2,397
Views
53
CrossRef citations to date
0
Altmetric
Reviews

A comprehensive review on cereal β-glucan: extraction, characterization, causes of degradation, and food application

ORCID Icon, &

References

  • Ahmad, A., and M. Kaleem. 2018. Chapter 11. β-Glucan as a food ingredient. In Handbook of food bioengineering, biopolymers for food design, eds. A. M. Grumezescu and A. M. Holban, 354. Cambridge, MA: Academic Press, Elsevier Inc.
  • Ahmad, A., and N. Khalid. 2018. Chapter 5 - Dietary fibers in modern food production: A special perspective with β-glucans. In Handbook of food bioengineering, biopolymers for food design, eds. A. M. Grumezescu and A. M. Holban, 149. Cambridge, MA: Academic Press. Elsevier Inc.
  • Álvarez, D., and S. Barbut. 2013. Effect of inulin, β-Glucan and their mixtures on emulsion stability, color and textural parameters of cooked meat batters. Meat Science 94 (3):320–7. doi: 10.1016/j.meatsci.2013.02.011.
  • Amini Sarteshnizi, R., H. Hosseini, D. Bondarianzadeh, F. J. Colmenero, and R. Khaksar. 2015. Optimization of prebiotic sausage formulation: Effect of using β-glucan and resistant starch by D-optimal mixture design approach. Lwt - Food Science and Technology 62 (1):704–10. doi: 10.1016/j.lwt.2014.05.014.
  • Benito-Román, Ó., E. Alonso, K. Gairola, and M.J. Cocero. 2013. Fixed-bed extraction of β-glucan from cereals by means of pressurized hot water. The Journal of Supercritical Fluids 82:122–8. doi: 10.1016/j.supflu.2013.07.003.
  • Benito-Román, O., E. Alonso, and S. Lucas. 2011. Optimization of the β-glucan extraction conditions from different waxy barley cultivars. Journal of Cereal Science 53 (3):271–6. doi: 10.1016/j.jcs.2011.01.003.
  • Brennan, C. S., and L. J. Cleary. 2005. The potential use of cereal (1-3, 1-4)-β-d-glucans as functional food ingredients. Journal of Cereal Science 42 (1):1–13. doi: 10.1016/j.jcs.2005.01.002.
  • Brennan, M. A., E. Derbyshire, B. K. Tiwari, and C. S. Brennan. 2013. Integration of β-Glucan Fibre Rich Fractions from Barley and Mushrooms to Form Healthy Extruded Snacks. Plant Foods for Human Nutrition 68 (1):78–82. doi: 10.1007/s11130-012-0330-0.
  • Burkus, Z., and F. Temelli. 2000. Stabilization of emulsions and foams using barley β-glucan. Food Research International 33 (1):27–33. doi: 10.1016/S0963-9969(00)00020-X.
  • Burkus, Z., and F. Temelli. 2005. Rheological properties of barley β-glucan. Carbohydrate Polymers 59 (4):459–65. doi: 10.1016/j.carbpol.2004.10.012.
  • Colleoni-Sirghie, M., I. V. Kovalenko, J. L. Briggs, B. Fulton, and P. J. White. 2003. Rheological and molecular properties of water soluble (1,3) (1,4)-B-D-glucans from high-B-glucan and traditional oat lines. Carbohydrate Polymers 52 (4):439–47. doi: 10.1016/S0144-8617(03)00003-1.
  • Comin, L. M., F. Temelli, and M. D. Saldaña. 2012. Barley beta-glucan aerogels via supercritical CO 2 drying. Food Research International 48 (2):442–8. doi: 10.1016/j.foodres.2012.05.002.
  • Dong, Y., L. Chen, B. Gutin, and H. Zhu. 2018. Total, insoluble, and soluble dietary fiber intake and insulin resistance and blood pressure in adolescents. European Journal of Clinical Nutrition 73 (8):1172–8. doi: 10.1038/s41430-018-0372-y.
  • Du, B., F. Zhu, and B. Xu. 2014. Physicochemical and antioxidant properties of dietary fibers from Qingke (hull-less barley) flour as affected by ultrafine grinding. Bioactive Carbohydrates and Dietary Fibre 4 (2):170–5. doi: 10.1016/j.bcdf.2014.09.003.
  • EFSA. 2011. Scientific opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake. ID 851. EFSA Journal 9 (1924):1–21.
  • El Khoury, D., C. Cuda, B. L. Luhovyy, and G. H. Anderson. 2012. Beta glucan: Health benefits in obesity and metabolic syndrome. Journal of Nutrition and Metabolism 2012:1–28. doi: 10.1155/2012/851362.
  • Elleuch, M., D. Bedigian, O. Roiseux, S. Besbes, C. Blecker, and H. Attia. 2011. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry 124 (2):411–21. doi: 10.1016/j.foodchem.2010.06.077.
  • Faure, A. M., R. Knüsel, and L. Nyström. 2013. Effect of the temperature on the degradation of β-glucan promoted by iron(II). Bioactive Carbohydrates and Dietary Fibre 2 (2):99–107. doi: 10.1016/j.bcdf.2013.09.003.
  • Faure, A. M., A. Sánchez-Ferrer, A. Zabara, M. L. Andersen, and L. Nyström. 2014. Modulating the structural properties of β-d-glucan degradation products by alternative reaction pathways. Carbohydrate Polymers 99:679–86. doi: 10.1016/j.carbpol.2013.08.022.
  • Faure, A. M., J. Werder, and L. Nyström. 2013. Reactive oxygen species responsible for beta-glucan degradation. Food Chemistry 141 (1):589–96. doi: 10.1016/j.foodchem.2013.02.096.
  • Food and Drug Administration (FDA) and Department of Health and Human Services. 1997. Final rule for food labeling: Health claims. Oats and coronary heart disease. Federal Register 62:3584–601.
  • Gamel, T. H., E. S. M. Abdel-Aal, N. P. Ames, R. Duss, and S. M. Tosh. 2014. Enzymatic extraction of beta-glucan from oat bran cereals and oat crackers and optimization of viscosity measurement. Journal of Cereal Science 59 (1):33–40. doi: 10.1016/j.jcs.2013.10.011.
  • Gamel, T. H., K. Badali, and S. M. Tosh. 2013. Changes of β-glucan physicochemical characteristics in frozen and freeze dried oat bran bread and porridge. Journal of Cereal Science 58 (1):104–9. doi: 10.1016/j.jcs.2013.03.014.
  • Gangopadhyay, N., M. B. Hossain, D. K. Rai, and N. P. Brunton. 2015. Optimisation of yield and molecular weight of β-glucan from barley flour using response surface methodology. Journal of Cereal Science 62:38–44. doi: 10.1016/j.jcs.2014.10.007.
  • Gani, A., A. Shah, M. Ahmad, B. A. Ashwar, and F. A. Masoodi. 2018. International Journal of Biological Macromolecules β- d -glucan as an enteric delivery vehicle for probiotics. International Journal of Biological Macromolecules 106:864–9. doi: 10.1016/j.ijbiomac.2017.08.093.
  • Ghotra, B. S., T. Vasanthan, and F. Temelli. 2008. Structural characterization of barley β-glucan extracted using a novel fractionation technique. Food Research International 41 (10):957–63. doi: 10.1016/j.foodres.2008.07.008.
  • Gómez-Caravaca, A. M., V. Verardo, T. Candigliota, E. Marconi, A. Segura-Carretero, A. Fernandez-Gutierrez, and M. Fiorenza Caboni. 2015. Use of air classification technology as green process to produce functional barley flours naturally enriched of alkylresorcinols, β-glucans and phenolic compounds. Food Research International 73:88–96. doi: 10.1016/j.foodres.2015.02.016.
  • Hamad, S. A. A. H., A. I. Mustafa, B. I. Magboul, A. A. A. Qasem, and I. A. M. Ahmed. 2019. Nutritional quality of raw and cooked flours of a high β-glucan sorghum inbred line. Journal of Cereal Science 90:102857. doi: 10.1016/j.jcs.2019.102857.
  • Hamaker, B. R., and Y. E. Tuncil. 2014. A Perspective on the Complexity of Dietary Fiber Structures and Their Potential Effect on the Gut Microbiota. Journal of Molecular Biology 426 (23):3838–3850. doi: 10.1016/j.jmb.2014.07.028.
  • Inglett, G. E., S. C. Peterson, C. J. Carriere, and S. Maneepun. 2005. Rheological, textural, and sensory properties of Asian noodles containing an oat cereal hydrocolloid. Food Chemistry 90 (1–2):1–8. doi: 10.1016/j.foodchem.2003.08.023.
  • Izydorczyk, M. S., and J. E. Dexter. 2008. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products-a Review. Food Research International 41 (9):850–868. doi: 10.1016/j.foodres.2008.04.001.
  • Jonker, D., O. Hasselwander, A. Tervilä-Wilo, and P. P. Tenning. 2010. 28-Day oral toxicity study in rats with high purity barley beta-glucan (GlucageTM). Food and Chemical Toxicology 48 (1):422–428. doi: 10.1016/j.fct.2009.10.034.
  • Kariluoto, S., M. Edelmann, L. Nyström, T. Sontag-Strohm, H. Salovaara, R. Kivelä, M. Herranen, M. Korhola, and V. Piironen. 2014. In situ enrichment of folate by microorganisms in beta-glucan rich oat and barley matrices. International Journal of Food Microbiology 176:38–48. doi: 10.1016/j.ijfoodmicro.2014.01.018.
  • Kivelä, R., U. Henniges, T. Sontag-Strohm, and A. Potthast. 2012. Oxidation of oat β-glucan in aqueous solutions during processing. Carbohydrate Polymers 87 (1):589–597. doi: 10.1016/j.carbpol.2011.08.028.
  • Kurek, M. A., M. Moczkowska, E. Pieczykolan, and M. Sobieralska. 2018. Barley β‐D‐glucan–modified starch complex as potential encapsulation agent for fish oil. International Journal of Biological Macromolecules 120:596–602. doi: 10.1016/j.ijbiomac.2018.08.131.
  • Lazaridou, A., and C. G. Biliaderis. 2007. Molecular aspects of cereal  β-glucan functionality: Physical properties, technological applications and physiological effects. Journal of Cereal Science 46 (2):101–118. doi: 10.1016/j.jcs.2007.05.003.
  • Lazaridou, A., A. Serafeimidou, C. G. Biliaderis, T. Moschakis, and N. Tzanetakis. 2014. Structure development and acidification kinetics in fermented milk containing oat β-glucan, a yogurt culture and a probiotic strain. Food Hydrocolloids 39:204–214. doi: 10.1016/j.foodhyd.2014.01.015.
  • Levy, R. B., R. M. Claro, L. Mondini, R. Sichieri, and C. A. Monteiro. 2012. Distribuição regional e socioeconômica da disponibilidade domiciliar de alimentos no Brasil em 2008-2009. Revista de Saúde Pública 46 (1):6–15. doi: 10.1590/S0034-89102011005000088.
  • Li, C., and M. Uppal. 2010. Canadian diabetes association national nutrition committee clinical update on dietary fibre in diabetes: Food sources to physiological effects. Canadian Journal of Diabetes 34 (4):355–361. doi: 10.1016/S1499-2671(10)44010-1.
  • Liatis, S., P. Tsapogas, E. Chala, C. Dimosthenopoulos, K. Kyriakopoulos, E. Kapantais, and N. Katsilambros. 2009. The consumption of bread enriched with betaglucan reduces LDL-cholesterol and improves insulin resistance in patients with type 2 diabetes. Diabetes & Metabolism 35 (2):115–120.
  • Lie, L., L. Brown, T. E. Forrester, J. Plange-Rhule, P. Bovet, E. V. Lambert, B. T. Layden, A. Luke, and L. R. Dugas. 2018. The association of dietary fiber intake with cardiometabolic risk in four countries across the epidemiologic transition. Nutrients 10 (5):628–12. doi: 10.3390/nu10050628.
  • Limberger, V. M., A. de Francisco, M. R. Borges, T. Oro, P. J. Ogliari, P. M. Scheuer, and C. M. Noronha. 2011. Extração de β-glucanas de cevada e caracterização parcial do amido residual. Ciência Rural 41 (12):2217–2223. doi: 10.1590/S0103-84782011001200028.
  • Limberger-Bayer, V. M., A. de Francisco, A. Chan, T. Oro, P. J. T. Ogliari, and P. L. M. Barreto. 2014. Barley β-glucans extraction and partial characterization. Food Chemistry 154:84–89. doi: 10.1016/j.foodchem.2013.12.104.
  • Liu, K. 2014. Fractionation of oats into products enriched with protein, beta-glucan, starch, or other carbohydrates. Journal of Cereal Science 60 (2):317–322. doi: 10.1016/j.jcs.2014.06.002.
  • Liu, S. X., M. Singh, A. E. Wayman, H.-S. Hwang, and M. Fhaner. 2015. Reduction of omega-3 oil oxidation in stable emulsion of caseinate-omega-3 oil-oat beta-glucan. LWT - Food Science and Technology 62 (2):1083–1090. doi: 10.1016/j.lwt.2015.02.012.
  • Liu, R., N. Wang, Q. Li, and M. Zhang. 2015. Comparative studies on physicochemical properties of raw and hydrolyzed oat β-glucan and their application in low-fat meatballs. Food Hydrocolloids 51:424–431. doi: 10.1016/j.foodhyd.2015.04.027.
  • Makela, N., O. Brinck, and T. Sontag-Strohm. 2020. Viscosity of β-glucan from oat products at the intestinal phase of the gastrointestinal model. Food Hydrocolloids 100:1–8. doi: 10.1016/j.foodhyd.2019.105422.
  • Messia, M. C., M. Oriente, M. Angelicola, E. De Arcangelis, and E. Marconi. 2019. Development of functional couscous enriched in barley β-glucans. Journal of Cereal Science 85:137–142. doi: 10.1016/j.jcs.2018.12.007.
  • Mikkelsen, M. S., B. M. Jespersen, F. H. Larsen, A. Blennow, and S. B. Engelsen. 2013. Molecular structure of large-scale extracted β-glucan from barley and oat: Identification of a significantly changed block structure in a high β-glucan barley mutant. Food Chemistry 136 (1):130–138. doi: 10.1016/j.foodchem.2012.07.097.
  • Mira, G. S., H. Graf, and L. M. B. Cândido. 2009. Visão retrospectiva em fibras alimentares com ênfase em beta-glucanas no tratamento do diabetes. Brazilian Journal of Pharmaceutical Sciences 45 (1):11–20. doi: 10.1590/S1984-82502009000100003.
  • Omana, D. A., G. Plastow, and M. Betti. 2011. The use of β-glucan as a partial salt replacer in high pressure processed chicken breast meat. Food Chemistry 129 (3):768–776. doi: 10.1016/j.foodchem.2011.05.018.
  • Papageorgiou, M., N. Lakhdara, A. Lazaridou, C. G. Biliaderis, and M. S. Izydorczyk. 2005. Water extractable (1- 3,1-4)-β-D-glucans from barley and oats: An intervarietal study on their structural features and rheological behaviour. Journal of Cereal Science 42 (2):213–224. doi: 10.1016/j.jcs.2005.03.002.
  • Pentikäinen, S., L. Karhunen, L. Flander, K. Katina, A. Meynier, P. Aymard, S. Vinoy, and K. Poutanen. 2014. Enrichment of biscuits and juice with oat β-glucan enhances postprandial satiety. Appetite 75:150–156. doi: 10.1016/j.appet.2014.01.002.
  • Piñero, M. P., K. Parra, N. Huerta-Leidenz, L. Arenas de Moreno, M. Ferrer, S. Araujo, and Y. Barboza. 2008. Effect of oat’s soluble fibre (β-glucan) as a fat replacer on physical, chemical, microbiological and sensory properties of low-fat beef patties. Meat Science 80 (3):675–680. doi: 10.1016/j.meatsci.2008.03.006.
  • Rahmani, J., A. Miri, R. Černevičiūtė, J. Thompson, N. N. de Souza, R. Sultana, H. K. Varkaneh, S. M. Mousavi, and A. Hekmatdoost. 2019. Effects of cereal beta-glucan consumption on body weight, body mass index, waist circumference and total energy intake: A meta-analysis of randomized controlled trials. Complementary Therapies in Medicine 43:131–139. doi: 10.1016/j.ctim.2019.01.018.
  • Regand, A., Z. Chowdhury, S. M. Tosh, T. M. S. Wolever, and P. Wood. 2011. The molecular weight, solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility. Food Chemistry 129 (2):297–304. doi: 10.1016/j.foodchem.2011.04.053.
  • Repin, N., M. G. Scanlon, and G. R. Fulcher. 2012. Phase behaviour of casein micelles and barley beta-glucan polymer molecules in dietary fibre-enriched dairy systems. Journal of Colloid and Interface Science 377 (1):7–12. doi: 10.1016/j.jcis.2012.02.021.
  • Rieder, A., S. Ballance, and S. H. Knutsen. 2015. Viscosity based quantification of endogenous β-glucanase activity in flour. Carbohydrate Polymers 115:104–111. doi: 10.1016/j.carbpol.2014.08.075.
  • Rinaldi, L., L. E. Rioux, M. Britten, and S. L. Turgeon. 2015. In vitro bioaccessibility of peptides and amino acids from yogurt made with starch, pectin, or β-glucan. International Dairy Journal 46:39–45. doi: 10.1016/j.idairyj.2014.09.005.
  • Ryu, J. H., S. Lee, S. You, J. H. Shim, and S. H. Yoo. 2012. Effects of barley and oat β-glucan structures on their rheological and thermal characteristics. Carbohydrate Polymers 89 (4):1238–1243. doi: 10.1016/j.carbpol.2012.04.025.
  • Sharafbafi, N., S. M. Tosh, M. Alexander, and M. Corredig. 2014. Phase behaviour, rheological properties, and microstructure of oat β-glucan-milk mixtures. Food Hydrocolloids 41:274–280. doi: 10.1016/j.foodhyd.2014.03.030.
  • Shelat, K. J., F. Vilaplana, T. M. Nicholson, M. J. Gidley, and R. G. Gilbert. 2011. Diffusion and rheology characteristics of barley mixed linkage β-glucan and possible implications for digestion. Carbohydrate Polymers 86 (4):1732–1738. doi: 10.1016/j.carbpol.2011.07.004.
  • Sibakov, J., J. Abecassis, C. Barron, and K. Poutanen. 2014. Electrostatic separation combined with ultra-fine grinding to produce β-glucan enriched ingredients from oat bran. Innovative Food Science & Emerging Technologies 26:445–455. doi: 10.1016/j.ifset.2014.10.004.
  • Sikora, P., S. M. Tosh, Y. Brummer, and O. Olsson. 2013. Identification of high β-glucan oat lines and localization and chemical characterization of their seed kernel β-glucans. Food Chemistry 137 (1–4):83–91. doi: 10.1016/j.foodchem.2012.10.007.
  • Tiwari, U., and E. Cummins. 2012. Dietary exposure assessment of β-glucan in a barley and oat based bread. Lwt - Lwt 47 (2):413–420. doi: 10.1016/j.lwt.2012.02.002.
  • Tosh, S. M., Y. Brummer, S. S. Miller, A. Regand, C. Defelice, R. Duss, T. M. S. Wolever, and P. J. Wood. 2010. Processing Affects the Physicochemical Properties of β -Glucan in Oat Bran Cereal. Journal of Agricultural and Food Chemistry 58 (13):7723–7730. doi: 10.1021/jf904553u.
  • Vasquez Mejia, S. M., A. de Francisco, P. L M. Barreto, C. Damian, A. W. Zibetti, H. S. Mahecha, and B. M. Bohrer. 2018. Incorporation of β-glucans in meat emulsions through an optimal mixture modeling systems. Meat Science 143 (May):210–218. doi: 10.1016/j.meatsci.2018.05.007.
  • Wang, X., J. Storsley, S. J. Thandapilly, and N. Ames. 2016. Effects of Processing, Cultivar, and Environment on the Physicochemical Properties of Oat b -Glucan. Cereal Chemistry Journal 93 (4):402–408.
  • Wang, L., F. Ye, S. Li, F. Wei, Y. Wang, and G. Zhao. 2017. Effects of oat β-glucan incorporation on the gelatinization, flowability and moisture sorption of wheat flour. Powder Technology 315:430–437.
  • Wang, Y., R. Zhan, T. Sontag-Strohm, and N. H. Maina. 2017. The protective role of phytate in the oxidative degradation of cereal. Carbohydrate Polymers 169:220–226.
  • Wang, S., H. Zhou, T. Feng, R. Wu, X. Sun, N. Guan, L. Qu, Z. Gao, J. Yan, N. Xu, et al. 2014. β-Glucan attenuates inflammatory responses in oxidized LDL-induced THP-1 cells via the p38 MAPK pathway. Nutrition, Metabolism and Cardiovascular Diseases 24 (3):248–255. doi: 10.1016/j.numecd.2013.09.019.
  • Whitehead, A., E. J. Beck, S. Tosh, and T. M. S. Wolever. 2014. Cholesterol-lowering effects of Oat β-glucan: A meta-analysis of randomized controlled trials 1 – 4. The American Journal of Clinical Nutrition 100 (6):1413–1421.
  • Wolever, T. M., S. M. Tosh, A. L. Gibbs, J. Brand-Miller, A. M. Duncan, V. Hart, B. Lamarche, B. A. Thomson, R. Duss, and P. J. Wood. 2010. Physicochemical properties of oat β-glucan influence its ability to reduce serum LDL cholesterol in humans: A randomized clinical trial. The American Journal of Clinical Nutrition 92 (4):723–732.
  • Yoo, H. U., M. J. Ko, and M. S. Chung. 2020. Hydrolysis of beta-glucan in oat flour during subcritical-water extraction. Food Chemistry 308:125670–7.
  • Zhang, J., and Z. W. Wang. 2013. Soluble dietary fiber from Canna edulis Ker by-product and its physicochemical properties. Carbohydrate Polymers 92 (1):289–296.
  • Zhang, H., N. Zhang, Z. Xiong, G. Wang, Y. Xia, P. Lai, and L. Ai. 2018. Phytochemistry structural characterization and rheological properties of β-D-glucan from hull-less barley (Hordeum vulgare L. var. nudum Hook. f.). Phytochemistry 155 (August):155–163.
  • Zhu, F., B. Du, and B. Xu. 2016. A critical review on production and industrial applications of beta-glucans. Food Hydrocolloids 52:275–288.
  • Zielke, C., Y. Lu, and L. Nilsson. 2019. Aggregation and microstructure of cereal β-Glucan and Its association with other biomolecules. Colloids and Surfaces A: Physicochemical and Engineering Aspect 560 (October 2018):402–409.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.