1,599
Views
29
CrossRef citations to date
0
Altmetric
Reviews

Factors affecting the capsaicinoid profile of hot peppers and biological activity of their non-pungent analogs (Capsinoids) present in sweet peppers

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Antonio, A., L. Wiedemann, and V. Veiga Junior. 2018. The genus Capsicum: A phytochemical review of bioactive secondary metabolites. RSC Advances 8 (45):25767–84. doi: 10.1039/C8RA02067A.
  • Antonious, G., and R. Jarret. 2006. Screening Capsicum accessions for Capsaicinoids content. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes 41 (5):717–29. doi: 10.1080/03601230600701908.
  • Appendino, G. 2008. Capsaicin and Capsaicinoids. In Modern alkaloids: Structure, isolation, synthesis and biology, ed. E. Fattorusso and O. Taglialatela‐Scafati, 73–110. Wiley‐VCH Verlag GmbH & Co. KGaA. Retrieved from 10.1002/9783527621071.ch4.
  • Arce-Rodríguez, M., and N. Ochoa-Alejo. 2017. An R2R3-MYB transcription factor regulates Capsaicinoid biosynthesis. Plant Physiology 174 (3):1359–70. doi: 10.1104/pp.17.00506.
  • Arce-Rodríguez, M., and N. Ochoa-Alejo. 2019. Biochemistry and molecular biology of Capsaicinoid biosynthesis: Recent advances and perspectives. Plant Cell Reports 38 (9):1017–30. doi: 10.1007/s00299-019-02406-0.
  • Arrowsmith, S., T. Egan, J. Meekins, D. Powers, and M. Metcalfe. 2012. Research article: Effects of salt stress on capsaicin content, growth, and fluorescence in a Jalapeño cultivar of Capsicum annuum (Solanaceae). BIOS 83 (1):1–7. doi: 10.1893/0005-3155-83.1.1.
  • Aza-González, C., H. Núñez-Palenius, and N. Ochoa-Alejo. 2011. Molecular biology of Capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell Reports 30 (5):695–706. doi: 10.1007/s00299-010-0968-8.
  • Azuma, R., N. Ito, N. Nakayama, R. Suwa, N. T. Nguyen, J. Á. Larrinaga-Mayoral, M. Esaka, H. Fujiyama, and H. Saneoka. 2010. Fruits are more sensitive to salinity than leaves and stems in pepper plants (Capsicum annuum L.). Scientia Horticulturae 125 (3):171–8. doi: 10.1016/j.scienta.2010.04.006.
  • Baboota, R., P. Khare, P. Mangal, D. Singh, K. Bhutani, K. Kondepudi, J. Kaur, and M. Bishnoi. 2018. Dihydrocapsiate supplementation prevented high-fat diet–induced adiposity, hepatic steatosis, glucose intolerance, and gut morphological alterations in mice. Nutrition Research 51:40–56. doi: 10.1016/j.nutres.2017.11.006.
  • Bae, H., G. Jayaprakasha, K. Crosby, K. Yoo, D. Leskovar, J. Jifon, and B. Patil. 2014. Ascorbic acid, capsaicinoid, and flavonoid aglycone concentrations as a function of fruit maturity stage in greenhouse-grown peppers. Journal of Food Composition and Analysis 33 (2):195–202. doi: 10.1016/j.jfca.2013.11.009.
  • Baranidharan, G., and A. Bhaskar. 2015. Use of topical Capsaicin for pain relief. In TRP channels as therapeutic targets: From basic science to clinical use, ed. A. Szallasi, 89–98. Amsterdam: Academic Press.
  • Barbero, G., A. Liazid, L. Azaroual, M. Palma, and C. Barroso. 2016. Capsaicinoid contents in peppers and pepper-related spicy foods. International Journal of Food Properties 19 (3):485–93. doi: 10.1080/10942912.2014.968468.
  • Barbero, G., A. Ruiz, A. Liazid, M. Palma, J. Vera, and C. Barroso. 2014. Evolution of total and individual Capsaicinoids in peppers during ripening of the Cayenne pepper plant (Capsicum annuum L.). Food Chemistry 153:200–6. doi: 10.1016/j.foodchem.2013.12.068.
  • Barrera, J., M. Hernández, L. Melgarejo, O. Martínez, and J. Fernández-Trujillo. 2008. Physiological behavior and quality traits during fruit growth and ripening of four Amazonic hot pepper accessions. Journal of the Science of Food and Agriculture 88 (5):847–57. doi: 10.1002/jsfa.3161.
  • Blanco-Rios, A., L. Medina-Juarez, and N. Gamez-Meza. 2018. Drying and pickling on phenols, Capsaicinoids, and free radical-scavenging activity in Anaheim and Jalapeño peppers. Ciência Rural 47 (9):1–6. doi: 10.1590/0103-8478cr20160722.
  • Brederson, J., P. Kym, and A. Szallasi. 2013. Targeting TRP channels for pain relief. European Journal of Pharmacology 716 (1–3):61–76. doi: 10.1016/j.ejphar.2013.03.003.
  • Camara, B. 1980a. Biosynthesis of keto-carotenoids in Capsicum annum fruits. FEBS Letters 118 (2):315–8. doi: 10.1016/0014-5793(80)80247-X.
  • Camara, B. 1980b. Carotenoid biosynthesis in vitro conversion of violaxanthin to Capsorubin by a chromoplast enriched fraction of capsicum fruits. Biochemical and Biophysical Research Communications 93 (1):113–7. doi: 10.1016/S0006-291X(80)80253-1.
  • Careaga, M., E. Fernández, L. Dorantes, L. Mota, M. Jaramillo, and H. Hernandez-Sanchez. 2003. Antibacterial activity of Capsicum extract against Salmonella typhimurium and Pseudomonas aeruginosa inoculated in raw beef meat. International Journal of Food Microbiology 83 (3):331–5. doi: 10.1016/S0168-1605(02)00382-3.
  • Castillo, E., A. Torres-Gavilán, P. Severiano, N. Arturo, and A. López-Munguía. 2007. Lipase-catalyzed synthesis of pungent capsaicin analogues. Food Chemistry 100 (3):1202–8. doi: 10.1016/j.foodchem.2005.11.026.
  • Cichewicz, R., and P. Thorpe. 1996. The antimicrobial properties of chile peppers (Capsicum species) and their uses in Mayan medicine. Journal of Ethnopharmacology 52 (2):61–70. doi: 10.1016/0378-8741(96)01384-0.
  • Clark, R., and S. Lee. 2016. Anticancer properties of Capsaicin against human cancer. Anticancer Research 36:837–44. doi: 10.21873/anticanres.10989.
  • Conforti, F., G. Statti, and F. Menichini. 2007. Chemical and biological variability of hot pepper fruits (Capsicum annuum var. acuminatum L.) in relation to maturity stage. Food Chemistry 102 (4):1096–104.
  • Curry, J., M. Aluru, M. Mendoza, J. Nevarez, M. Melendrez, and M. A. O’Connell. 1999. Transcripts for posssible Capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum. Plant Science 148 (1):47–57. doi: 10.1016/S0168-9452(99)00118-1.
  • Das, S., K. Teja, B. Duary, P. Agrawal, and S. Bhattacharya. 2016. Impact of nutrient management, soil type and location on the accumulation of capsaicin in Capsicum chinense (Jacq.): One of the hottest Chili in the world. Scientia Horticulturae 213:354–66. doi: 10.1016/j.scienta.2016.10.041.
  • Díaz, J., F. Pomar, A. Bernal, and F. Merino. 2004. Peroxidases and the metabolism of capsaicin in Capsicum annuum L. Phytochemistry Reviews 3 (1–2):141–57. doi: 10.1023/B:PHYT.0000047801.41574.6e.
  • Díaz-Pérez, J., M. Muy-Rangel, and A. Mascorro. 2007. Fruit size and stage of ripeness affect postharvest water loss in bell pepper fruit (Capsicum annuum L.). Journal of the Science of Food and Agriculture 87 (1):68–73. doi: 10.1002/jsfa.2672.
  • Dorantes, L., R. Colmenero, H. Hernandez, L. Mota, M. Jaramillo, E. Fernandez, and C. Solano. 2000. Inhibition of growth of some foodborne pathogenic bacteria by Capsicum annum extracts. International Journal of Food Microbiology 57 (1–2):125–8. doi: 10.1016/S0168-1605(00)00216-6.
  • El-Kaaby, E. A. J., J. A. Ai-Anny, and E. S. Almaliky. 2017. In Vitro effect of exogenous NaCl on enzyme activity, chlorophyll and carotene accumulation in callus of Chilli pepper (Capsicum annuum.L.) explants. International Journal of Multidisciplinary and Current Research 5:253–5.
  • Estrada, B., M. Bernal, J. Díaz, F. Pomar, and F. Merino. 2000. Fruit development in Capsicum annuum: Changes in capsaicin, lignin, free phenolics, and peroxidase patterns. Journal of Agricultural and Food Chemistry 48 (12):6234–9. doi: 10.1021/jf000190x.
  • Estrada, B., M. Bernal, J. Díaz, F. Pomar, and F. Merino. 2002. Capsaicinoids in vegetative organs of Capsicum annuum L. in relation to fruiting. Journal of Agricultural and Food Chemistry 50 (5):1188–91. doi: 10.1021/jf011270j.
  • Estrada, B., F. Pomar, J. Díaz, F. Merino, and M. Bernal. 1998. Effects of mineral fertilizer supplementation on fruit development and pungency in ‘Padrón’ peppers. The Journal of Horticultural Science and Biotechnology 73 (4):493–7. doi: 10.1080/14620316.1998.11511004.
  • Estrada, B., F. Pomar, J. Dı́az, F. Merino, and M. A. Bernal. 1999. Pungency level in fruits of the Padrón pepper with different water supply. Scientia Horticulturae 81 (4):385–96. doi: 10.1016/S0304-4238(99)00029-1.
  • Faraut, B., B. Giannesini, V. Matarazzo, Y. Le Fur, G. Rougon, P. Cozzone, and D. Bendahan. 2009. Capsiate administration results in an uncoupling protein-3 downregulation, an enhanced muscle oxidative capacity and a decreased abdominal fat content in vivo. International Journal of Obesity 33 (12):1348–55. doi: 10.1038/ijo.2009.182.
  • Faustino, J. M. F., M. J. Barroca, and R. P. F. Guiné. 2007. Study of the drying kinetics of green bell pepper and chemical characterization. Food and Bioproducts Processing 85 (3):163–70. doi: 10.1205/fbp07009.
  • Finger, F. L., and G. M. Pereira. 2016. Physiology and postharvest of pepper fruits. In Production and breeding of Chilli peppers (Capsicum spp.), ed. Rego, 27–40. Cham: Springer.
  • Gangadhar, B. H., R. K. Mishra, G. Pandian, and S. W. Park. 2012. Comparative study of color, pungency, and biochemical composition in chili pepper (Capsicum annuum) under different light-emitting diode treatments. HortScience 47 (12):1729–35. doi: 10.21273/HORTSCI.47.12.1729.
  • Garcés-Claver, A., M. Arnedo-Andrés, J. Abadía, R. Gil-Ortega, and A. Álvarez-Fernández. 2006. Determination of Capsaicin and dihydrocapsaicin in Capsicum Fruits by liquid chromatography − electrospray/time-of-flight mass spectrometry. Journal of Agricultural and Food Chemistry 54 (25):9303–11. doi: 10.1021/jf0620261.
  • Garcés-Claver, A., R. Gil-Ortega, A. Álvarez-Fernández, and M. Arnedo-Andrés. 2007. Inheritance of Capsaicin and Dihydrocapsaicin, determined by HPLC-ESI/MS, in an intraspecific cross of Capsicum annuum L. Journal of Agricultural and Food Chemistry 55 (17):6951–7. doi: 10.1021/jf070951x.
  • George Mateljan Foundation (GMF). 2018. Bell peppers. World’s healthiest foods. http://www.whfoods.com/genpage.php?tname=foodspice&dbid=50
  • Giuffrida, D., P. Dugo, G. Torre, C. Bignardi, A. Cavazza, C. Corradini, and G. Dugo. 2014. Evaluation of Carotenoid and Capsaicinoid contents in powder of red chili peppers during one year of storage. Food Research International 65:163–70. doi: 10.1016/j.foodres.2014.06.019.
  • Gnayfeed, M., H. Daood, P. Biacs, and C. Alcaraz. 2001. Content of bioactive compounds in pungent spice red pepper (paprika) as affected by ripening and genotype. Journal of the Science of Food and Agriculture 81 (15):1580–5. doi: 10.1002/jsfa.982.
  • Greco, L., R. Riccio, S. Bergero, A. Del Re, and M. Trevisan. 2007. Total reducing capacity of fresh sweet peppers and five different Italian pepper recipes. Food Chemistry 103 (4):1127–33. doi: 10.1016/j.foodchem.2006.10.013.
  • Grubben, G., and H. Denton. 2004. Plant resources of tropical Africa 2. Vegetables. Wageningen, Netherlands: Backhuys.
  • Gurung, T., S. Techawongstien, B. Suriharn, and S. Techawongstien. 2011. Impact of environments on the accumulation of Capsaicinoids in Capsicum spp. HortScience 46 (12):1576–81. doi: 10.21273/HORTSCI.46.12.1576.
  • Guzman, I., S. Hamby, J. Romero, P. Osland, and M. O’Connell. 2010. Variability of carotenoid biosynthesis in orange colored Capsicum spp. Plant Science 179 (1–2):49–59. doi: 10.1016/j.plantsci.2010.04.014.
  • Han, K., H. Jeong, J. Sung, Y. Keum, M. Cho, J. Kim, J. Kwon, B. Kim, and B. Kang. 2013. Biosynthesis of Capsinoid is controlled by the Pun1 locus in pepper. Molecular Breeding 31 (3):537–48. doi: 10.1007/s11032-012-9811-y.
  • Harvell, K. P., and P. W. Bosland. 1997. The environment produces a significant effect on pungency of chiles. HortScience 32 (7):1292. doi: 10.21273/HORTSCI.32.7.1292.
  • Huang, W., W. Cheang, X. Wang, L. Lei, Y. Liu, K. Ma, F. Zheng, Y. Huang, and Z. Chen. 2014. Capsaicinoids but not their analogue Capsinoids lower plasma cholesterol and possess beneficial vascular activity. Journal of Agricultural and Food Chemistry 62 (33):8415–20. doi: 10.1021/jf502888h.
  • Hui, Y., F. Chen, L. Nollet, R. Guiné, J. Queré, O. Martin-Belloso, M. Minguez-Mosquera, G. Paliyath, F. Pessoa, J. Sidhu, N. Sinhá, and P. Stanfield. 2010. Handbook of fruit and vegetable flavors. Hoboken, NJ: Wiley. doi:10.1002/9780470622834.
  • Iqbal, Q., M. Amjad, M. Asi, A. Ariño, K. Ziaf, A. Nawaz, and T. Ahmad. 2015. Stability of Capsaicinoids and antioxidants in dry hot peppers under different packaging and storage temperatures. Foods 4 (4):51–64. doi: 10.3390/foods4020051.
  • Iwai, K., T. Suzuki, and H. Fujiwake. 1979. Formation and accumulation of pungent principle of hot pepper fruits, Capsaicin and its analogues, in Capsicum annuunvar.annuuncv. Karayatsubusa at different growth stages after flowering. Agricultural and Biological Chemistry 43 (12):2493–8. doi: 10.1080/00021369.1979.10863843.
  • Jang, S. 2014. Investigation of genetic factors controlling Capsiate biosynthesis in pepper. Dissertation of Master of Science in Horticultural Science. The Graduate School of Seoul National University.
  • Jang, S., K. Han, Y. Jo, H. Jeong, M. Siddique, and B. Kang. 2015. Substitution of a dysfunctional pAMT allele results in low-pungency but high levels of Capsinoid in Capsicum chinense ‘Habanero. Plant Breeding and Biotechnology 3 (2):119–28. doi: 10.9787/PBB.2015.3.2.119.
  • Jeeatid, N., S. Techawongstien, B. Suriharn, P. Bosland, and S. Techawongstien. 2017. Light intensity affects Capsaicinoid accumulation in hot pepper (Capsicum chinense Jacq.) cultivars. Horticulture, Environment, and Biotechnology 58 (2):103–10. doi: 10.1007/s13580-017-0165-6.
  • Jeeatid, N., S. Techawongstien, B. Suriharn, S. Chanthai, P. Bosland, and S. Techawongstien. 2018. Influence of water stresses on capsaicinoid production in hot pepper (Capsicum chinense Jacq.) cultivars with different pungency levels. Food Chemistry 245:792–7.
  • Johnson, C. D., and D. R. Decoteau. 1996. Nitrogen and potassium fertility affects Jalapeño pepper plant growth, pod yield, and pungency. HortScience 31 (7):1119–23. doi: 10.21273/HORTSCI.31.7.1119.
  • Josse, A., S. Sherriffs, A. Holwerda, R. Andrews, A. Staples, and S. Phillips. 2010. Effects of Capsinoid ingestion on energy expenditure and lipid oxidation at rest and during exercise. Nutrition & Metabolism 7 (1):65. doi: 10.1186/1743-7075-7-65.
  • Jun, H.-S., T. Park, C. K. Lee, M. K. Kang, M. S. Park, H. I. Kang, Y.-J. Surh, and O. H. Kim. 2007. Capsaicin induced apoptosis of B16-F10 melanoma cells through down-regulation of Bcl-2. Food and Chemical Toxicology 45 (5):708–15. doi: 10.1016/j.fct.2006.10.011.
  • Kang, B., and C. Kole. 2013. Genetics, genomics and breeding of peppers and eggplants. Boca Raton, FL: CRC Press.
  • Kang, J., C. Kim, I. Han, T. Kawada, and R. Yu. 2007. Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese-mouse adipose tissues and isolated adipocytes, and suppresses the inflammatory responses of adipose tissue macrophages. FEBS Letters 581 (23):4389–96. doi: 10.1016/j.febslet.2007.07.082.
  • Kim, C., T. Kawada, B. Kim, I. Han, S. Choe, T. Kurata, and R. Yu. 2003. Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS stimulated peritoneal macrophages. Cellular Signalling 15 (3):299–306. doi: 10.1016/S0898-6568(02)00086-4.
  • Kobata, K., M. Kawaguchi, and T. Watanabe. 2002. Enzymatic synthesis of a Capsinoid by the acylation of vanillyl alcohol with fatty acid derivatives catalyzed by lipases. Bioscience, Biotechnology, and Biochemistry 66 (2):319–27. doi: 10.1271/bbb.66.319.
  • Kobata, K., M. Kawamura, M. Toyoshima, Y. Tamura, S. Ogawa, and T. Watanabe. 1998b. Lipase-catalyzed synthesis of capsaicin analogs by amidation of vanillylamine with fatty acid derivatives. Biotechnology Letters 20 (5):451–3. doi: 10.1023/B:BILE.0000015922.93389.43.
  • Kobata, K., M. Kobayashi, Y. Tamura, S. Miyoshi, S. Ogawa, and T. Watanabe. 1999. Lipase-catalyzed synthesis of capsaicin analogs by transacylation of capsaicin with natural oils or fatty acid derivatives in n-hexane. Biotechnology Letters 21 (6):547–50. doi: 10.1023/B:BILE.0000015922.93389.43.
  • Kobata, K., M. Toyoshima, M. Kawamura, and T. Watanabe. 1998a. Lipase-catalyzed synthesis of capsaicin analogs using natural oils as an acyl donor. Biotechnology Letters 20 (8):781–3. doi: 10.1023/B:BILE.0000015922.93389.43.
  • Kosmidou, E., P. Kefalas, and D. Gerasopoulos. 2013. NaOH treatment reduces capsaicin content and pungency of ‘Makedoniko’ pepper (Capsicum annuum L.). International Journal of Food Science and Technology 48:2207–13.
  • Kosuge, S., and M. Furuta. 1970. Studies on the pungent principle of Capsicum. Agricultural and Biological Chemistry 34 (2):248–56. doi: 10.1080/00021369.1970.10859594.
  • Kraft, K. H., C. H. Brown, G. P. Nabhan, E. Luedeling, J. d. J. Luna Ruiz, G. Coppens d'Eeckenbrugge, R. J. Hijmans, and P. Gepts. 2014. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proceedings of the National Academy of Sciences 111 (17):6165–70. doi: 10.1073/pnas.1308933111.
  • Krishnamurthy, K. S., S. J. Ankegowda, P. Umadevi, and J. K. George. 2016. Black pepper and water stress. In Abiotic stress physiology of horticultural crops, ed. N. Rao, K. Shivashankara, R. Laxman. New Delhi: Springer.
  • Kwon, D., Y. Kim, S. Ryu, M. Cha, G. Yon, H. Yang, M. Kim, S. Kang, and S. Park. 2013. Capsiate improves glucose metabolism by improving insulin sensitivity better than capsaicin in diabetic rats. The Journal of Nutritional Biochemistry 24 (6):1078–85. doi: 10.1016/j.jnutbio.2012.08.006.
  • Laird, J. 2009. Viscero-sensory functions: Capsaicin. In Encyclopedia of neuroscience, ed. L. R. Squire, 195–201. New York: Academic Press.
  • Lang, Y., H. Kisaka, R. Sugiyama, K. Nomura, A. Morita, T. Watanabe, Y. Tanaka, S. Yazawa, and T. Miwa. 2009. Functional loss of pAMT results in biosynthesis of Capsinoids, Capsaicinoid analogs, in Capsicum annuum cv. CH-19 Sweet. The Plant Journal 59 (6):953–61. doi: 10.1111/j.1365-313X.2009.03921.x.
  • Lee, E., M. Jeon, B. Kim, J. Kim, Y. Kwon, H. Lee, Y. Lee, J. Yang, and T. Kim. 2010. Capsiate inhibits ultraviolet B-induced skin inflammation by inhibiting Src family kinases and epidermal growth factor receptor signaling. Free Radical Biology and Medicine 48 (9):1133–43. doi: 10.1016/j.freeradbiomed.2010.01.034.
  • Lee, K. 2011. Hot pepper response to interactive effects of salinity and boron. Plant, Soil and Environment 52:227–33. doi: 10.17221/3433-PSE.
  • Liu, S., W. Li, Y. Wu, C. Chen, and J. Lei. 2013. De Novo transcriptome assembly in Chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of Capsaicinoids. PLoS One. 8 (1):e48156. doi: 10.1371/journal.pone.0048156.
  • Luo, X., J. Peng, and Y. Li. 2011. Recent advances in the study on Capsaicinoids and Capsinoids. European Journal of Pharmacology 650 (1):1–7. doi: 10.1016/j.ejphar.2010.09.074.
  • Macho, A., C. Lucena, R. Sancho, N. Daddario, A. Minassi, E. Munoz, and G. Appendino. 2003. Non-pungent capsaicinoids from sweet pepper. European Journal of Nutrition 42 (1):2–9. doi: 10.1007/s00394-003-0394-6.
  • Marini, E., G. Magi, M. Mingoia, A. Pugnaloni, and B. Facinelli. 2015. Antimicrobial and anti-virulence activity of Capsaicin against erythromycin-resistant, cell invasive Group A Streptococci. Frontiers in Microbiology 6 (1281):1–7. doi: 10.3389/fmicb.2015.01281.
  • Martinez-Romero, D., M. Serrano, A. Carbonell, S. Castillo, F. Riquelme, and D. Valero. 2004. Mechanical damage during fruit post-harvest Handling: Technical and physiological implications. In Production practices and quality assessment of food crops, ed. R. Dris and S. M. Jain, 233–52. Netherlands: Kluwer Academic Publishers. Vol. 3, “Quality Handling and Evaluation”.
  • Masuda, Y., S. Haramizu, K. Oki, K. Ohnuki, T. Watanabe, S. Yazawa, T. Kawada, S. Hashizume, and T. Fushiki. 2003. Upregulation of uncoupling proteins by oral administration of Capsiate, a nonpungent capsaicin analog. Journal of Applied Physiology 95 (6):2408–15. doi: 10.1152/japplphysiol.00828.2002.
  • Maurya, V. K., M. Vijaypratap, N. Ramesh, R. Srinivasan, and K. M. Gothandam. 2014. Impact of salt on Capsaicin synthesis in three Capsicum cultivars. Research Journal of Pharmaceutical, Biological and Chemical Sciences 5 (6):735–40.
  • Medina-Lara, F., I. Echevarria-Machado, R. Pacheco-Arjona, N. Ruiz-Lau, A. GuzmanAntonio, and M. Martinez-Estevez. 2008. Influence of nitrogen and potassium fertilization on fruiting and capsaicin content in Habanero pepper (Capsicum chinense Jacq.). HortScience 43 (5):1549–54. doi: 10.21273/HORTSCI.43.5.1549.
  • Molina-Orres, J., A. Garcı́a-Chávez, and E. Ramı́rez-Chávez. 1999. Antimicrobial properties of alkamides present in flavouring plants traditionally used in Mesoamerica: Affinin and capsaicin. Journal of Ethnopharmacology 64 (3):241–8. doi: 10.1016/s0378-8741(98)00134-2.
  • Monforte-González, M., A. Guzmán-Antonio, F. Uuh-Chim, and F. Vázquez-Flota. 2010. Capsaicin accumulation is related to nitrate content in placentas of habanero peppers (Capsicum chinense Jacq.). Journal of the Science of Food and Agriculture :n/a–n/a. doi: 10.1002/jsfa.3880.
  • Narang, N., W. Jiraungkoorskul, and P. Jamrus. 2017. Current Understanding of Antiobesity Property of Capsaicin. Pharmacognosy Reviews 11 (21):23–26. doi: 10.4103/phrev.phrev_48_16.
  • Nascimento, P., T. Nascimento, N. Ramos, G. Silva, J. Gomes, R. Falcão, K. Moreira, A. Porto, and T. Silva. 2014. Quantification, antioxidant and antimicrobial activity of phenolics isolated from different extracts of Capsicum frutescens (Pimenta Malagueta. ). Molecules 19 (4):5434–47. doi: 10.3390/molecules19045434.
  • Naves, E., L. de Ávila Silva, R. Sulpice, W. Araújo, A. Nunes-Nesi, L. Peres, and A. Zsögön. 2019. Capsaicinoids: Pungency beyond Capsicum. Trends in Plant Science 24 (2):109–20. doi: 10.1016/j.tplants.2018.11.001.
  • Nilius, B., and G. Appendino. 2013. Spices: The savory and beneficial science of pungency. In Reviews of physiology, biochemistry and pharmacology, ed. B. Nilius, S. Amara, T. Guderman, R. Jahn, R. Lill, T. Gudermann, S. Offermanns, and O. Peterson, Vol. 164. New Jersey: Springer, 1–76.
  • Ohnuki, K., S. Niwa, S. Maeda, N. Inoue, S. Yazawa, and T. Fushiki. 2001. CH-19 Sweet, a non-pungent cultivar of red pepper, increased body temperature and oxygen consumption in humans. Bioscience, Biotechnology, and Biochemistry 65 (9):2033–6. doi: 10.1271/bbb.65.2033.
  • Omolo, M. A., Z. Wong, A. K. Mergen, J. C. Hastings, N. C. Le, H. A. Reiland, K. A. Case and D. J. Baumler. 2014. Antimicrobial Properties of Chili Peppers. Journal of Infectious Diseases and Therapy 2:145. doi: 10.4172/2332-0877.1000145.
  • Ornelas-Paz, J., L. Cira-Chávez, A. Gardea-Béjar, J. Guevara-Arauza, D. Sepúlveda, J. Reyes-Hernández, and S. Ruiz-Cruz. 2013. Effect of heat treatment on the content of some bioactive compounds and free radical-scavenging activity in pungent and non-pungent peppers. Food Research International 50 (2):519–25. doi: 10.1016/j.foodres.2011.01.006.
  • Ornelas-Paz, J., J. Martínez-Burrola, S. Ruiz-Cruz, V. Santana-Rodríguez, V. IbarraJunquera, G. Olivas, and J. Pérez-Martínez. 2010. Effect of cooking on the Capsaicinoids and phenolics contents of Mexican peppers. Food Chemistry 119 (4):1619–25. doi: 10.1016/j.foodchem.2009.09.054.
  • Othman, Z., Y. Ahmed, M. Habila, and A. Ghafar. 2011. Determination of Capsaicin and dihydrocapsaicin in Capsicum fruit samples using high performance liquid chromatography. Molecules 16 (10):8919–29. doi: 10.3390/molecules16108919.
  • Peña-Alvarez, A., E. Ramírez-Maya, and L. Alvarado-Suárez. 2009. Analysis of capsaicin and dihydrocapsaicin in peppers and pepper sauces by solid phase microextraction–gas chromatography–mass spectrometry. Journal of Chromatography A 1216 (14):2843–7. doi: 10.1016/j.chroma.2008.10.053.
  • Phimchan, P., S. Techawongstien, S. Chanthai, and P. W. Bosland. 2012. Impact of drought stress on the accumulation of capsaicinoids in Capsicum cultivars with different initial capsaicinoids levels. HortScience 47 (9):1204–9. doi: 10.21273/HORTSCI.47.9.1204.
  • Pyun, B., S. Choi, Y. Lee, T. Kim, J. Min, Y. Kim, B. Kim, J. Kim, T. Kim, Y. Kim, et al. 2008. Capsiate, a nonpungent Capsaicin-like compound, inhibits angiogenesis and vascular permeability via a direct inhibition of Src kinase activity. Cancer Research 68 (1):227–35. doi: 10.1158/0008-5472.CAN-07-2799.
  • Qiong, P., T. Jian-Hua, B. Lian-Yang, and X. Xiao Lang-Tao. 2015. Effect of drought stress on capsaicin contents, Dihydrocapsaicin and vitamin C in Pepper (Capsicum frutescens L.) Fruit. China Vegetables 1 (12):44–7.
  • Rahman, M. J., and H. Inden. 2012. Effect of nutrient solution and temperature on. capsaicin content and yield contributing characteristics in six sweet pepper (Capsicum annuum L.) cultivars. Journal of Food, Agriculture and Environment 10:524–9.
  • Rahman, M., H. Inden, and M. Hossain. 2012. Capsaicin content in sweet pepper (Capsicum annuum L.) Under temperature stress. Acta Horticulturae 936:195–201. doi: 10.17660/ActaHortic.2012.936.23.
  • Rao, N. K. S., R. H. Laxman, and K. S. Shivashankara. 2016. Physiological and morphological responses of horticultural crops to abiotic stresses. In Abiotic stress physiology of horticultural crops, ed. N. Rao, K. Shivashankara, R. Laxman. New Delhi: Springer.
  • Reddy, M. K., K. S. Shivashankara, G. A. Geetha, and K. C. Pavithra. 2016. Capsicum (Hot Pepper and Bell Pepper. ). In Abiotic stress physiology of horticultural crops, ed. N. Rao, K. Shivashankara, R. Laxman. New Delhi: Springer.
  • Reilly, C., D. Crouch, and G. Yost. 2001. Quantitative analysis of Capsaicinoids in fresh peppers, oleoresin capsicum and pepper spray products. Journal of Forensic Sciences 46 (3):14999J. doi: 10.1520/JFS14999J.
  • Rogers, J., S. Urbina, L. Taylor, C. Wilborn, M. Purpura, R. Jäger, and V. Juturu. 2018. Capsaicinoids supplementation decreases percent body fat and fat mass: Adjustment using covariates in a post hoc analysis. BMC Obesity 5 (1). Article no: 22. doi: 10.1186/s40608-018-0197-1.
  • Rosa, A., M. Deiana, V. Casu, G. Corona, G. Appendino, M. Ballero, and M. Dessì. 2003. 427 Antioxidant activity of Capsinoids. Toxicology Letters 144:s115. doi: 10.1016/S0378-4274(03)90426-7.
  • Roth, K. 2014. The biochemistry of peppers. Chemviews doi: 10.1002/chemv.201400031.
  • Rudrappa, U. Bell pepper (sweet pepper) nutrition facts and health benefits [Internet]. Nutrition and You.com. 2016. [cited 18 February 2016]. http://www.nutrition-and-you.com/bell-pepper.html
  • Ruiz-Lau, N., F. Medina-Lara, Y. Minero-García, E. Zamudio-Moreno, A. Guzmán-Antonio, I. Echevarría-Machado, and M. Martínez-Estévez. 2011. Water deficit affects the accumulation of Capsaicinoids in fruits of Capsicum chinense jacq. HortScience 46 (3):487–92. doi: 10.21273/HORTSCI.46.3.487.
  • Sahin, K., C. Orhan, M. Tuzcu, N. Sahin, F. Erten, and V. Juturu. 2018. Capsaicinoids improve consequences of physical activity. Toxicology Reports 5:598–607. doi: 10.1016/j.toxrep.2018.05.001.
  • Saito, M., and T. Yoneshiro. 2013. Capsinoids and related food ingredients activating brown fat thermogenesis and reducing body fat in humans. Current Opinion in Lipidology 24 (1):71–7. doi: 10.1097/MOL.0b013e32835a4f40.
  • Sancho, R., C. Lucena, A. Macho, M. Calzado, M. Blanco-Molina, A. Minassi, G. Appendino, and E. Muñoz. 2002. Immunosuppressive activity of Capsaicinoids: Capsiate derived from sweet peppers inhibits NF-κB activation and is a potent antiinflammatory compound in vivo. European Journal of Immunology 32 (6):1753. doi: 10.1002/1521-4141(200206)32:6<1753::AID-IMMU1753>3.0.CO;2-2.
  • Sgroppo, S., and M. Pereyra. 2009. Using mild heat treatment to improve the bioactive related compounds on fresh-cut green bell peppers. International Journal of Food Science & Technology 44 (9):1793–801. doi: 10.1111/j.1365-2621.2009.01998.x.
  • Simone, D. A., T. K. Baumann, and R. H. LaMotte. 1989. Dose dependent pain and mechanical hyperalgesia in humans after intradermal injection of Capsaicin. Pain 38 (1):99–107. doi: 10.1016/0304-3959(89)90079-1.
  • Smith, D., J. Stommel, R. Fung, C. Wang, and B. Whitaker. 2006. Influence of cultivar and harvest method on postharvest storage quality of pepper (Capsicum annuum L.) fruit. Postharvest Biology and Technology 42 (3):243–7. doi: 10.1016/j.postharvbio.2006.06.013.
  • Snitker, S., Y. Fujishima, H. Shen, S. Ott, X. Pi-Sunyer, Y. Furuhata, H. Sato, and M. Takahashi. 2009. Effects of novel Capsinoid treatment on fatness and energy metabolism in humans: Possible pharmacogenetic implications. The American Journal of Clinical Nutrition 89 (1):45–50. doi: 10.3945/ajcn.2008.26561.
  • Stewart, C., M. Mazourek, G. M. Stellari, M. O'Connell, and M. Jahn. 2007. Genetic control of pungency in C. chinense via the Pun1 locus. Journal of Experimental Botany 58 (5):979–91. doi: 10.1093/jxb/erl243.
  • Sukrasno, N., and M. M. Yeoman. 1993. Phenylpropanoid metabolism during growth and development of Capsicum frutescens fruits. Phytochemistry 32 (4):839–44. doi: 10.1016/0031-9422(93)85217-F.
  • Sung, Y., Y.-Y. Chang, and N.-L. Ting. 2005. Capsaicin biosynthesis in water-stressed hot pepper fruits. Botanical Bulletin of Academia Sínica 46:35–42.
  • Suresh, D., H. Manjunatha, and K. Srinivasan. 2007. Effect of heat processing of spices on the concentrations of their bioactive principles: Turmeric (Curcuma longa), red pepper (Capsicum annuum) and black pepper (Piper nigrum). Journal of Food Composition and Analysis 20 (3–4):346–51. doi: 10.1016/j.jfca.2006.10.002.
  • Surh, Y. 2002. More than spice: Capsaicin in hot Chili peppers makes tumor cells commit suicide. Cancerspectrum Knowledge Environment 94 (17):1263–5. doi: 10.1093/jnci/94.17.1263.
  • Sutoh, K., K. Kobata, S. Yazawa, and T. Watanabe. 2006. Capsinoid is biosynthesized from phenylalanine and valine in a non-pungent pepper, Capsicum annuum L. cv. CH-19 sweet. Bioscience, Biotechnology, and Biochemistry 70 (6):1513–6. doi: 10.1271/bbb.50665.
  • Tanaka, Y., M. Hosokawa, T. Miwa, T. Watanabe, and S. Yazawa. 2010a. Novel Loss-of-Functionputative aminotransferaseAlleles cause biosynthesis of Capsinoids, nonpungent capsaicinoid analogues, in mildly pungent Chili peppers (Capsicum chinense). Journal of Agricultural and Food Chemistry 58 (22):11762–7. doi: 10.1021/jf1019642.
  • Tanaka, Y., M. Hosokawa, T. Miwa, T. Watanabe, and S. Yazawa. 2010b. Newly Mutatedputative-aminotransferasein Nonpungent Pepper (Capsicum annuum) Results in Biosynthesis of Capsinoids, Capsaicinoid Analogues. Journal of Agricultural and Food Chemistry 58 (3):1761–7. doi: 10.1021/jf903282r.
  • Tiwari, U., and E. Cummins. 2013. Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Research International 50 (2):497–506. doi: 10.1016/j.foodres.2011.09.007.
  • Tremblay, A., H. Arguin, and S. Panahi. 2016. Capsaicinoids: A spicy solution to the management of obesity? International Journal of Obesity 40 (8):1198–204. doi: 10.1038/ijo.2015.253.
  • Tsurumaki, K., and T. Sasanuma. 2019. Discovery of novel unfunctional pAMT causing loss of pungency in sweet bell pepper (Capsicum annuum L.). Breeding Science 69 (1):133–42. doi: 10.1270/jsbbs.18150.
  • Uarrota, V. G., D. L. V. Stefen, L. S. Leolato, D. M. Gindri, and D. Nerling. 2018. Revisiting carotenoids and their role in plant stress responses: From biosynthesis to plant signaling mechanisms during stress. In Antioxidants and antioxidant enzymes in higher plants, ed. D. Gupta, J. Palma, F. Corpas. Cham: Springer.
  • Uller, N. 2016. In response to ‘Capsaicinoids: A spicy solution to the management of obesity? International Journal of Obesity 40 (8):1330.
  • Urbina, S., M. Roberts, W. Kephart, K. Villa, E. Santos, A. Olivencia, H. Bennett, M. Lara, C. Foster, M. Purpura, et al. 2017. Effects of twelve weeks of Capsaicinoid supplementation on body composition, appetite and self-reported caloric intake in overweight individuals. Appetite 113:264–273. doi: 10.1016/j.appet.2017.02.025.
  • Urrea-López, R., R. D. de la Garza, and J. I. Valiente-Banuet. 2014. Effects of substrate salinity and nutrient levels on physiological response, yield, and fruit quality of habanero pepper. HortScience 49 (6):812–818. doi: 10.21273/HORTSCI.49.6.812.
  • USDA. 2016. Show Foods [Internet]. Ndb.nal.usda.gov. [cited 18 February 2018]. http://ndb.nal.usda.gov/ndb/foods/show/3069?manu=&fgcd=.
  • Usman, M., M. Rafii, M. Ismail, M. Malek, and M. Latif. 2014. Capsaicin and dihydrocapsaicin determination in Chili pepper genotypes using ultra-fast liquid chromatography. Molecules 19 (5):6474–6488. doi: 10.3390/molecules19056474.
  • Valiente-Banuet, J. I., and A. Gutiérrez-Ochoa. 2016. Effect of irrigation frequency and shade levels on vegetative growth, yield, and fruit quality of Piquin pepper (Capsicum annuum L. var. glabriusculum). HortScience 51 (5):573–579. doi: 10.21273/HORTSCI.51.5.573.
  • Victoria-Campos, C., J. Ornelas-Paz, O. Ramos-Aguilar, M. Failla, C. Chitchumroonchokchai, V. Ibarra-Junquera, and J. Pérez-Martínez. 2015. The effect of ripening, heat processing and frozen storage on the in vitro bioaccessibility of Capsaicin and dihydrocapsaicin from Jalapeño peppers in absence and presence of two dietary fat types. Food Chemistry 181:325–332. doi: 10.1016/j.foodchem.2015.02.119.
  • Wahyuni, Y., A. Ballester, E. Sudarmonowati, R. Bino, and A. Bovy. 2011. Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: Variation in health-related compounds and implications for breeding. Phytochemistry 72 (11–12):1358–1370. doi: 10.1016/j.phytochem.2011.03.016.
  • Weber, N., A. Ismail, M. Gorwa-Grauslund, and M. Carlquist. 2014. Biocatalytic potential of vanillin aminotransferase from Capsicum chinense. BMC Biotechnology 14 (1):25. doi: 10.1186/1472-6750-14-25.
  • World of Chillies. [Internet]. 2016. [cited 18 February 2016]. http://www.worldofchillies.com/Chilli-plant-varieties/growing-chilli-plants.html.
  • Yang, K., J. Pyo, G.-Y. Kim, R. Yu, I. Han, S. Ju, W. Kim, and B.-S. Kim. 2009. Capsaicin induces apoptosis by generating reactive oxygen species and disrupting mitochondrial transmembrane potential in human colon cancer cell lines. Cellular and Molecular Biology Letters 14 (3):497–510. doi: 10.2478/s11658-009-0016-2.
  • Yazawa, S., N. Suetome, K. Okamoto, and T. Namiki. 1989. Content of Capsaicinoids and Capsaicinoid-like substances in fruit of pepper (Capsicum annuum L.) hybrids made with “CH-19 Sweet” as a parent. Journal of the Japanese Society for Horticultural Science 58:601–607.
  • Zamudio-Moreno, E., I. Echevarria-Machado, M. d F. Medina-Lara, G. Calva-Calva, M. d L. Miranda-Ham, and M. Martinez-Estevez. 2014. Role of peroxidases in Capsaicinoids degradation in habanero pepper (‘Capsicum chinense’ Jacq.) plants grown under water deficit conditions. Australian Journal of Crop Science 8:448–454.
  • Zewdie, Y., and P. Bosland. 2000. Evaluation of genotype, environment, and genotype-by-environment interaction for Capsaicinoids in Capsicum annuum L. Euphytica 111 (3):185–190.
  • Zewdie, Y., and P. Bosland. 2001. Capsaicinoid profiles are not good chemotaxonomic indicators for Capsicum species. Biochemical Systematics and Ecology 29 (2):161–169. doi: 10.1016/S0305-1978(00)00041-7.
  • Zewdie, Y., and W. P. Bosland. 2000. Pungency of Chile (Capsicum annuum L.) fruit is affected by node position. HortScience 35 (6):1174. doi: 10.21273/HORTSCI.35.6.1174.
  • Zhang, Z., S. Zhao, G. Liu, Z. Huang, Z. Cao, S. Cheng, and S. Lin. 2016. Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper. Scientific Reports 6 (1) Article no: 34121. doi: 10.1038/srep34121.
  • Zimmer, A., B. Leonardi, D. Miron, E. Schapoval, J. Oliveira, and G. Gosmann. 2012. Antioxidant and anti-inflammatory properties of Capsicum baccatum: From traditional use to scientific approach. Journal of Ethnopharmacology 139 (1):228–233. doi: 10.1016/j.jep.2011.11.005.
  • Zonneveld, M., M. Ramirez, D. Williams, M. Petz, S. Meckelmann, and T. Avila. 2015. Screening genetic resources of capsicum peppers in their primary center of diversity in Bolivia and Peru. PLoS One 10 (9):e0134663. doi: 10.1371/journal.pone.0134663.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.