3,497
Views
94
CrossRef citations to date
0
Altmetric
Reviews

Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: Mechanisms and application advances

, &

References

  • Adams, J. B., and H. M. Brown. 2007. Discoloration in raw and processed fruits and vegetables. Critical Reviews in Food Science and Nutrition 47 (3):319–33. doi: 10.1080/10408390600762647.
  • Ayala-Zavala, J. F., G. A. González-Aguilar, and L. Del-Toro-Sánchez. 2009. Enhancing safety and aroma appealing of fresh-cut fruit and vegetables using the antimicrobial and aromatic power of essential oils. Journal of Food Science 74 (7):R84–R91. doi: 10.1111/j.1750-3841.2009.01294.x.
  • Baier, M., J. Ehlbeck, D. Knorr, W. B. Herppich, and O. Schlüter. 2015. Impact of plasma processed air (PPA) on quality parameters of fresh produce. Postharvest Biology and Technology 100:120–6. doi: 10.1016/j.postharvbio.2014.09.015.
  • Baier, M., J. Foerster, U. Schnabel, D. Knorr, J. Ehlbeck, W. B. Herppich, and O. Schlüter. 2013. Direct non-thermal plasma treatment for the sanitation of fresh corn salad leaves: Evaluation of physical and physiological effects and antimicrobial efficacy. Postharvest Biology and Technology 84:81–7. doi: 10.1016/j.postharvbio.2013.03.022.
  • Baier, M., M. Görgen, J. Ehlbeck, D. Knorr, W. B. Herppich, and O. Schlüter. 2014. Non-thermal atmospheric pressure plasma: Screening for gentle process conditions and antibacterial efficiency on perishable fresh produce. Innovative Food Science & Emerging Technologies 22:147–57. doi: 10.1016/j.ifset.2014.01.011.
  • Beaulieu, J. C., and E. A. Baldwin. 2002. Flavor and aroma of fresh-cut fruit and vegetables. In Fresh-cut fruit and vegetables: Science, technology and market, ed. O. Lamikanra, 319–425. Boca Raton, FL: CRC Press.
  • Bermúdez-Aguirre, D., E. Wemlinger, P. Pedrow, G. Barbosa-Cánovas, and M. Garcia-Perez. 2013. Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control 34 (1):149–57. doi: 10.1016/j.foodcont.2013.04.022.
  • Bevilacqua, A., L. Petruzzi, M. Perricone, B. Speranza, D. Campaniello, M. Sinigaglia, and M. R. Corbo. 2018. Nonthermal technologies for fruit and vegetable juices and beverages: Overview and advances. Comprehensive Reviews in Food Science and Food Safety 17 (1):2–62. doi: 10.1111/1541-4337.12299.
  • Bruggeman, P. J., M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. C. H. M. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani., et al. 2016. Plasma–liquid interactions: A review and roadmap. Plasma Sources Science and Technology 25 (5):053002. doi: 10.1088/0963-0252/25/5/053002.
  • Bußler, S., J. Ehlbeck, and O. K. Schlüter. 2017. Pre-drying treatment of plant related tissues using plasma processed air: Impact on enzyme activity and quality attributes of cut apple and potato. Innovative Food Science & Emerging Technologies 40:78–86. doi: 10.1016/j.ifset.2016.05.007.
  • Chaiwat, W., R. Wongsagonsup, N. Tangpanichyanon, T. Jariyaporn, P. Deeyai, M. Suphantharika, A. Fuongfuchat, M. Nisoa, and S. Dangtip. 2016. Argon plasma treatment of tapioca starch using a semi-continuous downer reactor. Food and Bioprocess Technology 9 (7):1125–34. doi: 10.1007/s11947-016-1701-6.
  • Chiabrando, V., G. Giacalone, and L. Rolle. 2010. Mechanical behaviour and quality traits of highbush blueberry during postharvest storage. Journal of the Science of Food and Agriculture 89 (6):989–92. doi: 10.1002/jsfa.3544.
  • Dasan, B. G., I. H. Boyaci, and M. Mutlu. 2017. Nonthermal plasma treatment of aspergillus spp. spores on hazelnuts in an atmospheric pressure fluidized bed plasma system: Impact of process parameters and surveillance of the residual viability of spores. Journal of Food Engineering 196:139–49. doi: 10.1016/j.jfoodeng.2016.09.028.
  • Dasan, B. G., and I. H. Boyaci. 2018. Effect of cold atmospheric plasma on inactivation of Escherichia coli and physicochemical properties of apple, orange, tomato juices, and sour cherry nectar. Food and Bioprocess Technology 11 (2):334–43. doi: 10.1007/s11947-017-2014-0.
  • Dolci, L. S., A. Liguori, S. Panzavolta, A. Miserocchi, N. Passerini, M. Gherardi, V. Colombo, A. Bigi, and B. Albertini. 2018. Non-equilibrium atmospheric pressure plasma as innovative method to crosslink and enhance mucoadhesion of econazole-loaded gelatin films for buccal drug delivery. Colloids and Surfaces B: Biointerfaces 163:73–82. doi: 10.1016/j.colsurfb.2017.12.030.
  • Dong, S., A. Gao, H. Xu, and Y. Chen. 2017. Effects of dielectric barrier discharges (DBD) cold plasma treatment on physicochemical and structural properties of zein powders. Food and Bioprocess Technology 10 (3):434–44. doi: 10.1007/s11947-016-1814-y.
  • Dong, X. Y., and Y. L. Yang. 2019. A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure. Food and Bioprocess Technology 12 (8):1409–21. doi: 10.1007/s11947-019-02305-y.
  • Ekezie, F. G. C., D.-W. Sun, and J. H. Cheng. 2017. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science & Technology 69:46–58.
  • Ekezie, F. G. C., J. H. Cheng, and D.-W. Sun. 2018. Effects of mild oxidative and structural modifications induced by argon-plasma on physicochemical properties of actomyosin from king prawn (Litopenaeus vannamei). Journal of Agricultural and Food Chemistry 66 (50):13285–94. doi: 10.1021/acs.jafc.8b05178.
  • Ekezie, F. G. C., D.-W. Sun, and J. H. Cheng. 2019a. Altering the IgE binding capacity of king prawn (Litopenaeus vannamei) tropomyosin through conformational changes induced by cold argon-plasma jet. Food Chemistry 300:125143. doi: 10.1016/j.foodchem.2019.125143.
  • Ekezie, F. G. C., J. H. Cheng, and D.-W. Sun. 2019. Effects of atmospheric pressure plasma jet on the conformation and physicochemical properties of myofibrillar proteins from king prawn (Litopenaeus vannamei). Food Chemistry 276:147–56. doi: 10.1016/j.foodchem.2018.09.113.
  • Fonseca, S. C., F. A. R. Oliveira, and J. K. Brecht. 2002. Modelling respiration rate of fresh fruit and vegetables for modified atmosphere packages: A review. Journal of Food Engineering 52 (2):99–119.
  • Francioso, L., C. De Pascali, E. Pescini, M. G. De Giorgi, and P. Siciliano. 2016. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications. Journal of Physics D: Applied Physics 49 (23):235201. doi: 10.1088/0022-3727/49/23/235201.
  • Gao, L., L. Sun, S. Wan, Z. Yu, and M. Li. 2013. Degradation kinetics and mechanism of emerging contaminants in water by dielectric barrier discharge non-thermal plasma: The case of 17β-Estradiol. Chemical Engineering Journal 228:790–8.
  • Grozeff, G. E. G., M. L. Alegre, M. E. Senn, A. R. Chaves, M. Simontacchi, and C. G. Bartoli. 2017. Combination of nitric oxide and 1-MCP on postharvest life of the blueberry (Vaccinium spp.) fruit. Postharvest Biology and Technology 133:72–80. doi: 10.1016/j.postharvbio.2017.06.012.
  • Grzegorzewski, F., J. Ehlbeck, O. Schlüter, L. W. Kroh, and S. Rohn. 2011. Treating lamb’s lettuce with a cold plasma – Influence of atmospheric pressure Ar plasma immanent species on the phenolic profile of Valerianella locusta. LWT - Food Science and Technology 44 (10):2285–9. doi: 10.1016/j.lwt.2011.05.004.
  • Grzegorzewski, F., S. Rohn, L. W. Kroh, M. Geyer, and O. Schlüter. 2010. Surface morphology and chemical composition of lamb’s lettuce (valerianella locusta) after exposure to a low-pressure oxygen plasma. Food Chemistry 122 (4):1145–52. doi: 10.1016/j.foodchem.2010.03.104.
  • Guo, J., K. Huang, X. Wang, C. Lyu, N. Yang, Y. Li, and J. Wang. 2017. Inactivation of yeast on grapes by plasma-activated water and its effects on quality attributes. Journal of Food Protection 80 (2):225–30. doi: 10.4315/0362-028X.JFP-16-116.
  • Han, Y.-X., J. H. Cheng, and D.-W. Sun. 2019. Activities and conformation changes of food enzymes induced by cold plasma: a review. Critical Reviews in Food Science and Nutrition 59 (5):794–811. doi: 10.1080/10408398.2018.1555131.
  • Hertwig, C., K. Reineke, J. Ehlbeck, B. Erdoğdu, C. Rauh, and O. Schlüter. 2015a. Impact of remote plasma treatment on natural microbial load and quality parameters of selected herbs and spices. Journal of Food Engineering 167:12–7. doi: 10.1016/j.jfoodeng.2014.12.017.
  • Hertwig, C., V. Steins, K. Reineke, A. Rademacher, M. Klocke, C. Rauh, and O. Schlüter. 2015b. Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment. Frontiers in Microbiology 6:774. doi: 10.3389/fmicb.2015.00774.
  • Hu, Y., Y. Bai, H. Yu, C. Zhang, and J. Chen. 2013. Degradation of selected organophosphate pesticides in wastewater by dielectric barrier discharge plasma. Bulletin of Environmental Contamination and Toxicology 91 (3):314–9. doi: 10.1007/s00128-013-1048-x.
  • Jelil, R. A. 2015. A review of low-temperature plasma treatment of textile materials. Journal of Materials Science 50 (18):5913–43. doi: 10.1007/s10853-015-9152-4.
  • Ji, Hui, Shuang Dong, Fei Han, Yuntong Li, Guiyun Chen, Ling Li, and Ye Chen. 2018. Effects of dielectric barrier discharge (DBD) cold plasma treatment on physicochemical and functional properties of peanut protein. Food and Bioprocess Technology 11 (2):344–54. doi: 10.1007/s11947-017-2015-z.
  • Jiang, Y., K. Sokorai, G. Pyrgiotakis, P. Demokritou, X. Li, S. Mukhopadhyay, T. Jin, and X. Fan. 2017. Cold plasma-activated hydrogen peroxide aerosol inactivates Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe. International Journal of Food Microbiology 249:53–60. doi: 10.1016/j.ijfoodmicro.2017.03.004.
  • Khani, M. R., B. Shokri, and K. Khajeh. 2017. Studying the performance of dielectric barrier discharge and gliding arc plasma reactors in tomato peroxidase inactivation. Journal of Food Engineering 197:107–12. doi: 10.1016/j.jfoodeng.2016.11.012.
  • Kogelschatz, U. 2003. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chemistry & Plasma Processing 23 (1):1–46.
  • Kortshagen, U. 2016. Nonthermal plasma synthesis of nanocrystals: Fundamentals, applications, and future research needs. Plasma Chemistry and Plasma Processing 36 (1):73–84. doi: 10.1007/s11090-015-9663-4.
  • Kovačević, D. B., P. Putnik, V. Dragović-Uzelac, S. Pedisić, A. R. Jambrak, and Z. Herceg. 2016. Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry 190:317–23. doi: 10.1016/j.foodchem.2015.05.099.
  • Lacombe, A., B. A. Niemira, J. B. Gurtler, X. Fan, J. Sites, G. Boyd, and H. Chen. 2015. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology 46:479–84. doi: 10.1016/j.fm.2014.09.010.
  • Laroussi, M., and T. Akan. 2007. Arc‐free atmospheric pressure cold plasma jets: A review. Plasma Processes and Polymers 4 (9):777. doi: 10.1002/ppap.200700066.
  • Lee, H., J. E. Kim, M. S. Chung, and S. C. Min. 2015. Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiology 51:74–80. doi: 10.1016/j.fm.2015.05.004.
  • Lee, J., K. Jo, Y. Lim, H. J. Jeon, J. H. Choe, C. Jo, and S. Jung. 2018a. The use of atmospheric pressure plasma as a curing process for canned ground ham. Food Chemistry 240:430–6. doi: 10.1016/j.foodchem.2017.07.148.
  • Lee, T., P. Puligundla, and C. Mok. 2018b. Intermittent corona discharge plasma jet for improving tomato quality. Journal of Food Engineering 223:168–74. doi: 10.1016/j.jfoodeng.2017.11.004.
  • Li, J., Q. Xiang, X. Liu, T. Ding, X. Zhang, Y. Zhai, and Y. Bai. 2017. Inactivation of soybean trypsin inhibitor by dielectric-barrier discharge (DBD) plasma. Food Chemistry 232:515–22. doi: 10.1016/j.foodchem.2017.03.167.
  • Ma, R., G. Wang, Y. Tian, K. Wang, J. Zhang, and J. Fang. 2015. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. Journal of Hazardous Materials 300:643–51. doi: 10.1016/j.jhazmat.2015.07.061.
  • Ma, R., S. Yu, Y. Tian, K. Wang, C. Sun, X. Li, J. Zhang, K. Chen, and J. Fang. 2016. Effect of non-thermal plasma-activated water on fruit decay and quality in postharvest chinese bayberries. Food and Bioprocess Technology 9 (11):1825–34. doi: 10.1007/s11947-016-1761-7.
  • Matan, N., K. Puangjinda, S. Phothisuwan, and M. Nisoa. 2015. Combined antibacterial activity of green tea extract with atmospheric radio-frequency plasma against pathogens on fresh-cut dragon fruit. Food Control 50:291–6. doi: 10.1016/j.foodcont.2014.09.005.
  • Mcevily, A. J., R. Iyengar, and W. S. Otwell. 1992. Inhibition of enzymatic browning in foods and beverages. Critical Reviews in Food Science and Nutrition 32 (3):253–73. doi: 10.1080/10408399209527599.
  • Misra, N. N. 2016. Quality of cold plasma treated plant foods. In Cold plasma in food and agriculture: Fundamentals and applications, eds. N. N. Misra, O. Schlüter, and P. J. Cullen, 253. Cambridge, MA: Academic Press.
  • Misra, N. N., K. M. Keener, P. Bourke, J. P. Mosnier, and P. J. Cullen. 2014a. In-package atmospheric pressure cold plasma treatment of cherry tomatoes. Journal of Bioscience and Bioengineering 118 (2):177–82. doi: 10.1016/j.jbiosc.2014.02.005.
  • Misra, N. N., T. Moiseev, S. Patil, S. K. Pankaj, P. Bourke, J. P. Mosnier, K. M. Keener, and P. J. Cullen. 2014b. Cold plasma in modified atmospheres for post-harvest treatment of strawberries. Food and Bioprocess Technology 7 (10):3045–54. doi: 10.1007/s11947-014-1356-0.
  • Misra, N. N., S. K. Pankaj, J. M. Frias, K. M. Keener, and P. J. Cullen. 2015. The effects of nonthermal plasma on chemical quality of strawberries. Postharvest Biology and Technology 110:197–202. doi: 10.1016/j.postharvbio.2015.08.023.
  • Misra, N. N., S. K. Pankaj, A. Segat, and K. Ishikawa. 2016. Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science & Technology 55:39–47. doi: 10.1016/j.tifs.2016.07.001.
  • Misra, N. N., S. Patil, T. Moiseev, P. Bourke, J. P. Mosnier, K. M. Keener, and P. J. Cullen. 2014c. In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering 125:131–8. doi: 10.1016/j.jfoodeng.2013.10.023.
  • Min, S. C., S. H. Roh, B. A. Niemira, G. Boyd, J. E. Sites, J. Uknalis, and X. Fan. 2017. In-package inhibition of E. coli O157:H7 on bulk Romaine lettuce using cold plasma. Food Microbiology 65:1–6. doi: 10.1016/j.fm.2017.01.010.
  • Múgica-Vidal, Rodolfo, Elisa Sainz-García, Avelino Álvarez-Ordóñez, Miguel Prieto, Montserrat González-Raurich, Mercedes López, María López, Beatriz Rojo-Bezares, Yolanda Sáenz, and Fernando Alba-Elías. 2019. Production of antibacterial coatings through atmospheric pressure plasma: a promising alternative for combatting biofilms in the food industry. Food and Bioprocess Technology 12 (8):1251–63. doi: 10.1007/s11947-019-02293-z.
  • Muhammad, A. I., Q. Xiang, X. Liao, D. Liu, and T. Ding. 2018. Understanding the impact of nonthermal plasma on food constituents and microstructure—A review. Food and Bioprocess Technology 11 (3):463–86. doi: 10.1007/s11947-017-2042-9.
  • Murphy, A. B., M. Tanaka, K. Yamamoto, S. Tashiro, T. Sato, and J. J. Lowke. 2009. Modelling of thermal plasmas for arc welding: The role of the shielding gas properties and of metal vapour. Journal of Physics D: Applied Physics 42 (19):194006. doi: 10.1088/0022-3727/42/19/194006.
  • Pan, Y., J. H. Cheng, X. Lv, and D.-W. Sun. 2019. Assessing the inactivation efficiency of Ar/O2 plasma treatment against listeria monocytogenes cells: Sublethal injury and inactivation kinetics. Lwt - Food Science and Technology 111:318–27. doi: 10.1016/j.lwt.2019.05.041.
  • Pankaj, S. K., C. Bueno-Ferrer, N. N. Misra, V. Milosavljević, C. P. O'donnell, P. Bourke, … P. J. Cullen. 2014. Applications of cold plasma technology in food packaging. Trends in Food Science & Technology 35 (1):5–17. doi: 10.1016/j.tifs.2013.10.009.
  • Park, J., I. Henins, H. W. Herrmann, G. S. Selwyn, J. Y. Jeong, R. F. Hicks, D. Shim, and C. S. Chang. 2000. An atmospheric pressure plasma source. Applied Physics Letters 76 (3):288–90. doi: 10.1063/1.125724.
  • Pignata, C., D. D'Angelo, D. Basso, M. C. Cavallero, S. Beneventi, D. Tartaro, V. Meineri, and G. Gilli. 2014. Low-temperature, low-pressure gas plasma application on Aspergillus brasiliensis, Escherichia coli and pistachios. Journal of Applied Microbiology 116 (5):1137–48. doi: 10.1111/jam.12448.
  • Puligundla, P., T. Lee, and C. Mok. 2018. Effect of intermittent corona discharge plasma treatment for improving microbial quality and shelf life of kumquat (Citrus japonica) fruit. LWT-Food Science and Technology 91:8–13. doi: 10.1016/j.lwt.2018.01.019.
  • Ramazzina, I., A. Berardinelli, F. Rizzi, S. Tappi, L. Ragni, G. Sacchetti, and P. Rocculi. 2015. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology 107:55–65. doi: 10.1016/j.postharvbio.2015.04.008.
  • Ren, Y., J. He, H. Liu, G. Liu, and X. Ren. 2017. Nitric oxide alleviates deterioration and preserves antioxidant properties in ‘Tainong’ mango fruit during ripening. Horticulture, Environment, and Biotechnology 58 (1):27–37. doi: 10.1007/s13580-017-0001-z.
  • Rico, D., A. B. Martin-Diana, J. M. Barat, and C. Barry-Ryan. 2007. Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends in Food Science & Technology 18 (7):373–86. doi: 10.1016/j.tifs.2007.03.011.
  • Sarangapani, C., G. O'Toole, P. J. Cullen, and P. Bourke. 2017. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science & Emerging Technologies 44:235–41. doi: 10.1016/j.ifset.2017.02.012.
  • Schnabel, U., R. Niquet, U. Krohmann, J. Winter, O. Schlüter, K. D. Weltmann, and J. Ehlbeck. 2012. Decontamination of microbiologically contaminated specimen by direct and indirect plasma treatment. Plasma Processes and Polymers 9 (6):569–75. doi: 10.1002/ppap.201100088.
  • Schnabel, U., R. Niquet, O. Schlüter, H. Gniffke, and J. Ehlbeck. 2015. Decontamination and sensory properties of microbiologically contaminated fresh fruit and vegetables by microwave plasma processed air (PPA). Journal of Food Processing and Preservation 39 (6):653–62. doi: 10.1111/jfpp.12273.
  • Schutze, A., J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks. 1998. The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. IEEE Transactions on Plasma Science 26 (6):1685–94.
  • Sen, Y., and M. Mutlu. 2013. Sterilization of food contacting surfaces via non-thermal plasma treatment: a model study with Escherichia coli-contaminated stainless steel and polyethylene surfaces. Food and Bioprocess Technology 6 (12):3295–304. doi: 10.1007/s11947-012-1007-2.
  • Şen, Y., U. Bağcı, H. A. Güleç, and M. Mutlu. 2012. Modification of food-contacting surfaces by plasma polymerization technique: reducing the biofouling of microorganisms on stainless steel surface. Food and Bioprocess Technology 5 (1):166–75. doi: 10.1007/s11947-009-0248-1.
  • Shen, J., Y. Tian, Y. Li, R. Ma, Q. Zhang, J. Zhang, and J. Fang. 2016. Bactericidal effects against s. aureus and physicochemical properties of plasma activated water stored at different temperatures. Scientific Reports 6 (1):28505. doi: 10.1038/srep28505.
  • Shi, H., K. Ileleji, R. L. Stroshine, K. Keener, and J. L. Jensen. 2017. Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food and Bioprocess Technology 10 (6):1042–52. doi: 10.1007/s11947-017-1873-8.
  • Song, A. Y., Y. J. Oh, J. E. Kim, K. B. Song, D. H. Oh, and S. C. Min. 2015. Cold plasma treatment for microbial safety and preservation of fresh lettuce. Food Science and Biotechnology 24 (5):1717–24. doi: 10.1007/s10068-015-0223-8.
  • Sun, C., L. Liu, Y. Yu, W. Liu, L. Lu, C. Jin, and X. Lin. 2015. Nitric oxide alleviates aluminum‐induced oxidative damage through regulating the ascorbate‐glutathione cycle in roots of wheat. Journal of Integrative Plant Biology 57 (6):550–61. doi: 10.1111/jipb.12298.
  • Surowsky, B., A. Fischer, O. Schlueter, and D. Knorr. 2013. Cold plasma effects on enzyme activity in a model food system. Innovative Food Science & Emerging Technologies 19:146–52. doi: 10.1016/j.ifset.2013.04.002.
  • Surowsky, B., O. Schlüter, and D. Knorr. 2015. Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: A review. Food Engineering Reviews 7 (2):82–108. doi: 10.1007/s12393-014-9088-5.
  • Tammineedi, C. V., R. Choudhary, G. C. Perez-Alvarado, and D. G. Watson. 2013. Determining the effect of UV-C, high intensity ultrasound and nonthermal atmospheric plasma treatments on reducing the allergenicity of α-casein and whey proteins. LWT - Food Science and Technology 54 (1):35–41. doi: 10.1016/j.lwt.2013.05.020.
  • Tappi, S., A. Berardinelli, L. Ragni, M. Dalla Rosa, A. Guarnieri, and P. Rocculi. 2014. Atmospheric gas plasma treatment of fresh-cut apples. Innovative Food Science & Emerging Technologies 21:114–22. doi: 10.1016/j.ifset.2013.09.012.
  • Tappi, S., G. Gozzi, L. Vannini, A. Berardinelli, S. Romani, L. Ragni, and P. Rocculi. 2016. Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies 33:225–33. doi: 10.1016/j.ifset.2015.12.022.
  • Tappi, S., L. Ragni, U. Tylewicz, S. Romani, I. Ramazzina, and P. Rocculi. 2019. Browning response of fresh-cut apples of different cultivars to cold gas plasma treatment. Innovative Food Science & Emerging Technologies 53:56–62. doi: 10.1016/j.ifset.2017.08.005.
  • Tendero, C., C. Tixier, P. Tristant, J. Desmaison, and P. Leprince. 2006. Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy 61 (1):2–30. doi: 10.1016/j.sab.2005.10.003.
  • Tolouie, H., M. A. Mohammadifar, H. Ghomi, and M. Hashemi. 2018. Cold atmospheric plasma manipulation of proteins in food systems. Critical Reviews in Food Science and Nutrition 58 (15):2583–97. doi: 10.1080/10408398.2017.1335689.
  • Wang, R. X., W. F. Nian, H. Y. Wu, H. Q. Feng, K. Zhang, J. Zhang, W. D. Zhu, K. H. Becker, and J. Fang. 2012. Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: Inactivation and physiochemical properties evaluation. The European Physical Journal D 66 (10):276. doi: 10.1140/epjd/e2012-30053-1.
  • Won, M. Y., S. J. Lee, and S. C. Min. 2017. Mandarin preservation by microwave-powered cold plasma treatment. Innovative Food Science & Emerging Technologies 39:25–32. doi: 10.1016/j.ifset.2016.10.021.
  • Xu, L., A. L. Garner, B. Tao, and K. M. Keener. 2017. Microbial inactivation and quality changes in orange juice treated by high voltage atmospheric cold plasma. Food and Bioprocess Technology 10 (10):1778–91. doi: 10.1007/s11947-017-1947-7.
  • Xu, Y., Y. Tian, R. Ma, Q. Liu, and J. Zhang. 2016. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chemistry 197:436–44. doi: 10.1016/j.foodchem.2015.10.144.
  • Yepez, X. V., and K. M. Keener. 2016. High-voltage atmospheric cold plasma (HVACP) hydrogenation of soybean oil without trans-fatty acids. Innovative Food Science & Emerging Technologies 38:169–74. doi: 10.1016/j.ifset.2016.09.001.
  • Zhang, M., J. K. Oh, L. Cisneros-Zevallos, and M. Akbulut. 2013. Bactericidal effects of nonthermal low-pressure oxygen plasma on S. typhimurium LT2 attached to fresh produce surfaces. Journal of Food Engineering 119 (3):425–32. doi: 10.1016/j.jfoodeng.2013.05.045.
  • Zheng, X., B. Hu, L. Song, J. Pan, and M. Liu. 2017. Changes in quality and defense resistance of kiwifruit in response to nitric oxide treatment during storage at room temperature. Scientia Horticulturae 222:187–92. doi: 10.1016/j.scienta.2017.05.010.
  • Ziuzina, D., L. Han, P. J. Cullen, and P. Bourke. 2015. Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. International Journal of Food Microbiology 210:53–61. doi: 10.1016/j.ijfoodmicro.2015.05.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.