2,821
Views
67
CrossRef citations to date
0
Altmetric
Reviews

Factors influencing the antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahlfeld, B., Y. Li, A. Boulaaba, A. Binder, U. Schotte, J. L. Zimmermann, G. Morfill, and G. Klein. 2015. Inactivation of a foodborne norovirus outbreak strain with nonthermal atmospheric pressure plasma. MBio 6 (1):e02300–02314. doi: 10.1128/mBio.02300-14.
  • Albertos, I., A. Martín-Diana, P. Cullen, B. Tiwari, S. Ojha, P. Bourke, C. Álvarez, and D. Rico. 2017. Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. Innovative Food Science & Emerging Technologies 44:117–22. doi: 10.1016/j.ifset.2017.07.006.
  • Alexandre, A. P. S., N. Castanha, M. A. Calori-Domingues, and P. E. D. Augusto. 2017. Ozonation of whole wheat flour and wet milling effluent: Degradation of deoxynivalenol (DON) and rheological properties. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes 52 (7):516–24. doi: 10.1080/03601234.2017.1303325.
  • Amini, M., and M. Ghoranneviss. 2016. Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT 73:178–84. doi:. doi: 10.1016/j.lwt.2016.06.014.
  • Anacail. 2018. Sterilization inside a sealed pacakge using ozone. http://www.anacail.com/
  • Andrady, A. L., S. Hamid, X. Hu, and A. Torikai. 1998. Effects of increased solar ultraviolet radiation on materials. Journal of Photochemistry and Photobiology B: Biology 46 (1-3):96–103. doi: 10.1016/S1011-1344(98)00188-2.
  • Bafoil, M., A. Jemmat, Y. Martinez, N. Merbahi, O. Eichwald, C. Dunand, and M. Yousfi. 2018. Effects of low temperature plasmas and plasma activated waters on Arabidopsis thaliana germination and growth. PloS One 13 (4):e0195512. doi: 10.1371/journal.pone.0195512.
  • Baier, M., M. Görgen, J. Ehlbeck, D. Knorr, W. B. Herppich, and O. Schlüter. 2014. Non-thermal atmospheric pressure plasma: Screening for gentle process conditions and antibacterial efficiency on perishable fresh produce. Innovative Food Science & Emerging Technologies 22:147–57. doi: 10.1016/j.ifset.2014.01.011.
  • Becker, K. H., U. Kogelschatz, K. Schoenbach, and R. Barker. 2004. Non-equilibrium air plasmas at atmospheric pressure. London, UK: Institute of Physics Publishing.
  • Berardinelli, A., F. Pasquali, C. Cevoli, M. Trevisani, L. Ragni, R. Mancusi, and G. Manfreda. 2016. Sanitisation of fresh-cut celery and radicchio by gas plasma treatments in water medium. Postharvest Biology and Technology 111:297–304. doi: 10.1016/j.postharvbio.2015.09.026.
  • Berardinelli, A., L. Vannini, L. Ragni, and M. E. Guerzoni. 2012. Impact of atmospheric plasma generated by a DBD device on quality-related attributes of “Abate Fetel” pear fruit. In Plasma for bio-decontamination, medicine and food security, 457–67. Dordrecht, Netherlands: Springer.
  • Bie, P., H. Pu, B. Zhang, J. Su, L. Chen, and X. Li. 2016. Structural characteristics and rheological properties of plasma-treated starch. Innovative Food Science & Emerging Technologies 34:196–204.
  • Bogaerts, A., E. Neyts, R. Gijbels, and J. van der Mullen. 2002. Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy 57 (4):609–58. doi: 10.1016/S0584-8547(01)00406-2.
  • Boudam, M., M. Moisan, B. Saoudi, C. Popovici, N. Gherardi, and F. Massines. 2006. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. Journal of Physics D: Applied Physics 39 (16):3494–507. doi: 10.1088/0022-3727/39/16/S07.
  • Brandenburg, R. 2017. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Science and Technology 26 (5):053001. doi: 10.1088/1361-6595/aa6426.
  • Brandenburg, R., A. Bogaerts, W. Bongers, A. Fridman, G. Fridman, B. R. Locke, V. Miller, S. Reuter, M. Schiorlin, T. Verreycken, et al. 2019. White paper on the future of plasma science in environment, for gas conversion and agriculture. Plasma Processes and Polymers 16 (1):1700238. doi: 10.1002/ppap.201700238.
  • Brisset, J.-L., and J. Pawlat. 2016. Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: Discharge, post-discharge and plasma activated water. Plasma Chemistry and Plasma Processing 36 (2):355–81. doi: 10.1007/s11090-015-9653-6.
  • Bruggeman, P., F. Iza, P. Guns, D. Lauwers, M. G. Kong, Y. A. Gonzalvo, C. Leys, and D. C. Schram. 2010. Electronic quenching of OH (A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH (A–X) emission. Plasma Sources Science and Technology 19 (1):015016. doi: 10.1088/0963-0252/19/1/015016.
  • Butscher, D., H. Van Loon, A. Waskow, P. R. von Rohr, and M. Schuppler. 2016. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. International Journal of Food Microbiology 238:222–32. doi: 10.1016/j.ijfoodmicro.2016.09.006.
  • Butscher, D., D. Zimmermann, M. Schuppler, and P. R. von Rohr. 2016. Plasma inactivation of bacterial endospores on wheat grains and polymeric model substrates in a dielectric barrier discharge. Food Control. 60:636–45. doi: 10.1016/j.foodcont.2015.09.003.
  • Chang, J.-S., P. A. Lawless, and T. Yamamoto. 1991. Corona discharge processes. IEEE Transactions on Plasma Science 19 (6):1152–66. doi: 10.1109/27.125038.
  • Chaplot, S., B. Yadav, B. Jeon, and M. S. Roopesh. 2019. Atmospheric cold plasma and peracetic acid-based hurdle intervention to reduce Salmonella on raw poultry meat. Journal of Food Protection 82 (5):878–88. doi: 10.4315/0362-028X.JFP-18-377.
  • Chauvin, J., F. Judee, N. Merbahi, and P. Vicendo. 2018. Effects of plasma activated medium on head and neck FaDu cancerous cells: Comparison of 3D and 2D response. Anti-Cancer Agents in Medicinal Chemistry ( Chemistry 18 (6):776–83. doi: 10.2174/1871520617666170801111055.
  • Chiper, A. S., W. Chen, O. Mejlholm, P. Dalgaard, and E. Stamate. 2011. Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples. Plasma Sources Science and Technology 20 (2):025008. doi: 10.1088/0963-0252/20/2/025008.
  • Choi, E. J., H. S. Yang, H. W. Park, and H. H. Chun. 2018. Inactivation of Escherichia coli O157: H7 and Staphylococcus aureus in red pepper powder using a combination of radio frequency thermal and indirect dielectric barrier discharge plasma non-thermal treatments. LWT 93:477–84. doi: 10.1016/j.lwt.2018.03.081.
  • Connolly, J., V. P. Valdramidis, E. Byrne, K. A. Karatzas, P. J. Cullen, K. M. Keener, and J. P. Mosnier. 2013. Characterization and antimicrobial efficacy against E. coli of a helium/air plasma at atmospheric pressure created in a plastic package. Journal of Physics D: Applied Physics 46 (3):035401. doi: 10.1088/0022-3727/46/3/035401.
  • Conrads, H., and M. Schmidt. 2000. Plasma generation and plasma sources. Plasma Sources Science and Technology 9 (4):441–54. doi: 10.1088/0963-0252/9/4/301.
  • Cullen, P. J., J. Lalor, L. Scally, D. Boehm, V. Milosavljević, P. Bourke, and K. Keener. 2018. Translation of plasma technology from the lab to the food industry. Plasma Processes and Polymers 15 (2):1700085. doi: 10.1002/ppap.201700085.
  • Deng, S., R. Ruan, C. K. Mok, G. Huang, X. Lin, and P. Chen. 2007. Inactivation of Escherichia coli on almonds using nonthermal plasma. Journal of Food Science 72 (2):M62–M66. doi: 10.1111/j.1750-3841.2007.00275.x.
  • Deng, X., J. Shi, and M. G. Kong. 2006. Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Transactions on Plasma Science 34 (4):1310–6. doi: 10.1109/TPS.2006.877739.
  • Deng, X. T., J. J. Shi, G. Shama, and M. G. Kong. 2005. Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores. Applied Physics Letters 87 (15):153901. doi: 10.1063/1.2103394.
  • Di, L., J. Zhang, and X. Zhang. 2018. A review on the recent progress, challenges, and perspectives of atmospheric‐pressure cold plasma for preparation of supported metal catalysts. Plasma Processes and Polymers 15 (5):1700234. doi: 10.1002/ppap.201700234.
  • Dirks, B. P., D. Dobrynin, G. Fridman, Y. Mukhin, A. Fridman, and J. J. Quinlan. 2012. Treatment of raw poultry with nonthermal dielectric barrier discharge plasma to reduce Campylobacter jejuni and Salmonella enterica. Journal of Food Protection 75 (1):22–8. doi: 10.4315/0362-028X.JFP-11-153.
  • Dong, S., A. Gao, Y. Zhao, Y-t Li, and Y. Chen. 2017. Characterization of physicochemical and structural properties of atmospheric cold plasma (ACP) modified zein. Food and Bioproducts Processing 106:65–74. doi: 10.1016/j.fbp.2017.05.011.
  • Egitto, F. D., V. Vukanovic, and G. N. Taylor. 1990. 5 - Plasma etching of organic polymers. In Plasma deposition, treatment, and etching of polymers, ed. R. d’Agostino, 321–422. San Diego: Academic Press.
  • Ercan, U. K., J. Smith, H.-F. Ji, A. D. Brooks, and S. G. Joshi. 2016. Chemical changes in nonthermal plasma-treated N-Acetylcysteine (NAC) solution and their contribution to bacterial inactivation. Scientific Reports 6 (1):20365. doi: 10.1038/srep20365.
  • Ercan, U. K., H. Wang, H. Ji, G. Fridman, A. D. Brooks, and S. G. Joshi. 2013. Nonequilibrium plasma‐activated antimicrobial solutions are broad‐spectrum and retain their efficacies for extended period of time. Plasma Processes and Polymers 10 (6):544–55. doi: 10.1002/ppap.201200104.
  • Falkenstein, Z. 1997. The influence of ultraviolet illumination on OH formation in dielectric barrier discharges of Ar/O2/H 2O: The Joshi effect. Journal of Applied Physics 81 (11):7158–62. doi: 10.1063/1.365313.
  • Falkenstein, Z., and J. J. Coogan. 1997. Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures. Journal of Physics D: Applied Physics 30 (5):817–25. doi: 10.1088/0022-3727/30/5/015.
  • Fan, X., K. J. Sokorai, J. Engemann, J. B. Gurtler, and Y. Liu. 2012. Inactivation of Listeria innocua, Salmonella typhimurium, and Escherichia coli O157: H7 on surface and stem scar areas of tomatoes using in-package ozonation. Journal of Food Protection 75 (9):1611–8. doi: 10.4315/0362-028X.JFP-12-103.
  • Fernandez, A., N. Shearer, D. Wilson, and A. Thompson. 2012. Effect of microbial loading on the efficiency of cold atmospheric gas plasma inactivation of Salmonella enterica serovar Typhimurium. International Journal of Food Microbiology 152 (3):175–80. doi: 10.1016/j.ijfoodmicro.2011.02.038.
  • Fridman, A. 2008. Plasma chemistry. Cambridge, UK: Cambridge university press.
  • Gadkari, S., and S. Gu. 2017. Numerical investigation of co-axial DBD: Influence of relative permittivity of the dielectric barrier, applied voltage amplitude, and frequency. Physics of Plasmas 24 (5):053517. doi: 10.1063/1.4982657.
  • Garamoon, A., F. Elakshar, A. Nossair, and E. Kotp. 2002. Experimental study of ozone synthesis. Plasma Sources Science and Technology 11 (3):254–9. doi: 10.1088/0963-0252/11/3/305.
  • Gášková, D., K. Sigler, B. Janderová, and J. Plášek. 1996. Effect of high-voltage electric pulses on yeast cells: Factors influencing the killing efficiency. Bioelectrochemistry and Bioenergetics 39 (2):195–202. doi:. (95)01892-1 doi: 10.1016/0302-4598(95)01892-1.
  • Georgescu, N., L. Apostol, and F. Gherendi. 2017. Inactivation of Salmonella enterica serovar Typhimurium on egg surface, by direct and indirect treatments with cold atmospheric plasma. Food Control. 76:52–61. doi: 10.1016/j.foodcont.2017.01.005.
  • Geyter, N. D., and R. Morent. 2012. Nonthermal plasma sterilization of living and nonliving surfaces. Annual Review of Biomedical Engineering 14 (1):255–74. doi: 10.1146/annurev-bioeng-071811-150110.
  • Ghomi, H., N. N. Safa, K. Ramezani, and M. Karimi. (2009, July 26–31). Bacterial inactivation by DBD plasma in atmospheric pressure. Paper presented at the Ispc conference, paper. Bochum, Germany. http://www.ispc-conference.org/ispcproc/papers/169.pdf
  • Guo, Q., Y. Meng, G. Qu, T. Wang, F. Yang, D. Liang, and S. Hu. 2018. Improvement of wheat seed vitality by dielectric barrier discharge plasma treatment. Bioelectromagnetics 39 (2):120–31.
  • Guzel-Seydim, Z. B., A. K. Greene, and A. Seydim. 2004. Use of ozone in the food industry. Lwt - Food Science and Technology 37 (4):453–60. doi: 10.1016/j.lwt.2003.10.014.
  • Henriques, A. O., and C. P. Moran. Jr.2007. Structure, assembly, and function of the spore surface layers. Annual Review of Microbiology 61 (1):555–88. doi: 10.1146/annurev.micro.61.080706.093224.
  • Hertwig, C., A. Leslie, N. Meneses, K. Reineke, C. Rauh, and O. Schlüter. 2017. Inactivation of Salmonella enteritidis PT30 on the surface of unpeeled almonds by cold plasma. Innovative Food Science & Emerging Technologies 44:242–8. doi:. doi: 10.1016/j.ifset.2017.02.007.
  • Hu, M., and Y. Guo. 2012. The effect of air plasma on sterilization of Escherichia coli in dielectric barrier discharge. Plasma Science and Technology 14 (8):735–40. doi: 10.1088/1009-0630/14/8/10.
  • Huang, M., J. Wang, H. Zhuang, W. Yan, J. Zhao, and J. Zhang. 2019. Effect of in-package high voltage dielectric barrier discharge on microbiological, color and oxidation properties of pork in modified atmosphere packaging during storage. Meat Science 149:107–13. doi: 10.1016/j.meatsci.2018.11.016.
  • Iqbal, M., and M. Turner. 2015. Influence of gap spacing between dielectric barriers in atmospheric pressure discharges. Contributions to Plasma Physics 55 (6):444–58. doi: 10.1002/ctpp.201400035.
  • Jacob, H. E., W. Förster, and H. Berg. 1981. Microbiological implications of electric field effects II. Inactivation of yeast cells and repair of their cell envelope. Zeitschrift für allgemeine Mikrobiologie 21 (3):225–33. doi: 10.1002/jobm.19810210308.
  • Jayasena, D. D., H. J. Kim, H. I. Yong, S. Park, K. Kim, W. Choe, and C. Jo. 2015. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiology 46:51–7. doi: 10.1016/j.fm.2014.07.009.
  • Ji, H., S. Dong, F. Han, Y. Li, G. Chen, L. Li, and Y. Chen. 2018. Effects of Dielectric Barrier Discharge (DBD) cold plasma treatment on physicochemical and functional properties of peanut protein. Food and Bioprocess Technology 11 (2):344–54. doi: 10.1007/s11947-017-2015-z.
  • Jo, Y.-K., J. Cho, T.-C. Tsai, D. Staack, M.-H. Kang, J.-H. Roh, D.-B. Shin, W. Cromwell, and D. Gross. 2014. A Non-thermal plasma seed treatment method for management of a seedborne fungal pathogen on rice seed. Crop Science 54 (2):796–803. doi: 10.2135/cropsci2013.05.0331.
  • Joshi, S. G., M. Cooper, A. Yost, M. Paff, U. K. Ercan, G. Fridman, G. Friedman, A. Fridman, and A. D. Brooks. 2011. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrobial Agents and Chemotherapy 55 (3):1053–62. doi: 10.1128/AAC.01002-10.
  • Judée, F., S. Simon, C. Bailly, and T. Dufour. 2018. Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms. Water Research 133:47–59. doi:. doi: 10.1016/j.watres.2017.12.035.
  • Jung, S., J. Lee, Y. Lim, W. Choe, H. I. Yong, and C. Jo. 2017. Direct infusion of nitrite into meat batter by atmospheric pressure plasma treatment. Innovative Food Science & Emerging Technologies 39:113–8.
  • Kamgang-Youbi, G., J.-M. Herry, J.-L. Brisset, M.-N. Bellon-Fontaine, A. Doubla, and M. Naïtali. 2008. Impact on disinfection efficiency of cell load and of planktonic/adherent/detached state: Case of Hafnia alvei inactivation by plasma activated water. Applied Microbiology and Biotechnology 81 (3):449–57. doi: 10.1007/s00253-008-1641-9.
  • Kaushik, N. K., B. Ghimire, Y. Li, M. Adhikari, M. Veerana, N. Kaushik, N. Jha, B. Adhikari, S.-J. Lee, K. Masur, et al. 2018. Biological and medical application of plasma-activated media, water and solutions. Biological Chemistry 400 (1):39–62., doi: 10.1515/hsz-2018-0226.
  • Kim, H.-J., H. I. Yong, S. Park, K. Kim, W. Choe, and C. Jo. 2015. Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control 47:451–6.
  • Kim, H.-J., H. I. Yong, S. Park, K. Kim, T. H. Kim, W. Choe, and C. Jo. 2014. Effect of atmospheric pressure dielectric barrier discharge plasma on the biological activity of naringin. Food Chemistry 160:241–5.
  • Kim, H. J., H. I. Yong, S. Park, W. Choe, and C. Jo. 2013. Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Current Applied Physics 13 (7):1420–5. doi: 10.1016/j.cap.2013.04.021.
  • Kim, J.-S., E.-J. Lee, and Y.-J. Kim. 2014. Inactivation of Campylobacter jejuni with dielectric barrier discharge plasma using air and nitrogen gases. Foodborne Pathogens and Disease 11 (8):645–51. doi: 10.1089/fpd.2013.1732.
  • Kim, J. W., P. Puligundla, and C. Mok. 2015. Dielectric barrier discharge plasma for microbial decontamination of dried laver: Effects on physicochemical characteristics. International Journal of Food Science & Technology 50 (12):2630–8. doi: 10.1111/ijfs.12933.
  • Kim, T. H., J. Lee, H.-J. Kim, and C. Jo. 2017. Plasma-induced degradation of quercetin associated with the enhancement of biological activities. Journal of Agricultural and Food Chemistry 65 (32):6929–35. doi: 10.1021/acs.jafc.7b00987.
  • Klockow, P. A., and K. M. Keener. 2009. Safety and quality assessment of packaged spinach treated with a novel ozone-generation system. Lwt - Food Science and Technology 42 (6):1047–53. doi: 10.1016/j.lwt.2009.02.011.
  • Kogelschatz, U. 2003. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing 23 (1):1–46. doi: 10.1023/A:1022470901385.
  • Kong, M. G., G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. Van Dijk, and J. Zimmermann. 2009. Plasma medicine: An introductory review. New Journal of Physics 11 (11):115012. doi: 10.1088/1367-2630/11/11/115012.
  • Kostov, K. G., R. Y. Honda, L. M. S. Alves, and M. E. Kayama. 2009. Characteristics of dielectric barrier discharge reactor for material treatment. Brazilian Journal of Physics 39 (2):322–5. doi: 10.1590/S0103-97332009000300015.
  • Kronn, T. G., K. C. Lawrence, H. Zhuang, K. L. Hiett, M. J. Rothrock, Y. W. Huang, K. M. Keener, and Z. Abdo. 2015. Nonthermal plasma system for extending shelf life of raw broiler breast fillets. Transactions of the ASABE 58 (2):493–500. doi: 10.13031/trans.58.10887.
  • Kulawik, P., C. Alvarez, P. J. Cullen, R. Aznar-Roca, A. M. Mullen, and B. Tiwari. 2018. The effect of non-thermal plasma on the lipid oxidation and microbiological quality of sushi. Innovative Food Science & Emerging Technologies 45:412–7. doi: 10.1016/j.ifset.2017.12.011.
  • Kumar Mahnot, N., L.-P. Siyu, Z. Wan, K. M. Keener, and N. N. Misra. 2020. In-package cold plasma decontamination of fresh-cut carrots: Microbial and quality aspects. Journal of Physics D: Applied Physics 53 (15):154002. doi: 10.1088/1361-6463/ab6cd3.
  • Laroussi, M. 2002. Nonthermal decontamination of biological media by atmospheric-pressure plasmas: Review, analysis, and prospects. IEEE Transactions on Plasma Science 30 (4):1409–15. doi: 10.1109/TPS.2002.804220.
  • Laroussi, M., and F. Leipold. 2004. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry 233 (1-3):81–6. doi: 10.1016/j.ijms.2003.11.016.
  • Laurita, R., D. Barbieri, M. Gherardi, V. Colombo, and P. Lukes. 2015. Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clinical Plasma Medicine 3 (2):53–61. doi: 10.1016/j.cpme.2015.10.001.
  • Lee, H., H. I. Yong, H.-J. Kim, W. Choe, S. J. Yoo, E. J. Jang, and C. Jo. 2016. Evaluation of the microbiological safety, quality changes, and genotoxicity of chicken breast treated with flexible thin-layer dielectric barrier discharge plasma. Food Science and Biotechnology 25 (4):1189–95.
  • Leipold, F., N. Schultz-Jensen, Y. Kusano, H. Bindslev, and T. Jacobsen. 2011. Decontamination of objects in a sealed container by means of atmospheric pressure plasmas. Food Control. 22 (8):1296–301. doi: 10.1016/j.foodcont.2011.02.003.
  • Li, X., W. Li, Y. Cai, Y. Shi, H. Xu, L. Gu, and X. Pu. 2016. Comparative analysis on characteristics in non-thermal plasma reactor with oxygen and air. Transactions of the Chinese Society of Agricultural Engineering 32 (11):103–8.
  • Liao, X., J. Li, A. I. Muhammad, Y. Suo, S. Chen, X. Ye, D. Liu, and T. Ding. 2018. Application of a dielectric barrier Discharge Atmospheric Cold Plasma (Dbd‐Acp) for Eshcerichia coli inactivation in apple juice. Journal of Food Science 83 (2):401–8. doi: 10.1111/1750-3841.14045.
  • Liao, X., D. Liu, Q. Xiang, J. Ahn, S. Chen, X. Ye, and T. Ding. 2017. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control 75:83–91. doi: 10.1016/j.foodcont.2016.12.021.
  • Liao, X., Q. Xiang, D. Liu, S. Chen, X. Ye, and T. Ding. 2017. Lethal and sublethal effect of a dielectric barrier discharge atmospheric cold plasma on Staphylococcus aureus. Journal of Food Protection 80 (6):928–32. doi: 10.4315/0362-028X.JFP-16-499.
  • Los, A., D. Ziuzina, S. Akkermans, D. Boehm, P. J. Cullen, J. Van Impe, and P. Bourke. 2018. Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Research International 106:509–21. doi: 10.1016/j.foodres.2018.01.009.
  • Los, A., D. Ziuzina, D. Boehm, P. J. Cullen, and P. Bourke. 2017. The potential of atmospheric air cold plasma for control of bacterial contaminants relevant to cereal grain production. Innovative Food Science & Emerging Technologies 44:36–45. doi: 10.1016/j.ifset.2017.08.008.
  • Lu, H., S. Patil, K. M. Keener, P. Cullen, and P. Bourke. 2014. Bacterial inactivation by high‐voltage atmospheric cold plasma: Influence of process parameters and effects on cell leakage and DNA. Journal of Applied Microbiology 116 (4):784–94. doi: 10.1111/jam.12426.
  • Lu, P., P. J. Cullen, and K. Ostrikov. 2016. Chapter 4 - Atmospheric pressure nonthermal plasma sources. In Cold plasma in food and agriculture, eds. N. N. Misra, O. Schlüter, and P. J. Cullen, 83–116. San Diego: Academic Press.
  • Lukes, P., J.-L. Brisset, and B. R. Locke. 2012. Biological effects of electrical discharge plasma in water and in gas-liquid environments. Plasma Chemistry and Catalysis in Gases and Liquids 11 (8):309–52.
  • Ma, R., G. Wang, Y. Tian, K. Wang, J. Zhang, and J. Fang. 2015. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. Journal of Hazardous Materials 300:643–51. doi: 10.1016/j.jhazmat.2015.07.061.
  • Maeda, Y., N. Igura, M. Shimoda, and I. Hayakawa. 2003. Inactivation of Escherichia coli K12 using atmospheric gas plasma produced from humidified working gas. Acta Biotechnologica 23 (4):389–95. doi: 10.1002/abio.200390050.
  • Mahnot, N. K., C. L. Mahanta, B. E. Farkas, K. M. Keener, and N. N. Misra. 2019. Atmospheric cold plasma inactivation of Escherichia coli and Listeria monocytogenes in tender coconut water: Inoculation and accelerated shelf-life studies. Food Control 106:106678. doi: 10.1016/j.foodcont.2019.06.004.
  • Mahnot, N. K., C. L. Mahanta, K. M. Keener, and N. N. Misra. 2019. Strategy to achieve a 5-log Salmonella inactivation in tender coconut water using high voltage atmospheric cold plasma (HVACP). Food Chemistry 284:303–11. doi: 10.1016/j.foodchem.2019.01.084.
  • Mandal, R., A. Singh, and A. P. Singh. 2018. Recent developments in cold plasma decontamination technology in the food industry. Trends in Food Science & Technology. 80:93–103 doi: 10.1016/j.tifs.2018.07.014.
  • McClurkin-Moore, J. D., K. E. Ileleji, and K. M. Keener. 2017. The effect of high-voltage atmospheric cold plasma treatment on the shelf-life of distillers wet grains. Food and Bioprocess Technology 10 (8):1431–40. doi: 10.1007/s11947-017-1903-6.
  • Mehta, D., and S. K. Yadav. 2020. Impact of atmospheric non-thermal plasma and hydrothermal treatment on bioactive compounds and microbial inactivation of strawberry juice: A hurdle technology approach. Food Science and Technology International 26 (1):3–10. doi: 10.1177/1082013219865360.
  • Miao, C., F. Liu, Q. Wang, M. Cai, and Z. Fang. 2018. Investigation on the influence of electrode geometry on characteristics of coaxial dielectric barrier discharge reactor driven by an oscillating microsecond pulsed power supply. The European Physical Journal D 72 (3):57. doi: 10.1140/epjd/e2018-80575-3.
  • Miao, H., and G. Yun. 2011. The sterilization of Escherichia coli by dielectric-barrier discharge plasma at atmospheric pressure. Applied Surface Science 257 (16):7065–70. doi: 10.1016/j.apsusc.2011.03.014.
  • Min, S. C., S. H. Roh, G. Boyd, J. E. Sites, J. Uknalis, X. Fan, and B. A. Niemira. 2017. Inactivation of Escherichia coli O157: H7 and aerobic microorganisms in romaine lettuce packaged in a commercial polyethylene terephthalate container using atmospheric cold plasma. Journal of Food Protection 80 (1):35–43. doi: 10.4315/0362-028X.JFP-16-148.
  • Min, S. C., S. H. Roh, B. A. Niemira, G. Boyd, J. E. Sites, X. Fan, K. Sokorai, and T. Z. Jin. 2018. In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation. Food Research International 108:378–86. doi: 10.1016/j.foodres.2018.03.033.
  • Min, S. C., S. H. Roh, B. A. Niemira, G. Boyd, J. E. Sites, J. Uknalis, and X. Fan. 2017. In-package inhibition of E. coli O157: H7 on bulk Romaine lettuce using cold plasma. Food Microbiology 65:1–6. doi: 10.1016/j.fm.2017.01.010.
  • Min, S. C., S. H. Roh, B. A. Niemira, J. E. Sites, G. Boyd, and A. Lacombe. 2016. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. International Journal of Food Microbiology 237:114–20. doi: 10.1016/j.ijfoodmicro.2016.08.025.
  • Misra, N., S. Kaur, B. K. Tiwari, A. Kaur, N. Singh, and P. Cullen. 2015. Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids 44:115–21. doi: 10.1016/j.foodhyd.2014.08.019.
  • Misra, N. N., T. Moiseev, S. Patil, S. K. Pankaj, P. Bourke, J. P. Mosnier, K. M. Keener, and P. J. Cullen. 2014. Cold plasma in modified atmospheres for post-harvest treatment of strawberries. Food and Bioprocess Technology 7 (10):3045–54. doi: 10.1007/s11947-014-1356-0.
  • Misra, N., S. Patil, T. Moiseev, P. Bourke, J. Mosnier, K. Keener, and P. Cullen. 2014. In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering 125:131–8. doi: 10.1016/j.jfoodeng.2013.10.023.
  • Misra, N., C. Sullivan, S. Pankaj, L. Alvarez-Jubete, R. Cama, F. Jacoby, and P. Cullen. 2014. Enhancement of oil spreadability of biscuit surface by nonthermal barrier discharge plasma. Innovative Food Science & Emerging Technologies 26:456–61. doi: 10.1016/j.ifset.2014.10.001.
  • Misra, N., B. Tiwari, K. Raghavarao, and P. Cullen. 2011. Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews 3 (3-4):159–70. doi: 10.1007/s12393-011-9041-9.
  • Misra, N., D. D. Ziuzina, P. J. Cullen, and K. M. Keener. 2012. Characterization of a novel cold atmospheric air plasma system for treatment of packaged liquid food products. Paper presented at the 2012 Dallas, Texas, July 29-August 1, 2012.
  • Misra, N. N., and C. Jo. 2017. Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science & Technology 64:74–86. doi:. doi: 10.1016/j.tifs.2017.04.005.
  • Misra, N. N., O. Schlüter, and P. J. Cullen. 2016. Chapter 1 - Plasma in food and agriculture. In Cold plasma in food and agriculture, eds. N. N. Misra, O. Schlüter, and P. J. Cullen, 1–16. San Diego: Academic Press.
  • Misra, N. N., B. Yadav, M. S. Roopesh, and C. Jo. 2019. Cold plasma for effective fungal and mycotoxin control in foods: Mechanisms, inactivation effects, and applications. Comprehensive Reviews in Food Science and Food Safety 18 (1):106–20. doi: 10.1111/1541-4337.12398.
  • Misra, N. N., X. Yepez, L. Xu, and K. Keener. 2019. In-package cold plasma technologies. Journal of Food Engineering 244:21–31. doi:. doi: 10.1016/j.jfoodeng.2018.09.019.
  • Montie, T. C., K. Kelly-Wintenberg, and J. R. Roth. 2000. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Transactions on Plasma Science 28 (1):41–50. doi: 10.1109/27.842860.
  • Morfill, G., M. G. Kong, and J. Zimmermann. 2009. Focus on plasma medicine. New Journal of Physics 11 (11):115011. doi: 10.1088/1367-2630/11/11/115011.
  • Morgan, N. 2009. Atmospheric pressure dielectric barrier discharge chemical and biological applications. International Journal of Physical Sciences 4 (13):885–92.
  • Morgan, N., M. Elsabbagh, S. Desoky, and A. Garamoon. 2009. Deactivation of yeast by dielectric barrier discharge. The European Physical Journal-Applied Physics 46 (3). Article no: 31001.
  • Moutiq, R., N. N. Misra, A. Mendonca, and K. Keener. 2020. In-package decontamination of chicken breast using cold plasma technology: Microbial, quality and storage studies. Meat Science. 159:107942. doi: 10.1016/j.meatsci.2019.107942.
  • Muranyi, P., J. Wunderlich, and M. Heise. 2007. Sterilization efficiency of a cascaded dielectric barrier discharge. Journal of Applied Microbiology 103 (5):1535–44. doi: 10.1111/j.1365-2672.2007.03385.x.
  • Muranyi, P., J. Wunderlich, and M. Heise. 2008. Influence of relative gas humidity on the inactivation efficiency of a low temperature gas plasma. Journal of Applied Microbiology 104 (6):1659–66. doi: 10.1111/j.1365-2672.2007.03691.x.
  • Nayak, G., H. A. Aboubakr, S. M. Goyal, and P. J. Bruggeman. 2018. Reactive species responsible for the inactivation of feline calicivirus by a two‐dimensional array of integrated coaxial microhollow dielectric barrier discharges in air. Plasma Processes and Polymers 15 (1):1700119. doi: 10.1002/ppap.201700119.
  • Nikiforov, A. Y., A. Sarani, and C. Leys. 2011. The influence of water vapor content on electrical and spectral properties of an atmospheric pressure plasma jet. Plasma Sources Science and Technology 20 (1):015014. doi: 10.1088/0963-0252/20/1/015014.
  • Oehmigen, K., M. Hähnel, R. Brandenburg, C. Wilke, K. D. Weltmann, and T. Von Woedtke. 2010. The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Processes and Polymers 7 (3-4):250–7. doi: 10.1002/ppap.200900077.
  • Oehmigen, K., J. Winter, M. Hähnel, C. Wilke, R. Brandenburg, K. D. Weltmann, and T. von Woedtke. 2011. Estimation of possible mechanisms of Escherichia coli inactivation by plasma treated sodium chloride solution. Plasma Processes and Polymers 8 (10):904–13. doi: 10.1002/ppap.201000099.
  • Olaimat, A. N., and R. A. Holley. 2012. Factors influencing the microbial safety of fresh produce: A review. Food Microbiology 32 (1):1–19. doi: 10.1016/j.fm.2012.04.016.
  • Oliveira, M., I. Viñas, M. Anguera, and M. Abadias. 2012. Fate of Listeria monocytogenes and Escherichia coli O157: H7 in the presence of natural background microbiota on conventional and organic lettuce. Food Control 25 (2):678–83. doi: 10.1016/j.foodcont.2011.12.002.
  • Ozkan, A., T. Dufour, A. Bogaerts, and F. Reniers. 2016. How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD? Plasma Sources Science and Technology 25 (4):045016. doi: 10.1088/0963-0252/25/4/045016.
  • Pankaj, S. K., C. Bueno-Ferrer, L. O'Neill, B. K. Tiwari, P. Bourke, and P. J. Cullen. 2017. Characterization of dielectric barrier discharge atmospheric air plasma treated chitosan films. Journal of Food Processing and Preservation 41 (1):e12889. doi: 10.1111/jfpp.12889.
  • Pankaj, S., N. Misra, and P. Cullen. 2013. Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innovative Food Science & Emerging Technologies 19:153–7. doi: 10.1016/j.ifset.2013.03.001.
  • Pankaj, S. K., C. Bueno-Ferrer, N. N. Misra, L. O'Neill, B. K. Tiwari, P. Bourke, and P. J. Cullen. 2014. Physicochemical characterization of plasma-treated sodium caseinate film. Food Research International 66:438–44. doi: 10.1016/j.foodres.2014.10.016.
  • Pankaj, S. K., C. Bueno-Ferrer, N. N. Misra, L. O'Neill, B. K. Tiwari, P. Bourke, and P. J. Cullen. 2015. Dielectric barrier discharge atmospheric air plasma treatment of high amylose corn starch films. Lwt - Food Science and Technology 63 (2):1076–82. doi: 10.1016/j.lwt.2015.04.027.
  • Pankaj, S. K., C. Bueno-Ferrer, N. N. Misra, V. Milosavljević, C. P. O’Donnell, P. Bourke, … P. J. Cullen. 2014. Applications of cold plasma technology in food packaging. Trends in Food Science & Technology 35 (1):5–17. doi:. doi: 10.1016/j.tifs.2013.10.009.
  • Pasquali, F., A. C. Stratakos, A. Koidis, A. Berardinelli, C. Cevoli, L. Ragni, R. Mancusi, G. Manfreda, and M. Trevisani. 2016. Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control. 60:552–9. doi: 10.1016/j.foodcont.2015.08.043.
  • Patil, S., T. Moiseev, N. N. Misra, P. J. Cullen, J. P. Mosnier, K. M. Keener, and P. Bourke. 2014. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. Journal of Hospital Infection 88 (3):162–9. doi:. doi: 10.1016/j.jhin.2014.08.009.
  • Perni, S., D. W. Liu, G. Shama, and M. G. Kong. 2008. Cold atmospheric plasma decontamination of the pericarps of fruit. Journal of Food Protection 71 (2):302–8. doi: 10.4315/0362-028X-71.2.302.
  • Purevdorj, D., N. Igura, O. Ariyada, and I. Hayakawa. 2003. Effect of feed gas composition of gas discharge plasmas on Bacillus pumilus spore mortality. Letters in Applied Microbiology 37 (1):31–4. doi: 10.1046/j.1472-765X.2003.01341.x.
  • Ragni, L., A. Berardinelli, E. Iaccheri, G. Gozzi, C. Cevoli, and L. Vannini. 2016. Influence of the electrode material on the decontamination efficacy of dielectric barrier discharge gas plasma treatments towards Listeria monocytogenes and Escherichia coli. Innovative Food Science & Emerging Technologies 37:170–6. doi: 10.1016/j.ifset.2016.07.029.
  • Ragni, L., A. Berardinelli, L. Vannini, C. Montanari, F. Sirri, M. E. Guerzoni, and A. Guarnieri. 2010. Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. Journal of Food Engineering 100 (1):125–32. doi: 10.1016/j.jfoodeng.2010.03.036.
  • Ramos, B., F. Miller, T. R. Brandão, P. Teixeira, and C. L. Silva. 2013. Fresh fruits and vegetables—an overview on applied methodologies to improve its quality and safety. Innovative Food Science & Emerging Technologies 20:1–15. doi: 10.1016/j.ifset.2013.07.002.
  • Ranieri, P., A. Mannsberger, C. Liu, A. Suarez, A. Huynh, V. Miller, A. A. Fridman, and G. Fridman. 2018. Optimization of short-pulsed dielectric barrier discharge for in-package disinfection. Plasma Medicine 8 (2):185–93. doi: 10.1615/PlasmaMed.2018026752.
  • Raybaudi‐Massilia, R. M., J. Mosqueda‐Melgar, R. Soliva‐Fortuny, and O. Martín‐Belloso. 2009. Control of pathogenic and spoilage microorganisms in fresh‐cut fruits and fruit juices by traditional and alternative natural antimicrobials. Comprehensive Reviews in Food Science and Food Safety 8 (3):157–80.
  • Reuter, S., J. Winter, S. Iseni, A. Schmidt-Bleker, M. Dunnbier, K. Masur, K. Wende, and K.-D. Weltmann. 2015. The influence of feed gas humidity versus ambient humidity on atmospheric pressure plasma jet-effluent chemistry and skin cell viability. IEEE Transactions on Plasma Science 43 (9):3185–92. doi: 10.1109/TPS.2014.2361921.
  • Rød, S. K., F. Hansen, F. Leipold, and S. Knøchel. 2012. Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality. Food Microbiology 30 (1):233–8. doi:. doi: 10.1016/j.fm.2011.12.018.
  • Rowan, N. J., S. Espie, J. Harrower, J. G. Anderson, L. Marsili, and S. J. Macgregor. 2007. Pulsed-plasma gas-discharge inactivation of microbial pathogens in chilled poultry wash water. Journal of Food Protection 70 (12):2805–10. doi: 10.4315/0362-028X-70.12.2805.
  • Rybkin, V., and D. Shutov. 2017. Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions. Plasma Physics Reports 43 (11):1089–113. doi: 10.1134/S1063780X17110071.
  • Samoilovich, V., V. Gibalov, and K. Kozlov. 1997. Physical Chemistry of the Barrier Discharge (in Russian), Moscow State University (1989), English translation: JPF Conrads, F. DVS-Verlag GmbH, Düsseldorf.
  • Sarangapani, C., N. Misra, V. Milosavljevic, P. Bourke, F. O’Regan, and P. Cullen. 2016. Pesticide degradation in water using atmospheric air cold plasma. Journal of Water Process Engineering 9:225–32. doi: 10.1016/j.jwpe.2016.01.003.
  • Sarangapani, C., G. O’Toole, P. Cullen, and P. Bourke. 2017. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science & Emerging Technologies 44:235–41. doi: 10.1016/j.ifset.2017.02.012.
  • Segat, A., N. Misra, P. Cullen, and N. Innocente. 2016. Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food and Bioproducts Processing 98:181–8. doi: 10.1016/j.fbp.2016.01.010.
  • Setlow, P. 2006. Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. Journal of Applied Microbiology 101 (3):514–25. doi: 10.1111/j.1365-2672.2005.02736.x.
  • Shen, J., Y. Tian, Y. Li, R. Ma, Q. Zhang, J. Zhang, and J. Fang. 2016. Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Scientific Reports 6 (1):28505. doi: 10.1038/srep28505.
  • Shi, H., K. Ileleji, R. L. Stroshine, K. Keener, and J. L. Jensen. 2017. Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food and Bioprocess Technology 10 (6):1042–52. doi: 10.1007/s11947-017-1873-8.
  • Shintani, H., A. Sakudo, P. Burke, and G. McDonnell. 2010. Gas plasma sterilization of microorganisms and mechanisms of action. Experimental and Therapeutic Medicine 1 (5):731–8. doi: 10.3892/etm.2010.136.
  • Smet, C., E. Noriega, F. Rosier, J. Walsh, V. Valdramidis, and J. Van Impe. 2016. Influence of food intrinsic factors on the inactivation efficacy of cold atmospheric plasma: Impact of osmotic stress, suboptimal pH and food structure. Innovative Food Science & Emerging Technologies 38:393–406. doi: 10.1016/j.ifset.2016.09.028.
  • Sohbatzadeh, F., S. Mirzanejhad, H. Shokri, and M. Nikpour. 2016. Inactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers. Journal of Theoretical and Applied Physics 10 (2):99–106. doi: 10.1007/s40094-016-0206-z.
  • Song, H. P., B. Kim, J. H. Choe, S. Jung, S. Y. Moon, W. Choe, and C. Jo. 2009. Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes. Food Microbiology 26 (4):432–6. doi:. doi: 10.1016/j.fm.2009.02.010.
  • Subedi, D. 2010. An investigation of the effect of electrode geometry and frequency of power supply in the homogeneity of dielectric barrier discharge in air. Kathmandu University Journal of Science, Engineering and Technology 6 (1):96–101. doi: 10.3126/kuset.v6i1.3316.
  • Suwal, S., C. P. Coronel-Aguilera, J. Auer, B. Applegate, A. L. Garner, and J.-Y. Huang. 2019. Mechanism characterization of bacterial inactivation of atmospheric air plasma gas and activated water using bioluminescence technology. Innovative Food Science & Emerging Technologies 53:18–25. doi:. doi: 10.1016/j.ifset.2018.01.007.
  • Tang, F., J. Chen, X. Wang, S. Zhang, and X. Zhang. 2015. Development of dielectric-barrier-discharge ionization. Analytical and Bioanalytical Chemistry 407 (9):2345–64. doi: 10.1007/s00216-014-8281-y.
  • Tappi, S., A. Berardinelli, L. Ragni, M. Dalla Rosa, A. Guarnieri, and P. Rocculi. 2014. Atmospheric gas plasma treatment of fresh-cut apples. Innovative Food Science & Emerging Technologies 21:114–22. doi: 10.1016/j.ifset.2013.09.012.
  • Tappi, S., G. Gozzi, L. Vannini, A. Berardinelli, S. Romani, L. Ragni, and P. Rocculi. 2016. Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies 33:225–33. doi: 10.1016/j.ifset.2015.12.022.
  • Tolouie, H., M. A. Mohammadifar, H. Ghomi, A. S. Yaghoubi, and M. Hashemi. 2018. The impact of atmospheric cold plasma treatment on inactivation of lipase and lipoxygenase of wheat germs. Innovative Food Science & Emerging Technologies 47:346–52. doi: 10.1016/j.ifset.2018.03.002.
  • Traylor, M. J., M. J. Pavlovich, S. Karim, P. Hait, Y. Sakiyama, D. S. Clark, and D. B. Graves. 2011. Long-term antibacterial efficacy of air plasma-activated water. Journal of Physics D: Applied Physics 44 (47):472001. doi: 10.1088/0022-3727/44/47/472001.
  • Ulbin-Figlewicz, N., E. Brychcy, and A. Jarmoluk. 2015. Effect of low-pressure cold plasma on surface microflora of meat and quality attributes. Journal of Food Science and Technology 52 (2):1228–32. doi: 10.1007/s13197-013-1108-6.
  • Van Gils, C., S. Hofmann, B. Boekema, R. Brandenburg, and P. Bruggeman. 2013. Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. Journal of Physics D: Applied Physics 46 (17):175203. doi: 10.1088/0022-3727/46/17/175203.
  • Vukić, M., D. Vujadinović, M. Ivanović, V. Gojković, and R. Grujić. 2018. Color change of orange and carrot juice blend treated by non‐thermal atmospheric plasma. Journal of Food Processing and Preservation 42 (2):e13525. doi: 10.1111/jfpp.13525.
  • Wan, Z., Y. Chen, S. K. Pankaj, and K. M. Keener. 2017. High voltage atmospheric cold plasma treatment of refrigerated chicken eggs for control of Salmonella enteritidis contamination on egg shell. LWT - Food Science and Technology 76:124–30. doi:. doi: 10.1016/j.lwt.2016.10.051.
  • Wang, J., H. Zhuang, K. Lawrence, and J. Zhang. 2018. Disinfection of chicken fillets in packages with atmospheric cold plasma: Effects of treatment voltage and time. Journal of Applied Microbiology 124 (5):1212–9. doi: 10.1111/jam.13637.
  • Wang, J., H. Zhuang, and J. Zhang. 2016. Inactivation of spoilage bacteria in package by dielectric barrier discharge atmospheric cold plasma—Treatment time effects. Food and Bioprocess Technology 9 (10):1648–52. doi: 10.1007/s11947-016-1746-6.
  • Wang, Q., F. Liu, C. Miao, B. Yan, and Z. Fang. 2018. Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources. Plasma Science and Technology 20 (3):035404. doi: 10.1088/2058-6272/aaa357.
  • Warning, A., and A. K. Datta. 2013. Interdisciplinary engineering approaches to study how pathogenic bacteria interact with fresh produce. Journal of Food Engineering 114 (4):426–48. doi: 10.1016/j.jfoodeng.2012.09.004.
  • Winter, J., R. Brandenburg, and K. D. Weltmann. 2015. Atmospheric pressure plasma jets: An overview of devices and new directions. Plasma Sources Science and Technology 24 (6):064001. doi: 10.1088/0963-0252/24/6/064001.
  • Xia, T., A. Kleinheksel, E. M. Lee, Z. Qiao, K. R. Wigginton, and H. L. Clack. 2019. Inactivation of airborne viruses using a packed bed non-thermal plasma reactor. Journal of Physics D: Applied Physics 52 (25):255201. doi: 10.1088/1361-6463/ab1466.
  • Xiang, Q., X. Liu, J. Li, S. Liu, H. Zhang, and Y. Bai. 2018. Effects of dielectric barrier discharge plasma on the inactivation of Zygosaccharomyces rouxii and quality of apple juice. Food Chemistry 254:201–7.
  • Xu, L., A. L. Garner, B. Tao, and K. M. Keener. 2017. Microbial inactivation and quality changes in orange juice treated by high voltage atmospheric cold plasma. Food and Bioprocess Technology 10 (10):1778–91. doi: 10.1007/s11947-017-1947-7.
  • Yadav, B., A. C. Spinelli, B. N. Govindan, Y. Y. Tsui, L. M. McMullen, and M. S. Roopesh. 2019. Cold plasma treatment of ready-to-eat ham: Influence of process conditions and storage on inactivation of Listeria innocua. Food Research International 123:276–85. doi:. doi: 10.1016/j.foodres.2019.04.065.
  • Yadav, B., A. C. Spinelli, N. Misra, Y. Y. Tsui, L. M. McMullen, and M. Roopesh. 2020. Effect of in‐package atmospheric cold plasma discharge on microbial safety and quality of ready‐to‐eat ham in modified atmospheric packaging during storage. Journal of Food Science. doi: 10.1111/1750-3841.15072.
  • Yamashiro, R., T. Misawa, and A. Sakudo. 2018. Key role of singlet oxygen and peroxynitrite in viral RNA damage during virucidal effect of plasma torch on feline calicivirus. Scientific Reports 8 (1):17947. doi: 10.1038/s41598-018-36779-1.
  • Yong, H. I., H.-J. Kim, S. Park, A. U. Alahakoon, K. Kim, W. Choe, and C. Jo. 2015. Evaluation of pathogen inactivation on sliced cheese induced by encapsulated atmospheric pressure dielectric barrier discharge plasma. Food Microbiology 46:46–50.
  • Yu, H., S. Perni, J. Shi, D. Wang, M. Kong, and G. Shama. 2006. Effects of cell surface loading and phase of growth in cold atmospheric gas plasma inactivation of Escherichia coli K12. Journal of Applied Microbiology 101 (6):1323–30. doi: 10.1111/j.1365-2672.2006.03033.x.
  • Zahoranová, A., M. Henselová, D. Hudecová, B. Kaliňáková, D. Kováčik, V. Medvecká, and M. Černák. 2016. Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chemistry and Plasma Processing 36 (2):397–414. doi: 10.1007/s11090-015-9684-z.
  • Zahoranová, A., L. Hoppanová, J. Šimončicová, Z. Tučeková, V. Medvecká, D. Hudecová, B. Kaliňáková, D. Kováčik, and M. Černák. 2018. Effect of cold atmospheric pressure plasma on maize seeds: Enhancement of seedlings growth and surface microorganisms inactivation. Plasma Chemistry and Plasma Processing 38 (5):969–88. doi: 10.1007/s11090-018-9913-3.
  • Zhang, Z., Z. Xu, C. Cheng, J. Wei, Y. Lan, G. Ni, Q. Sun, S. Qian, H. Zhang, W. Xia, et al. 2017. Bactericidal effects of plasma induced reactive species in dielectric barrier gas–liquid discharge. Plasma Chemistry and Plasma Processing 37 (2):415–31. doi: 10.1007/s11090-017-9784-z.
  • Zhuang, H., M. J. Rothrock Jr, K. L. Hiett, K. C. Lawrence, G. R. Gamble, B. C. Bowker, and K. M. Keener. 2019. In-package air cold plasma treatment of chicken breast meat: Treatment time effect. Journal of Food Quality 2019:1–7. doi: 10.1155/2019/183351.
  • Ziuzina, D., and N. N. Misra. 2016. Chapter 9 - Cold plasma for food safety. In Cold plasma in food and agriculture, eds. N. N. Misra, O. Schlüter, and P. J. Cullen, 223–52. San Diego: Academic Press.
  • Ziuzina, D., N. N. Misra, P. J. Cullen, K. Keener, J. P. Mosnier, I. Vilaró, E. Gaston, and P. Bourke. 2016. Demonstrating the potential of industrial scale in-package atmospheric cold plasma for decontamination of cherry tomatoes. Plasma Medicine 6 (3-4):397–412. doi: 10.1615/PlasmaMed.2017019498.
  • Ziuzina, D., N. N. Misra, L. Han, P. J. Cullen, T. Moiseev, J. P. Mosnier, K. Keener, E. Gaston, I. Vilaró, and P. Bourke. 2020. Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. Innovative Food Science & Emerging Technologies 59:102229. doi: 10.1016/j.ifset.2019.102229.
  • Ziuzina, D., S. Patil, P. J. Cullen, K. Keener, and P. Bourke. 2014. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology 42:109–16. doi: 10.1016/j.fm.2014.02.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.