical and Experimental Dermatology 36 (3):260–6. doi: 10.1111/j.1365-2230.2010.03983.x.
  • Seong, G.-U., I.-W. Hwang, and S.-K. Chung. 2016. Antioxidant capacities and polyphenolics of Chinese cabbage (Brassica rapa L. ssp. Pekinensis) leaves. Food Chemistry 199:612–8. doi: 10.1016/j.foodchem.2015.12.066.
  • Shahid, M., Y. Zhou, X.-W. Cheng, M. S. Zar, G. Chen, and R.-C. Tang. 2018. Ferulic acid promoted in-situ generation of AgNPs@silk as functional colorants. Journal of Cleaner Production 176:736–44. doi: 10.1016/j.jclepro.2017.12.171.
  • Sharma, K. K. 2012. Sustainable biofuels from lignocellulosic biomass in genomic era. In Current Trends in Biotechnology, ed. S. K. Tiwari and B. Singh, 44–73. Germany: Lambert Academic Publication.
  • Shelton, L. M., P. B. Kevin, and I. M. Copple. 2013. Role of Nrf2 in protection against acute kidney injury. Kidney International 84 (6):1090–5. doi: 10.1038/ki.2013.248.
  • Shi, Y.-G., Y. Wu, X.-Y. Lu, Y.-P. Ren, Q. Wang, C.-M. Zhu, D. Yu, and H. Wang. 2017. Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria. Food Chemistry 220:249–56. doi: 10.1016/j.foodchem.2016.09.187.
  • Shin, D.-S., K. W. Kim, H. Y. Chung, S. Yoon, and J.-O. Moon. 2013. Effect of sinapic acid against dimethylnitrosamine-induced hepatic fibrosis in rats. Archives of Pharmacal Research 36 (5):608–18. doi: 10.1007/s12272-013-0033-6.
  • Silambarasan, T., J. Manivannan, M. K. Priya, N. Suganya, S. Chatterjee, and B. Raja. 2015. Sinapic acid protects heart against ischemia/reperfusion injury and H9c2 cardiomyoblast cells against oxidative stress. Biochemical and Biophysical Research Communications 456 (4):853–9. doi: 10.1016/j.bbrc.2014.12.022.
  • Silambarasan, T., J. Manivannan, B. Raja, and S. Chatterjee. 2016. Prevention of cardiac dysfunction, kidney fibrosis and lipid metabolic alterations in l-NAME hypertensive rats by sinapic acid-role of HMG-CoA reductase. European Journal of Pharmacology 777:113–23. doi: 10.1016/j.ejphar.2016.03.004.
  • Silveira, A. C., G. C. Moreira, F. Artés, and E. Aguayo. 2015. Vanillin and cinnamic acid in aqueous solutions or in active modified packaging preserve the quality of fresh-cut cantaloupe melon. Scientia Horticulturae 192:271–8. doi: 10.1016/j.scienta.2015.06.029.
  • Sommer, R., D. Hauck, A. Varrot, S. Wagner, A. Audfray, A. Prestel, H. M. Möller, A. Imberty, and A. Titz. 2015. Cinnamide derivatives of d-mannose as inhibitors of the bacterial virulence factor LecB from Pseudomonas aeruginosa. ChemistryOpen 4 (6):756–67. doi: 10.1002/open.201500162.
  • Sonar, V. P., A. Corona, S. Distinto, E. Maccioni, R. Meleddu, B. Fois, C. Floris, N. V. Malpure, S. Alcaro, E. Tramontano, and F. Cottiglia. 2017. Natural product-inspired esters and amides of ferulic and caffeic acid as dual inhibitors of HIV-1 reverse transcriptase. European Journal of Medicinal Chemistry 130:248–60. doi: 10.1016/j.ejmech.2017.02.054.
  • Sudhagar, S., S. Sathya, R. Anuradha, G. Gokulapriya, Y. Geetharani, and B. S. Lakshmi. 2018. Inhibition of epidermal growth factor receptor by ferulic acid and 4-vinylguaiacol in human breast cancer cells. Biotechnology Letters 40 (2):257–62. doi: 10.1007/s10529-017-2475-2.
  • Sung, W. S., and D. G. Lee. 2010. Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure and Applied Chemistry 82 (1):219–26. doi: 10.1351/PAC-CON-09-01-08.
  • Sunitha, M. C., R. Dhanyakrishnan, B. PrakashKumar, and K. G. Nevin. 2018. p-Coumaric acid mediated protection of H9c2 cells from doxorubicin-induced cardiotoxicity: Involvement of augmented Nrf2 and autophagy. Biomedicine & Pharmacotherapy 102:823–32. doi: 10.1016/j.biopha.2018.03.089.
  • Takahashi, H., M. Kashimura, H. Koiso, T. Kuda, and B. Kimura. 2013. Use of ferulic acid as a novel candidate of growth inhibiting agent against Listeria monocytogenes in ready-to-eat food. Food Control 33 (1):244–8. doi: 10.1016/j.foodcont.2013.03.013.
  • Taofiq, O., A. González-Paramás, M. Barreiro, and I. Ferreira. 2017. Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a review. Molecules 22 (2):281. doi: 10.3390/molecules22020281.
  • Tavares-da-Silva, E. J., C. L. Varela, A. S. Pires, J. C. Encarnação, A. M. Abrantes, M. F. Botelho, … F. M. F. Roleira. 2016. Combined dual effect of modulation of human neutrophils’ oxidative burst and inhibition of colon cancer cells proliferation by hydroxycinnamic acid derivatives. Bioorganic & Medicinal Chemistry 24 (16):3556–64. doi: 10.1016/j.bmc.2016.05.065.
  • Tee-Ngam, P., N. Nunant, P. Rattanarat, W. Siangproh, and O. Chailapakul. 2013. Simple and rapid determination of ferulic acid levels in food and cosmetic samples using paper-based platforms. Sensors 13 (10):13039–53. doi: 10.3390/s131013039.
  • Teixeira, J., A. Gaspar, E. M. Garrido, J. Garrido, and F. Borges. 2013. Hydroxycinnamic acid antioxidants: An electrochemical overview. BioMed Research International 2013:1–11. doi: 10.1155/2013/251754.
  • Teixeira, J., T. Silva, S. Benfeito, A. Gaspar, E. M. Garrido, J. Garrido, and F. Borges. 2013. Exploring nature profits: Development of novel and potent lipophilic antioxidants based on galloyl–cinnamic hybrids. European Journal of Medicinal Chemistry 62:289–96. doi: 10.1016/j.ejmech.2012.12.049.
  • The Japan Food Chemical Research Foundation. 2014. List of existing food additives. Accessed August 24, 2018. http://www.ffcr.or.jp/en/tenka/list-of-existing-food-additives/list-of-existing-food-additives.html.
  • The Japan Food Chemical Research Foundation. 2016. Revision of list of designated food additives. Accessed August 24, 2018. http://www.ffcr.or.jp/en/tenka/revision-of-list/-revision-of-list-of-designated-food-additivesoctober-06-2016.html
  • Tohamy, A. A., A. M. Aref, A. E. A. Moneim, and R. H. Sayed. 2016. Cinnamic acid attenuates cisplatin-induced hepatotoxicity and nephrotoxicity. Journal of Basic and Environmental Sciences 3:1–9.
  • Tong, P., S. Chen, J. Gao, X. Li, Z. Wu, A. Yang, J. Yuan, and H. Chen. 2018. Caffeic acid-assisted cross-linking catalyzed by polyphenol oxidase decreases the allergenicity of ovalbumin in a Balb/c mouse model. Food and Chemical Toxicology 111:275–83. doi: 10.1016/j.fct.2017.11.026.
  • Trujillo, J., Y. I. Chirino, E. Molina-Jijón, A. C. Andérica-Romero, E. Tapia, and J. Pedraza-Chaverrí. 2013. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biology 1 (1):448–56. doi: 10.1016/j.redox.2013.09.003.
  • Ugurlu, A., A. Karahasan Yagci, S. Ulusoy, B. Aksu, and G. Bosgelmez-Tinaz. 2016. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa. Asian Pacific Journal of Tropical Biomedicine 6 (8):698–701. doi: 10.1016/j.apjtb.2016.06.008.
  • U.S. Food and Drug Administration (U.S. FDA, 21CFR172.515). 2018a. Title 21: Food and drugs; part 172: Food additives permitted for direct addition to food for human consumption. Accessed September 24, 2018. https://www-accessdata-fda-gov.libaccess.fdu.edu/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=172.515.
  • U.S. Food and Drug Administration (U.S. FDA, 21CRF352.50). 2018b. Title 21: Food and drugs; part 352: Sunscreen drug products for over-the-counter human use. Code of Federal Regulations. Accessed September 24, 2018. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=352.50#.W4MKxbI2Mus.mailto.
  • Vashisth, P., N. Kumar, M. Sharma, and V. Pruthi. 2015. Biomedical applications of ferulic acid encapsulated electrospun nanofibers. Biotechnology Reports 8:36–44. doi: 10.1016/j.btre.2015.08.008.
  • Vijayakumar, M., G. Jagadeesan, and E. Bharathi. 2014. Ameliorative potential of ferulic acid on cardiotoxicity induced by mercuric chloride. Biomedicine & Preventive Nutrition 4 (2):239–43. doi: 10.1016/j.bionut.2014.02.005.
  • Wang, L., C. Bi, H. Cai, B. Liu, X. Zhong, X. Deng, T. Wang, H. Xiang, X. Niu, and D. Wang. 2015. The therapeutic effect of chlorogenic acid against Staphylococcus aureus infection through sortase a inhibition. Frontiers in Microbiology 6:1031.doi: 10.3389/fmicb.2015.01031.
  • Wu, Y., J. Bai, K. Zhong, Y. Huang, H. Qi, Y. Jiang, and H. Gao. 2016. Antibacterial activity and membrane-disruptive mechanism of 3-p-trans-coumaroyl-2-hydroxyquinic acid, a novel phenolic compound from pine needles of Cedrus deodara, against Staphylococcus aureus. Molecules 21 (8):1084. doi: 10.3390/molecules21081084.
  • Wu, Y.-L., J.-C. Chang, W.-Y. Lin, C.-C. Li, M. Hsieh, H.-W. Chen, T.-S. Wang, W.-T. Wu, C.-S. Liu, and K.-L. Liu. 2018. Caffeic acid and resveratrol ameliorate cellular damage in cell and drosophila models of spinocerebellar ataxia type 3 through upregulation of Nrf2 pathway. Free Radical Biology and Medicine 115:309–17. doi: 10.1016/j.freeradbiomed.2017.12.011.
  • Wu, Z.-M., Z.-J. Yu, Z.-Q. Cui, L.-Y. Peng, H.-R. Li, C.-L. Zhang, H.-Q. Shen, P.-F. Yi, and B.-D. Fu. 2017. In vitro antiviral efficacy of caffeic acid against canine distemper virus. Microbial Pathogenesis 110:240–4. doi: 10.1016/j.micpath.2017.07.006.
  • Xie, Y., B. Huang, K. Yu, F. Shi, T. Liu, and W. Xu. 2013. Caffeic acid derivatives: A new type of influenza neuraminidase inhibitors. Bioorganic & Medicinal Chemistry Letters 23 (12):3556–60. doi: 10.1016/j.bmcl.2013.04.033.
  • Xie, Y., B. Huang, K. Yu, and W. Xu. 2013. Further discovery of caffeic acid derivatives as novel influenza neuraminidase inhibitors. Bioorganic & Medicinal Chemistry 21 (24):7715–23. doi: 10.1016/j.bmc.2013.10.020.
  • Yang, X.-H., Q. Wen, T.-T. Zhao, J. Sun, X. Li, M. Xing, X. Lu, and H.-L. Zhu. 2012. Synthesis, biological evaluation, and molecular docking studies of cinnamic acyl 1,3,4-thiadiazole amide derivatives as novel antitubulin agents. Bioorganic & Medicinal Chemistry 20 (3):1181–7. doi: 10.1016/j.bmc.2011.12.057.
  • Yin, Z.-N., W.-J. Wu, C.-Z. Sun, H.-F. Liu, W.,-B. Chen, Q.-P. Zhan, … H. Wu. 2019. Antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by solid-state fermentation of Aspergillus niger. Biomedical & Environmental Sciences 32 (1):11–21.
  • Yilmaz, E., and P. O. Bagci. 2018. Production of phytotherapeutics from broccoli juice by integrated membrane processes. Food Chemistry 242:264–71. doi: 10.1016/j.foodchem.2017.09.056.
  • Yu, S.-H., H.-Y. Hsieh, J.-C. Pang, D.-W. Tang, C.-M. Shih, M.-L. Tsai, Y.-C. Tsai, and F.-L. Mi. 2013. Active films from water-soluble chitosan/cellulose composites incorporating releasable caffeic acid for inhibition of lipid oxidation in fish oil emulsions. Food Hydrocolloids 32 (1):9–19. doi: 10.1016/j.foodhyd.2012.11.036.
  • Yun, S.-H., S.-H. Han, and J.-I. Park. 2018. Peroxisome proliferator-activated receptor γ and pgc-1 α in cancer: Dual actions as tumor promoter and suppressor. PPAR Research 2018:1–12. doi: 10.1155/2018/6727421.
  • Zabalza, A., L. Orcaray, M. Fernández-Escalada, A. Zulet-González, and M. Royuela. 2017. The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots. Pesticide Biochemistry and Physiology 141:96–102. doi: 10.1016/j.pestbp.2016.12.005.
  • Zeng, X., J. Zheng, C. Fu, H. Su, X. Sun, X. Zhang, Y. Hou, and Y. Zhu. 2013. A newly synthesized sinapic acid derivative inhibits endothelial activation in vitro and in vivo. Molecular Pharmacology 83 (5):1099–108. doi: 10.1124/mol.112.084368.
  • Zhang, H.-J., D.-D. Zhu, Z.-L. Li, J. Sun, and H.-L. Zhu. 2011. Synthesis, molecular modeling and biological evaluation of β-ketoacyl-acyl carrier protein synthase III (FabH) as novel antibacterial agents. Bioorganic & Medicinal Chemistry 19 (15):4513–9. doi: 10.1016/j.bmc.2011.06.021.
  • Zhou, K., D. Chen, B. Li, B. Zhang, F. Miao, and L. Zhou. 2017. Bioactivity and structure-activity relationship of cinnamic acid esters and their derivatives as potential antifungal agents for plant protection. Plos ONE 12 (4):e0176189. doi: 10.1371/journal.pone.0176189.
  • Zhu, B., B. Shang, Y. Li, and Y. Zhen. 2016. Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against Colon cancer xenografts in athymic mice. Molecular Medicine Reports 13 (5):4159–66.
  • Zielinski, H., H. Kozlowska, and B. Lewczuk. 2001. Bioactive compounds in the cereal grains before and after hydrothermal processing. Innovative Food Science & Emerging Technologies 2 (3):159–69. doi: 10.1016/S1466-8564(01)00040-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.