1,606
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: implications on health effects

&

References

  • Adami, G. R., C. C. Tangney, J. L. Tang, Y. Zhou, S. Ghaffari, A. Naqib, S. Sinha, S. J. Green, and J. L. Schwartz. 2018. Effects of green tea on miRNA and microbiome of oral epithelium. Scientific Reports 8 (1):5873. doi: 10.1038/s41598-018-22994-3.
  • Ahn, Y. J., S. Sakanaka, M. J. Kim, T. Kawamura, T. Fujisawa, and T. Mitsuoka. 2009. Effect of green tea extract on growth of intestinal bacteria. Microbial Ecology in Health and Disease 3 (6):335–8. doi: 10.3109/08910609009140256.
  • Anhê, Fernando F., Denis Roy, Geneviève Pilon, Stéphanie Dudonné, Sébastien Matamoros, Thibault V. Varin, Carole Garofalo, Quentin Moine, Yves Desjardins, Emile Levy, and André Marette. 2015. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased akkermansia spp. population in the gut microbiota of mice. Gut 64 (6):872–83. doi: 10.1136/gutjnl-2014-307142.
  • Annunziata, G., M. Maisto, C. Schisano, R. Ciampaglia, P. Daliu, V. Narciso, G. C. Tenore, and E. Novellino. 2018. Colon bioaccessibility and antioxidant activity of white, green and black tea polyphenols extract after in vitro simulated gastrointestinal digestion. Nutrients 10 (11):1711. doi: 10.3390/nu10111711.
  • Anton, S., L. Melville, and G. Rena. 2007. Epigallocatechin gallate (EGCG) mimics insulin action on the transcription factor FOXO1a and elicits cellular responses in the presence and absence of insulin. Cellular Signalling 19 (2):378–83. doi: 10.1016/j.cellsig.2006.07.008.
  • Axling, U., C. Olsson, J. Xu, C. Fernandez, S. Larsson, K. Strom, S. Ahrne, C. Holm, G. Molin, and K. Berger. 2012. Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice. Nutrition & Metabolism 9 (1):105. doi: 10.1186/1743-7075-9-105.
  • Backhed, F., J. K. Manchester, C. F. Semenkovich, and J. I. Gordon. 2007. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences 104 (3):979–84. doi: 10.1073/pnas.0605374104.
  • Balentine, D. A., S. A. Wiseman, and L. C. Bouwens. 1997. The chemistry of tea flavonoids. Critical Reviews in Food Science and Nutrition 37 (8):693–704. doi: 10.1080/10408399709527797.
  • Bandyopadhyay, D., T. K. Chatterjee, A. Dasgupta, J. Lourduraja, and S. G. Dastidar. 2005. In vitro and in vivo antimicrobial action of tea: The commonest beverage of asia. Biological & Pharmaceutical Bulletin 28 (11):2125–7. doi: 10.1248/bpb.28.2125.
  • Barcena, C., R. Valdes-Mas, P. Mayoral, C. Garabaya, S. Durand, F. Rodriguez, M. T. Fernandez-Garcia, N. Salazar, A. M. Nogacka, N. Garatachea, et al. 2019. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med 25 :1234–42. doi: 10.1038/s41591-019-0504-5.
  • Benjamino, J., S. Lincoln, R. Srivastava, and J. Graf. 2018. Low-abundant bacteria drive compositional changes in the gut microbiota after dietary alteration. Microbiome 6 (1):86. doi: 10.1186/s40168-018-0469-5.
  • Blacher, E., S. Bashiardes, H. Shapiro, D. Rothschild, U. Mor, M. Dori-Bachash, C. Kleimeyer, C. Moresi, Y. Harnik, M. Zur, et al. 2019. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature doi: 10.1038/s41586-019-1443-5.
  • Bose, M., J. D. Lambert, J. Ju, K. R. Reuhl, S. A. Shapses, and C. S. Yang. 2008. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. The Journal of Nutrition 138 (9):1677–83. doi: 10.1093/jn/138.9.1677.
  • Bratcher, Amber R. 2008. The inhibitory effects of green, black, and oolong tea on Streptococcus mutans in the human mouth. Bios 79 (4):179–82. doi: 10.1893/0005-3155-79.4.179.
  • Byndloss, M. X., E. E. Olsan, F. Rivera-Chavez, C. R. Tiffany, S. A. Cevallos, K. L. Lokken, T. P. Torres, A. J. Byndloss, F. Faber, Y. Gao, et al. 2017. Microbiota-activated PPAR-gamma signaling inhibits dysbiotic enterobacteriaceae expansion. Science 357 (6351):570–5. doi: 10.1126/science.aam9949.
  • Calani, L., D. Del Rio, M. Luisa Callegari, L. Morelli, and F. Brighenti. 2012. Updated bioavailability and 48 h excretion profile of flavan-3-ols from green tea in humans. International Journal of Food Sciences and Nutrition 63 (5):513–21. doi: 10.3109/09637486.2011.640311.
  • Cameron, A. R., S. Anton, L. Melville, N. P. Houston, S. Dayal, G. J. McDougall, D. Stewart, and G. Rena. 2008. Black tea polyphenols mimic insulin/insulin-like growth factor-1 signalling to the longevity factor FOXO1a. Aging Cell 7 (1):69–77. doi: 10.1111/j.1474-9726.2007.00353.x.
  • Cani, P. D., J. Amar, M. A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A. M. Neyrinck, F. Fava, K. M. Tuohy, C. Chabo, et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56 (7):1761–72. doi: 10.2337/db06-1491.
  • Cani, P. D., R. Bibiloni, C. Knauf, A. Waget, A. M. Neyrinck, N. M. Delzenne, and R. Burcelin. 2008. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57 (6):1470–81. doi: 10.2337/db07-1403.
  • Cani, P. D., and W. M. de Vos. 2017. Next-generation beneficial microbes: The case of Akkermansia muciniphila. Front Microbiol 8:1765. doi: 10.3389/fmicb.2017.01765.
  • Celik, E. E., V. Gokmen, and V. Fogliano. 2013. Soluble antioxidant compounds regenerate the antioxidants bound to insoluble parts of foods. Journal of Agricultural and Food Chemistry 61 (43):10329–34. doi: 10.1021/jf402523k.
  • Chen, B., J. Zhou, Q. L. Meng, Y. Zhang, S. H. Zhang, and L. Zhang. 2018. Comparative analysis of fecal phenolic content between normal and obese rats after oral administration of tea polyphenols. Food & Function 9 (9):4858–64. doi: 10.1039/C8FO00609A.
  • Chen, G., M. Xie, Z. Dai, P. Wan, H. Ye, X. Zeng, and Y. Sun. 2018. Kudingcha and fuzhuan brick tea prevent obesity and modulate gut microbiota in high-fat diet fed mice. Molecular Nutrition & Food Research 62 (6): e1700485. doi: 10.1002/mnfr.201700485.
  • Chen, H. D., S. Hayek, J. R. Guzman, N. D. Gillitt, S. A. Ibrahim, C. Jobin, and S. M. Sang. 2012. The microbiota is essential for the generation of black tea theaflavins-derived metabolites. PLos One 7 (12):e51001. doi: 10.1371/journal.pone.0051001.
  • Chen, H. D., and S. M. Sang. 2014. Biotransformation of tea polyphenols by gut microbiota. Journal of Functional Foods 7:26–42. doi: 10.1016/j.jff.2014.01.013.
  • Chen, T., A. B. Liu, S. Sun, N. J. Ajami, M. C. Ross, H. Wang, L. Zhang, K. Reuhl, K. Kobayashi, J. C. Onishi, et al. 2019. Green tea polyphenols modify the gut microbiome in db/db mice as co-abundance groups correlating with the blood glucose lowering effect. Molecular Nutrition & Food Research 63 (8):1801064. doi: 10.1002/mnfr.201801064.
  • Chen, Y., X. Zhang, L. Cheng, X. Zheng, and Z. Zhang. 2018. The evaluation of the quality of feng huang oolong teas and their modulatory effect on intestinal microbiota of high-fat diet-induced obesity mice model. International Journal of Food Sciences and Nutrition 69 (7):842–56. doi: 10.1080/09637486.2017.1420757.
  • Cheng, M., X. Zhang, Y. Miao, J. Cao, Z. Wu, and P. Weng. 2017. The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3''Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Research International 92:9–16. doi: 10.1016/j.foodres.2016.12.008.
  • Cheng, M., X. Zhang, J. Zhu, L. Cheng, J. Cao, Z. Wu, P. Weng, and X. Zheng. 2018. A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols. Food & Function 9 (2):1079–87. doi: 10.1039/C7FO01570D.
  • Cho, Y. S., N. L. Schiller, and K. H. Oh. 2008. Antibacterial effects of green tea polyphenols on clinical isolates of methicillin-resistant Staphylococcus aureus. Current Microbiology 57 (6):542–6. doi: 10.1007/s00284-008-9239-0.
  • Christensen, L., H. M. Roager, A. Astrup, and M. F. Hjorth. 2018. Microbial enterotypes in personalized nutrition and obesity management. The American Journal of Clinical Nutrition 108 (4):645–51. doi: 10.1093/ajcn/nqy175.
  • Clifford, M. N., J. J. van der Hooft, and A. Crozier. 2013. Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. The American Journal of Clinical Nutrition 98 (6):1619S–30S. doi: 10.3945/ajcn.113.058958.
  • De Filippo, C., D. Cavalieri, M. Di Paola, M. Ramazzotti, J. B. Poullet, S. Massart, S. Collini, G. Pieraccini, and P. Lionetti. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural africa. Proceedings of the National Academy of Sciences 107 (33):14691–6. doi: 10.1073/pnas.1005963107.
  • Depommier, C., A. Everard, C. Druart, H. Plovier, M. Van Hul, S. Vieira-Silva, G. Falony, J. Raes, D. Maiter, N. M. Delzenne, et al. 2019. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nature Medicine 25 (7):1096–103. doi: 10.1038/s41591-019-0495-2.
  • Dethlefsen, L., M. McFall-Ngai, and D. A. Relman. 2007. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449 (7164):811–8. doi: 10.1038/nature06245.
  • Duncan, S. H., G. E. Lobley, G. Holtrop, J. Ince, A. M. Johnstone, P. Louis, and H. J. Flint. 2008. Human colonic microbiota associated with diet, obesity and weight loss. International Journal of Obesity 32 (11):1720–4. doi: 10.1038/ijo.2008.155.
  • Etxeberria, U., N. Arias, N. Boque, M. T. Macarulla, M. P. Portillo, J. A. Martinez, and F. I. Milagro. 2015. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. The Journal of Nutritional Biochemistry 26 (6):651–60. doi: 10.1016/j.jnutbio.2015.01.002.
  • Fetissov, S. O. 2017. Role of the gut microbiota in host appetite control: Bacterial growth to animal feeding behaviour. Nature Reviews Endocrinology 13 (1):11–25. doi: 10.1038/nrendo.2016.150.
  • Friedman, M., P. R. Henika, C. E. Levin, R. E. Mandrell, and N. Kozukue. 2006. Antimicrobial activities of tea catechins and theaflavins and tea extracts against Bacillus cereus. Journal of Food Protection 69 (2):354–61. doi: 10.4315/0362-028X-69.2.354.
  • Gao, K., A. Xu, C. Krul, K. Venema, Y. Liu, Y. Niu, J. Lu, L. Bensoussan, N. P. Seeram, D. Heber, and S. M. Henning. 2006. Of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements, only 3,4-dihydroxyphenylacetic acid has antiproliferative activity. The Journal of Nutrition 136 (1):52–7. doi: 10.1093/jn/136.1.52.
  • Gao, X. Y., Q. H. Xie, P. Kong, L. Liu, S. Sun, B. Y. Xiong, B. J. Huang, L. Yan, J. Sheng, and H. Y. Xiang. 2018. Polyphenol- and caffeine-rich postfermented Pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice. Infection and Immunity 86 (1):e00601–17. doi: 10.1128/IAI.00601-17.
  • Gentile, C. L., and T. L. Weir. 2018. The gut microbiota at the intersection of diet and human health. Science 362 (6416):776–80. doi: 10.1126/science.aau5812.
  • Glisan, S. L., K. A. Grove, N. H. Yennawar, and J. D. Lambert. 2017. Inhibition of pancreatic lipase by black tea theaflavins: Comparative enzymology and in silico modeling studies. Food Chemistry 216:296–300. doi: 10.1016/j.foodchem.2016.08.052.
  • Goodrich, K. M., A. T. Smithson, A. K. Ickes, and A. P. Neilson. 2015. Pan-colonic pharmacokinetics of catechins and procyanidins in male Sprague-Dawley rats. The Journal of Nutritional Biochemistry 26 (10):1007–14. doi: 10.1016/j.jnutbio.2015.04.008.
  • Gott, D. M., and L. A. Griffiths. 1987. Effects of antibiotic pretreatments on the metabolism and excretion of [U14C](+)-catechin [(U14C](+)-cyanidanol-3) and its metabolite, 3'-0-methyl-(+)-catechin. Xenobiotica 17 (4):423–34. doi: 10.3109/00498258709043949.
  • Gross, G.,. D. M. Jacobs, S. Peters, S. Possemiers, J. van Duynhoven, E. E. Vaughan, and T. van de Wiele. 2010. In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong interindividual variability. Journal of Agricultural and Food Chemistry 58 (18):10236–46. doi: 10.1021/jf101475m.
  • Gu, Y., X. Wang, J. Li, Y. Zhang, H. Zhong, R. Liu, D. Zhang, Q. Feng, X. Xie, J. Hong, et al. 2017. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nature Communications 8 (1):1785. doi: 10.1038/s41467-017-01682-2.
  • Guo, X. J., M. Cheng, X. Zhang, J. X. Cao, Z. F. Wu, and P. F. Weng. 2017. Green tea polyphenols reduce obesity in high-fat diet-induced mice by modulating intestinal microbiota composition. International Journal of Food Science & Technology 52 (8):1723–30. doi: 10.1111/ijfs.13479.
  • Hamer, H. M., D. Jonkers, K. Venema, S. Vanhoutvin, F. J. Troost, and R. J. Brummer. 2008. Review article: The role of butyrate on colonic function. Alimentary Pharmacology & Therapeutics 27 (2):104–19. doi: 10.1111/j.1365-203603562.x.
  • Hara, H., N. Orita, S. Hatano, H. Ichikawa, Y. Hara, N. Matsumoto, Y. Kimura, A. Terada, and T. Mitsuoka. 1995. Effect of tea polyphenols on fecal flora and fecal metabolic products of pigs. The Journal of Veterinary Medical Science 57 (1):45–9. doi: 10.1292/jvms.57.45.
  • Hara, Y. 2017. Effects of Catechins on Intestinal Flora. In Health Benefits of Green Tea: An Evidence-Based Approach, ed., Y. Hara, C. S. Yang, M. Isemura and I. Tomita, 230–38. Wallingford: CABI.
  • Hara, Yukihiko, and Miwa Honda. 2014. The inhibition of α-Amylase by tea polyphenols. Agricultural and Biological Chemistry 54 (8):1939–45. doi: 10.1080/00021369.1990.10870239.
  • Hara-Terawaki, A., A. Takagaki, H. Kobayashi, and F. Nanjo. 2017. Inhibitory activity of catechin metabolites produced by intestinal microbiota on proliferation of hela cells. Biological & Pharmaceutical Bulletin 40 (8):1331–5. doi: 10.1248/bpb.b17-00127.
  • He, Qiang, Yuanping Lv, and Kai Yao. 2007. Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase. Food Chemistry 101 (3):1178–82. doi: 10.1016/j.foodchem.2006.03.020.
  • Henning, S. M., Y. Niu, N. H. Lee, G. D. Thames, R. R. Minutti, H. Wang, V. L. Go, and D. Heber. 2004. Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement. The American Journal of Clinical Nutrition 80 (6):1558–64. doi: 10.1093/ajcn/80.6.1558.
  • Henning, S. M., J. Yang, M. Hsu, R. P. Lee, E. M. Grojean, A. Ly, C. H. Tseng, D. Heber, and Z. Li. 2018. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. European Journal of Nutrition 57 (8):2759–69. doi: 10.1007/s00394-017-1542-8.
  • Hou, Z., S. Sang, H. You, M. J. Lee, J. Hong, K. V. Chin, and C. S. Yang. 2005. Mechanism of action of (-)-epigallocatechin-3-gallate: Auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Research 65 (17):8049–56. doi: 10.1158/0008-5472.CAN-05-0480.
  • Ishihara, N., D. C. Chu, S. Akachi, and L. R. Juneja. 2001. Improvement of intestinal microflora balance and prevention of digestive and respiratory organ diseases in calves by green tea extracts. Livestock Production Science 68 (2-3):217–29. doi: 10.1016/S0301-6226(00)00233-5.
  • James, K. D., S. C. Forester, and J. D. Lambert. 2015. Dietary pretreatment with green tea polyphenol, (-)-epigallocatechin-3-gallate reduces the bioavailability and hepatotoxicity of subsequent oral bolus doses of (-)-epigallocatechin-3-gallate. Food and Chemical Toxicology 76:103–8. doi: 10.1016/j.fct.2014.12.009.
  • Janssens, P. L., J. Penders, R. Hursel, A. E. Budding, P. H. Savelkoul, and M. S. Westerterp-Plantenga. 2016. Long-term green tea supplementation does not change the human gut microbiota. PLoS One 11 (4):e0153134. doi: 10.1371/journal.pone.0153134.
  • Jin, J. S., M. Touyama, T. Hisada, and Y. Benno. 2012. Effects of green tea consumption on human fecal microbiota with special reference to bifidobacterium species. Microbiology and Immunology 56 (11):729–39. doi: 10.1111/j.1348-0421.2012.00502.x.
  • Jung, E. S., H. M. Park, S. M. Hyun, J. C. Shon, D. Singh, K. H. Liu, T. W. Whon, J. W. Bae, J. S. Hwang, and C. H. Lee. 2017. The green tea modulates large intestinal microbiome and exo/endogenous metabolome altered through chronic UVB-exposure. PLoS One 12 (11):e0187154. doi: 10.1371/journal.pone.0187154.
  • Kawabata, K.,. Y. Kato, T. Sakano, N. Baba, K. Hagiwara, A. Tamura, S. Baba, M. Natsume, and H. Ohigashi. 2015. Effects of phytochemicals on in vitro anti-inflammatory activity of Bifidobacterium adolescentis. Biosci Biotechnol Biochem 79 (5):799–807. doi: 10.1080/09168451.2015.1006566.
  • Kemperman, R. A., G. Gross, S. Mondot, S. Possemiers, M. Marzorati, T. Van de Wiele, J. Dore, and E. E. Vaughan. 2013. Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Research International 53 (2):659–69. doi: 10.1016/j.foodres.2013.01.034.
  • Kobayashi, Y., M. Suzuki, H. Satsu, S. Arai, Y. Hara, K. Suzuki, Y. Miyamoto, and M. Shimizu. 2000. Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. Journal of Agricultural and Food Chemistry 48 (11):5618–23. doi: 10.1021/jf0006832.
  • Kohri, T., F. Nanjo, M. Suzuki, R. Seto, N. Matsumoto, M. Yamakawa, H. Hojo, Y. Hara, D. Desai, S. Amin, C. C. Conaway, and F. L. Chung. 2001. Synthesis of (-)-[4-3H]epigallocatechin gallate and its metabolic fate in rats after intravenous administration. Journal of Agricultural and Food Chemistry 49 (2):1042–48. doi: 10.1021/jf0011236.
  • Kutschera, M., W. Engst, M. Blaut, and A. Braune. 2011. Isolation of catechin-converting human intestinal bacteria. Journal of Applied Microbiology 111 (1):165–75. doi: 10.1111/j.1365-2672.2011.05025.x.
  • Lambert, J. D., D. Chen, C. Y. Wang, N. Ai, S. Sang, C. T. Ho, W. J. Welsh, and C. S. Yang. 2005. Benzotropolone inhibitors of estradiol methylation: Kinetics and in silico modeling studies. Bioorganic & Medicinal Chemistry 13 (7):2501–7. doi: 10.1016/j.bmc.2005.01.037.
  • Lambert, J. D., J. Hong, D. H. Kim, V. M. Mishin, and C. S. Yang. 2004. Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice. The Journal of Nutrition 134 (8):1948–52. doi: 10.1093/jn/134.8.1948.
  • Lee, C. C., J. H. Kim, J. S. Kim, Y. S. Oh, S. M. Han, J. H. Y. Park, K. W. Lee, and C. Y. Lee. 2017. 5-(3',4'-Dihydroxyphenyl-gamma-valerolactone), a major microbial metabolite of proanthocyanidin, attenuates THP-1 Monocyte-Endothelial adhesion. International Journal of Molecular Sciences 18 (7):1363. doi: 10.3390/ijms18071363.
  • Lee, H. C., A. M. Jenner, C. S. Low, and Y. K. Lee. 2006. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Research in Microbiology 157 (9):876–84. doi: 10.1016/j.resmic.2006.07.004.
  • Lee, M. J., J. D. Lambert, S. Prabhu, X. Meng, H. Lu, P. Maliakal, C. T. Ho, and C. S. Yang. 2004. Delivery of tea polyphenols to the oral cavity by green tea leaves and black tea extract. Cancer Epidemiology Biomarkers & Prevention 13 (1):132–7. doi: 10.1158/1055-9965.EPI-03-0040.
  • Lee, M. J., P. Maliakal, L. Chen, X. Meng, F. Y. Bondoc, S. Prabhu, G. Lambert, S. Mohr, and C. S. Yang. 2002. Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans: Formation of different metabolites and individual variability. Cancer Epidemiol Biomarkers Prev 11 (10 Pt 1):1025–32.
  • Ley, R. E., F. Backhed, P. Turnbaugh, C. A. Lozupone, R. D. Knight, and J. I. Gordon. 2005. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences 102 (31):11070–5. doi: 10.1073/pnas.0504978102.
  • Ley, R. E., D. A. Peterson, and J. I. Gordon. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124 (4):837–48. doi: 10.1016/j.cell.2006.02.017.
  • Li, C., M. J. Lee, S. Sheng, X. Meng, S. Prabhu, B. Winnik, B. Huang, J. Y. Chung, S. Yan, C. T. Ho, and C. S. Yang. 2000. Structural identification of two metabolites of catechins and their kinetics in human urine and blood after tea ingestion. Chemical Research in Toxicology 13 (3):177–84. doi: 10.1021/tx9901837.
  • Li, G. X., Y. K. Chen, Z. Hou, H. Xiao, H. Jin, G. Lu, M. J. Lee, B. Liu, F. Guan, Z. Yang, et al. 2010. Pro-oxidative activities and dose-response relationship of (-)-epigallocatechin-3-gallate in the inhibition of lung cancer cell growth: A comparative study in vivo and in vitro. Carcinogenesis 31 (5):902–10. doi: 10.1093/carcin/bgq039.
  • Li, Y., C. Wang, Q. Huai, F. Guo, L. Liu, R. Feng, and C. Sun. 2016. Effects of tea or tea extract on metabolic profiles in patients with type 2 diabetes mellitus: A Meta-analysis of ten randomized controlled trials. Diabetes/Metabolism Research and Reviews 32 (1):2–10. doi: 10.1002/dmrr.2641.
  • Li, Z., S. M. Henning, R. P. Lee, Q. Y. Lu, P. H. Summanen, G. Thames, K. Corbett, J. Downes, C. H. Tseng, S. M. Finegold, and D. Heber. 2015. Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers. Food & Function 6 (8):2487–95. doi: 10.1039/C5FO00669D.
  • Liao, Z. L., B. H. Zeng, W. Wang, G. H. Li, F. Wu, L. Wang, Q. P. Zhong, H. Wei, and X. Fang. 2016. Impact of the consumption of tea polyphenols on early atherosclerotic lesion formation and intestinal bifidobacteria in high-fat-fed ApoE-/- mice. Front Nutr 3:42. doi: 10.3389/fnut.2016.00042.
  • Liu, A. B., S. Tao, M. J. Lee, Q. Hu, X. Meng, Y. Lin, and C. S. Yang. 2018. Effects of gut microbiota and time of treatment on tissue levels of green tea polyphenols in mice. Biofactors 44 (4):348–60. doi: 10.1002/biof.1430.
  • Liu, Z., Z. Chen, H. Guo, D. He, H. Zhao, Z. Wang, W. Zhang, L. Liao, C. Zhang, and L. Ni. 2016. The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice. Food & Function 7 (12):4869–79. doi: 10.1039/C6FO01439A.
  • Lopetuso, L. R., F. Scaldaferri, V. Petito, and A. Gasbarrini. 2013. Commensal clostridia: Leading players in the maintenance of gut homeostasis. Gut Pathogens 5 (1):23. doi: 10.1186/1757-4749-5-23.
  • Lopez-Siles, M., S. H. Duncan, L. J. Garcia-Gil, and M. Martinez-Medina. 2017. Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics. The Isme Journal 11 (4):841–52. doi: 10.1038/ismej.2016.176.
  • Louis, P., S. H. Duncan, S. I. McCrae, J. Millar, M. S. Jackson, and H. J. Flint. 2004. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human Colon. Journal of Bacteriology 186 (7):2099–106. doi: 10.1128/JB.186.7.2099-2106.2004.
  • Mai, V., H. A. Katki, H. Harmsen, D. Gallaher, A. Schatzkin, D. J. Baer, and B. Clevidence. 2004. Effects of a controlled diet and black tea drinking on the fecal microflora composition and the fecal bile acid profile of human volunteers in a double-blinded randomized feeding study. The Journal of Nutrition 134 (2):473–8. doi: 10.1093/jn/134.2.473.
  • Makki, K., E. C. Deehan, J. Walter, and F. Backhed. 2018. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe 23 (6):705–15. doi: 10.1016/j.chom.2018.05.012.
  • Marin, L., E. M. Miguelez, C. J. Villar, and F. Lombo. 2015. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. Biomed Research International 2015:905215. doi: 10.1155/2015/905215.
  • Martens, E. C., M. Neumann, and M. S. Desai. 2018. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nature Reviews Microbiology 16 (8):457–70. doi: 10.1038/s41579-018-0036-x.
  • Matsui, T., T. Tanaka, S. Tamura, A. Toshima, K. Tamaya, Y. Miyata, K. Tanaka, and K. Matsumoto. 2007. alpha-Glucosidase inhibitory profile of catechins and theaflavins. Journal of Agricultural and Food Chemistry 55 (1):99–105. doi: 10.1021/jf0627672.
  • Meng, X., S. Sang, N. Zhu, H. Lu, S. Sheng, M. J. Lee, C. T. Ho, and C. S. Yang. 2002. Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice, and rats. Chemical Research in Toxicology 15 (8):1042–50. doi: 10.1021/tx010184a.
  • Mereles, D., and W. Hunstein. 2011. Epigallocatechin-3-gallate (EGCG) for clinical trials: More pitfalls than promises?. International Journal of Molecular Sciences 12 (9):5592–603. doi: 10.3390/ijms12095592.
  • Meselhy, M. R., N. Nakamura, and M. Hattori. 1997. Biotransformation of (-)-epicatechin 3-O-gallate by human intestinal bacteria. Chemical &Amp; Pharmaceutical Bulletin 45 (5):888–93. doi: 10.1248/cpb.45.888.
  • Molan, A. L., Z. Liu, and R. Tiwari. 2010. The ability of green tea to positively modulate key markers of gastrointestinal function in rats. Phytotherapy Research 24 (11):1614–9. doi: 10.1002/ptr.3145.
  • Most, J., J. Penders, M. Lucchesi, G. H. Goossens, and E. E. Blaak. 2017. Gut microbiota composition in relation to the metabolic response to 12-week combined polyphenol supplementation in overweight men and women. European Journal of Clinical Nutrition 71 (9):1040–5. doi: 10.1038/ejcn.2017.89.
  • Naira, Nayeem, and Asdaq Smb. 2016. Gallic acid: A promising lead molecule for drug development. J Appl Pharm 8 (2):213. doi: 10.4172/1920-4159.1000213.
  • Noh, K., Y. R. Kang, M. R. Nepal, R. Shakya, M. J. Kang, W. Kang, S. Lee, H. G. Jeong, and T. C. Jeong. 2017. Impact of gut microbiota on drug metabolism: An update for safe and effective use of drugs. Archives of Pharmacal Research 40 (12):1345–55. doi: 10.1007/s12272-017-0986-y.
  • Okubo, T., N. Ishihara, A. Oura, M. Serit, M. Kim, T. Yamamoto, and T. Mitsuoka. 1992. In vivo effects of tea polyphenol intake on human intestinal microflora and metabolism. Biosci Biotechnol Biochem 56 (4):588–91. doi: 10.1271/bbb.56.588.
  • Remely, M., F. Ferk, S. Sterneder, T. Setayesh, S. Roth, T. Kepcija, R. Noorizadeh, I. Rebhan, M. Greunz, J. Beckmann, et al. 2017. EGCG prevents high fat diet-induced changes in gut microbiota, decreases of DNA strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice. Oxidative Medicine and Cellular Longevity 2017:1. doi: 10.1155/2017/3079148.
  • Riviere, A., M. Selak, D. Lantin, F. Leroy, and L. De Vuyst. 2016. Bifidobacteria and butyrate-producing Colon bacteria: Importance and strategies for their stimulation in the human gut. Front Microbiol 7:979. doi: 10.3389/fmicb.2016.00979.
  • Roopchand, Diana E., Rachel N. Carmody, Peter Kuhn, Kristin Moskal, Patricio Rojas-Silva, Peter J. Turnbaugh, and Ilya Raskin. 2015. Dietary polyphenols promote growth of the gut bacterium akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 64 (8):2847–58. doi: 10.2337/db14-1916.
  • Roowi, S., A. Stalmach, W. Mullen, M. E. Lean, C. A. Edwards, and A. Crozier. 2010. Green tea flavan-3-ols: Colonic degradation and urinary excretion of catabolites by humans. Journal of Agricultural and Food Chemistry 58 (2):1296–304. doi: 10.1021/jf9032975.
  • Roth, M., B. N. Timmermann, and B. Hagenbuch. 2011. Interactions of green tea catechins with organic anion-transporting polypeptides. Drug Metabolism and Disposition 39 (5):920–6. doi: 10.1124/dmd.110.036640.
  • Round, J. L., and S. K. Mazmanian. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology 9 (5):313–23. doi: 10.1038/nri2515.
  • Sampson, T. R., J. W. Debelius, T. Thron, S. Janssen, G. G. Shastri, Z. E. Ilhan, C. Challis, C. E. Schretter, S. Rocha, V. Gradinaru, et al. 2016. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson's disease. Cell 167 (6):1469–80. e1412. doi: 10.1016/j.cell.2016.11.018.
  • Sanchez-Patan, F., M. Chioua, I. Garrido, C. Cueva, A. Samadi, J. Marco-Contelles, M. V. Moreno-Arribas, B. Bartolome, and M. Monagas. 2011. Synthesis, analytical features, and biological relevance of 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone, a microbial metabolite derived from the catabolism of dietary flavan-3-ols. Journal of Agricultural and Food Chemistry 59 (13):7083–91. doi: 10.1021/jf2020182.
  • Sang, S.,. J. D. Lambert, C. T. Ho, and C. S. Yang. 2011. The chemistry and biotransformation of tea constituents. Pharmacological Research 64 (2):87–99. doi: 10.1016/j.phrs.2011.02.007.
  • Sang, S.,. M. J. Lee, I. Yang, B. Buckley, and C. S. Yang. 2008. Human urinary metabolite profile of tea polyphenols analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry with data-dependent acquisition. Rapid Communications in Mass Spectrometry 22 (10):1567–78. doi: 10.1002/rcm.3546.
  • Scheperjans, F., V. Aho, P. A. Pereira, K. Koskinen, L. Paulin, E. Pekkonen, E. Haapaniemi, S. Kaakkola, J. Eerola-Rautio, M. Pohja, et al. 2015. Gut microbiota are related to parkinson's disease and clinical phenotype. Movement Disorders 30 (3):350–8. doi: 10.1002/mds.26069.
  • Schwiertz, A., D. Taras, K. Schafer, S. Beijer, N. A. Bos, C. Donus, and P. D. Hardt. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18 (1):190–5. doi: 10.1038/oby.2009.167.
  • Seo, D. B., H. W. Jeong, D. Cho, B. J. Lee, J. H. Lee, J. Y. Choi, I. H. Bae, and S. J. Lee. 2015. Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice. Journal of Medicinal Food 18 (5):549–56. doi: 10.1089/jmf.2014.3265.
  • Serafini, M., A. Ghiselli, and A. Ferro-Luzzi. 1996. In vivo antioxidant effect of green and black tea in man. European Journal of Clinical Nutrition 50 (1):28–32.
  • Shen, G., C. Xu, R. Hu, M. R. Jain, S. Nair, W. Lin, C. S. Yang, J. Y. Chan, and A. N. Kong. 2005. Comparison of (-)-epigallocatechin-3-gallate elicited liver and small intestine gene expression profiles between C57BL/6J mice and C57BL/6J/Nrf2 (-/-) mice. Pharmaceutical Research 22 (11):1805–20. doi: 10.1007/s11095-005-7546-8.
  • Sheng, L., P. K. Jena, H. X. Liu, Y. Hu, N. Nagar, D. N. Bronner, M. L. Settles, A. J. Baumler, and Y. Y. Wan. 2019. Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila. The Faseb Journal 32 (12):6371–84. doi: 10.1096/fj00370R.
  • Simsek, M., R. Quezada-Calvillo, M. G. Ferruzzi, B. L. Nichols, and B. R. Hamaker. 2015. Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release. Journal of Agricultural and Food Chemistry 63 (15):3873–9. doi: 10.1021/jf505425d.
  • Singh, D. P., J. Singh, R. K. Boparai, J. Zhu, S. Mantri, P. Khare, R. Khardori, K. K. Kondepudi, K. Chopra, and M. Bishnoi. 2017. Isomalto-oligosaccharides, a prebiotic, functionally augment green tea effects against high fat diet-induced metabolic alterations via preventing gut dysbacteriosis in mice. Pharmacological Research 123:103–13. doi: 10.1016/j.phrs.2017.06.015.
  • Slot, G., and H. U. Humpf. 2009. Degradation and metabolism of catechin, epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model. Journal of Agricultural and Food Chemistry 57 (17):8041–8. doi: 10.1021/jf900458e.
  • Stalmach, A., W. Mullen, H. Steiling, G. Williamson, M. E. Lean, and A. Crozier. 2010. Absorption, metabolism, and excretion of green tea flavan-3-ols in humans with an ileostomy. Molecular Nutrition & Food Research 54 (3):323–34. doi: 10.1002/mnfr.200900194.
  • Stalmach, A., S. Troufflard, M. Serafini, and A. Crozier. 2009. Absorption, metabolism and excretion of choladi green tea flavan-3-ols by humans. Molecular Nutrition & Food Research 53 (S1):S44–S53. doi: 10.1002/mnfr.200800169.
  • Sun, C. L., J. M. Yuan, M. J. Lee, C. S. Yang, Y. T. Gao, R. K. Ross, and M. C. Yu. 2002. Urinary tea polyphenols in relation to gastric and esophageal cancers: A prospective study of men in shanghai, China. Carcinogenesis 23 (9):1497–503. doi: 10.1093/carcin/23.9.1497.
  • Sun, H., Y. Chen, M. Cheng, X. Zhang, X. Zheng, and Z. Zhang. 2018. The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro. Journal of Food Science and Technology 55 (1):399–407. doi: 10.1007/s13197-017-2951-7.
  • Suzuki, T., M. Pervin, S. Goto, M. Isemura, and Y. Nakamura. 2016. Beneficial effects of tea and the green tea catechin epigallocatechin-3-gallate on obesity. Molecules 21 (10):1305. doi: 10.3390/molecules21101305.
  • Takagaki, A., and F. Nanjo. 2010. Metabolism of (-)-epigallocatechin gallate by rat intestinal flora. Journal of Agricultural and Food Chemistry 58 (2):1313–21. doi: 10.1021/jf903375s.
  • Tamboli, C. P., C. Neut, P. Desreumaux, and J. F. Colombel. 2004. Dysbiosis in inflammatory bowel disease. Gut 53 (1):1–4. doi: 10.1136/gut.53.1.1.
  • Taylor, P. W., J. M. Hamilton-Miller, and P. D. Stapleton. 2005. Antimicrobial properties of green tea catechins. Food Science & Technology Bulletin: Functional Foods 2 (7):71–81. doi: 10.1616/1476-2137.14184.
  • Terada, A., H. Hara, S. Nakajyo, H. Ichikawa, Y. Hara, K. Fukai, Y. Kobayashi, and T. Mitsuoka. 1993. Effect of supplements of tea polyphenols on the cecal flora and cecal metabolites of chicks. Microbial Ecology in Health and Disease 6 (1):3–9. doi: 10.3109/08910609309141555.
  • Thaiss, C. A., S. Itav, D. Rothschild, M. Meijer, M. Levy, C. Moresi, L. Dohnalova, S. Braverman, S. Rozin, S. Malitsky, et al. 2016. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540 (7634):544–51. doi: 10.1038/nature20796.
  • Thomas, C. M., and K. M. Nielsen. 2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews Microbiology 3 (9):711–21. doi: 10.1038/nrmicro1234.
  • Tilg, H., T. E. Adolph, R. R. Gerner, and A. R. Moschen. 2018. The intestinal microbiota in colorectal cancer. Cancer Cell 33 (6):954–64. doi: 10.1016/j.ccell.2018.03.004.
  • Turnbaugh, P. J., R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 (7122):1027–31. doi: 10.1038/nature05414.
  • Tzounis, X., J. Vulevic, G. G. Kuhnle, T. George, J. Leonczak, G. R. Gibson, C. Kwik-Uribe, and J. P. Spencer. 2008. Flavanol monomer-induced changes to the human faecal microflora. British Journal of Nutrition 99 (4):782–92. doi: 10.1017/S0007114507853384.
  • Unno, T., and N. Osakabe. 2018. Green tea extract and black tea extract differentially influence cecal levels of short-chain fatty acids in rats. Food Science & Nutrition 6 (4):728–35. doi: 10.1002/fsn3.607.
  • Unno, T., M. Sakuma, and S. Mitsuhashi. 2014. Effect of dietary supplementation of (-)-epigallocatechin gallate on gut microbiota and biomarkers of colonic fermentation in rats. J Nutr Sci Vitaminol (Tokyo) 60 (3):213–9. doi: 10.3177/jnsv.60.213.
  • van Velzen, Ewoud J. J., Johan A. Westerhuis, John P. M. van Duynhoven, Ferdi A. van Dorsten, Christian H. GrüN, Doris M. Jacobs, Guus S. M. J. E. Duchateau, Daniël J. Vis, and Age K. Smilde, 2009. Phenotyping tea consumers by nutrikinetic analysis of polyphenolic end-metabolites. Journal of Proteome Research 8 (7):3317–30. doi: 10.1021/pr801071p.
  • Wang, D., Y. Wang, X. Wan, C. S. Yang, and J. Zhang. 2015. Green tea polyphenol (-)-epigallocatechin-3-gallate triggered hepatotoxicity in mice: Responses of major antioxidant enzymes and the Nrf2 rescue pathway. Toxicology and Applied Pharmacology 283 (1):65–74. doi: 10.1016/j.taap.2014.12.018.
  • Wang, J., L. Tang, H. Zhou, J. Zhou, T. C. Glenn, C. L. Shen, and J. S. Wang. 2018. Long-term treatment with green tea polyphenols modifies the gut microbiome of female sprague-dawley rats. Journal of Nutritional Biochemistry 56:55–64. doi: 10.1016/j.jnutbio.2018.01.005.
  • Wang, L. Q., M. R. Meselhy, Y. Li, N. Nakamura, B. S. Min, G. W. Qin, and M. Hattori. 2001. The heterocyclic ring fission and dehydroxylation of catechins and related compounds by eubacterium sp. strain SDG-2, a human intestinal bacterium. Chemical & Pharmaceutical BULLETIN 49 (12):1640–3. doi: 10.1248/cpb.49.1640.
  • Wang, L., B. Zeng, Z. Liu, Z. Liao, Q. Zhong, L. Gu, H. Wei, and X. Fang. 2018. Green tea polyphenols modulate colonic microbiota diversity and lipid metabolism in high-fat diet treated HFA mice. Journal of Food Science 83 (3):864–73. doi: 10.1111/1750-3841.14058.
  • Wang, L., B. Zeng, X. Zhang, Z. Liao, L. Gu, Z. Liu, Q. Zhong, H. Wei, and X. Fang. 2016. The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice. Food & Function 7 (12):4956–66. doi: 10.1039/C6FO01150K.
  • Wang, S., X. F. Huang, P. Zhang, K. A. Newell, H. Wang, K. Zheng, and Y. Yu. 2017. Dietary teasaponin ameliorates alteration of gut microbiota and cognitive decline in diet-induced obese mice. Scientific Reports 7 (1):12203. doi: 10.1038/s41598-017-12156-2.
  • Wang, X., T. Ye, W. J. Chen, Y. Lv, Z. Hao, J. Chen, J. Y. Zhao, H. P. Wang, and Y. K. Cai. 2017. Structural shift of gut microbiota during chemo-preventive effects of epigallocatechin gallate on colorectal carcinogenesis in mice. World Journal of Gastroenterology 23 (46):8128–39. doi: 10.3748/wjg.v23.i46.8128.
  • Weerawatanakorn, Monthana, Wei-Lun Hung, Min-Hsiung Pan, Shiming Li, Daxiang Li, Xiaochun Wan, and Chi-Tang Ho. 2015. Chemistry and health beneficial effects of oolong tea and theasinensins. Food Science and Human Wellness 4 (4):133–46. doi: 10.1016/j.fshw.2015.10.002.
  • Wu, A. H., D. Spicer, F. Z. Stanczyk, C. C. Tseng, C. S. Yang, and M. C. Pike. 2012. Effect of 2-month controlled green tea intervention on lipoprotein cholesterol, glucose, and hormone levels in healthy postmenopausal women. Cancer Prevention Research 5 (3):393–402. doi: 10.1158/1940-6207.CAPR-11-0407.
  • Wu, G. D., J. Chen, C. Hoffmann, K. Bittinger, Y. Y. Chen, S. A. Keilbaugh, M. Bewtra, D. Knights, W. A. Walters, R. Knight, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334 (6052):105–8. doi: 10.1126/science.1208344.
  • Yang, C. S., and J. Hong. 2013. Prevention of chronic diseases by tea: Possible mechanisms and human relevance. Annual Review of Nutrition 33 (1):161–81. doi: 10.1146/annurev-nutr-071811-150717.
  • Yang, C. S., M. J. Lee, and L. Chen. 1999. Human salivary tea catechin levels and catechin esterase activities: Implication in human cancer prevention studies. Cancer Epidemiol Biomarkers Prev 8 (1):83–9.
  • Yang, C. S., and H. Wang. 2016. Cancer preventive activities of tea catechins. Molecules 21 (12):1679. doi: 10.3390/molecules21121679.
  • Yang, C. S., and J. Zhang. 2019. Studies on the prevention of cancer and cardiometabolic diseases by tea: Issues on mechanisms, effective doses, and toxicities. Journal of Agricultural and Food Chemistry 67 (19):5446–56. doi: 10.1021/acs.jafc.8b05242.
  • Yang, C. S., J. Zhang, L. Zhang, J. Huang, and Y. Wang. 2016. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Molecular Nutrition & Food Research 60 (1):160–74. doi: 10.1002/mnfr.201500428.
  • Yu, J., P. Song, R. Perry, C. Penfold, and A. R. Cooper. 2017. The effectiveness of green tea or green tea extract on insulin resistance and glycemic control in type 2 diabetes mellitus: A Meta-analysis. Diabetes & Metabolism Journal 41 (4):251–62. doi: 10.4093/dmj.2017.41.4.251.
  • Yuan, X. J., Y. Long, Z. H. Ji, J. Gao, T. Fu, M. Yan, L. Zhang, H. X. Su, W. L. Zhang, X. H. Wen, et al. 2018. Green tea liquid consumption alters the human intestinal and oral microbiome. Molecular Nutrition & Food Research 62 (12):1800178. doi: 10.1002/mnfr.201800178.
  • Zhang, L., X. Zhang, M. Cheng, J. X. Cao, Z. F. Wu, P. F. Weng, and M. D. Yan. 2017. Oolong tea polyphenols-phospholipids complex reduces obesity in high fat diet-induced mice model. Eur J Lipid Sci Technol 119 (12):1600394. ARTN 1600394 doi: 10.1002/ejlt.201600394.
  • Zhang, S. W., C. L. Ohland, C. Jobin, and S. M. Sang. 2017. The role of gut microbiota on the metabolism of black tea theaflavins. Faseb J 31 (1_supplement):148.147–.147. doi: 10.1096/fasebj.31.1_supplement.148.7.
  • Zhang, X., Y. Chen, J. Zhu, M. Zhang, C. T. Ho, Q. Huang, and J. Cao. 2018. Metagenomics analysis of gut microbiota in a high fat diet-induced obesity mouse model fed with (-)-epigallocatechin 3-O-(3-O-Methyl) gallate (EGCG3''Me). Molecular Nutrition & Food Research 62 (13)e:1800274. doi: 10.1002/mnfr.201800274.
  • Zhang, X., M. Zhang, C. T. Ho, X. J. Guo, Z. F. Wu, P. F. Weng, M. D. Yan, and J. X. Cao. 2018. Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model. Journal of Functional Foods 46:268–77. doi: 10.1026/j.jff.2018.05.003.
  • Zhang, X., X. L. Zhu, Y. K. Sun, B. Hu, Y. Sun, S. Jabbar, and X. X. Zeng. 2013. Fermentation in vitro of EGCG, GCG and EGCG3 '' me isolated from oolong tea by human intestinal microbiota. Food Research International 54 (2):1589–95. doi: 10.1016/j.foodres.2013.10.005.
  • Zhang, Y., A. Hays, A. Noblett, M. Thapa, D. H. Hua, and B. Hagenbuch. 2013. Transport by OATP1B1 and OATP1B3 enhances the cytotoxicity of epigallocatechin 3-O-gallate and several quercetin derivatives. Journal of Natural Products 76 (3):368–73. doi: 10.1021/np3007292.
  • Zheng, X. J., J. Y. Zhu, X. Zhang, M. Cheng, Z. C. Zhang, and J. X. Cao. 2018. The modulatory effect of nanocomplexes loaded with EGCG3 '' me on intestinal microbiota of high fat diet-induced obesity mice model. Journal of Food Biochemistry 42 (3):e12501. doi: 10.1111/jfbc.12501.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.