1,875
Views
44
CrossRef citations to date
0
Altmetric
Reviews

Could fruits be a reliable source of food colorants? Pros and cons of these natural additives

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abd-Elhakim, Y. M., M. M. Hashem, A. E. El-Metwally, A. Anwar, K. Abo-EL-Sooud, G. G. Moustafa, and H. A. Ali. 2018. Comparative haemato-immunotoxic impacts of long-term exposure to tartrazine and chlorophyll in rats. International Immunopharmacology 63:145–54. doi: 10.1016/j.intimp.2018.08.002.
  • Abo-EL-Sooud, K., M. M. Hashem, Y. A. Badr, M. M. E. Eleiwa, A. Q. Gab-Allaha, Y. M. Abd-Elhakim, and A. Bahy-EL-Dien. 2018. Assessment of hepato-renal damage and genotoxicity induced by long-term exposure to five permitted food additives in rats. Environmental Science and Pollution Research 25 (26):26341–50. doi: 10.1007/s11356-018-2665-z.
  • Ahn, H., and E. Choe. 2015. Effects of blanching and drying on pigments and antioxidants of daraesoon (shoot of the siberian gooseberry tree, Actinidia arguta Planchon).” Food Science and Biotechnology 24 (4):1265–70. doi: 10.1007/s10068-015-0162-4.
  • Ajila, C. M., S. G. Bhat, and U. J. S. Prasada Rao. 2007. Valuable components of raw and ripe peels from two Indian mango varieties. Food Chemistry 102 (4):1006–11. doi: 10.1016/j.foodchem.2006.06.036.
  • Akogou, F. U. G., A. P P. Kayodé, H. M. W. den Besten, and A. R. Linnemann. 2018. Extraction methods and food uses of a natural red colorant from dye sorghum. Journal of the Science of Food and Agriculture 98 (1):361–8. doi: 10.1002/jsfa.8479.
  • Alcázar-Alay, S. C., F. P. Cardenas-Toro, J. F. Osorio-Tobón, G. F. Barbero, M. A. de, and A. Meireles. 2017. Obtaining anthocyanin-rich extracts from frozen açai (Euterpe oleracea Mart.) pulp using pressurized liquid extraction. Food Science and Technology 37 (suppl 1):48–54. doi: 10.1590/1678-457x.33016.
  • Alexandre, E. M. C., P. Araújo, M. F. Duarte, V. Freitas, M. Pintado, and J. A. Saraiva. 2017. Experimental design, modeling, and optimization of high-pressure-assisted extraction of bioactive compounds from pomegranate peel. Food and Bioprocess Technology 10 (5):886–900. doi: 10.1007/s11947-017-1867-6.
  • Ali, F., Rahul, F. Naz, S. Jyoti, and Y. H. Siddique. 2017. Health functionality of apigenin: A review. International Journal of Food Properties 20 (6):1197–238. doi: 10.1080/10942912.2016.1207188.
  • Anttonen, M. J., and R. O. Karjalainen. 2005. Environmental and genetic variation of phenolic compounds in red raspberry. Journal of Food Composition and Analysis 18 (8):759–69. doi: 10.1016/j.jfca.2004.11.003.
  • Backes, E., C. Pereira, L. Barros, M. A. Prieto, A. Genena, M. F. Barreiro, and I. C. F. R. Ferreira. 2018. Recovery of bioactive anthocyanin pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques. Food Research International 113:197–209. doi: 10.1016/j.foodres.2018.07.016.
  • Baldin, J. C., E. C. Michelin, Y. J. Polizer, I. Rodrigues, S. H. S. Godoy, R. P. Fregonesi, M. Alves Pires, et al. 2016. Microencapsulated Jabuticaba (Myrciaria cauliflora) extract added to fresh sausage as natural dye with antioxidant and antimicrobial activity. Meat Science 118:15–21. doi: 10.1016/j.meatsci.2016.03.016.
  • Bao, J., Y. Cai, M. Sun, G. Wang, and H. Corke. 2005. Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. Journal of Agricultural and Food Chemistry 53 (6):2327–32. doi: 10.1021/jf048312z.
  • Barbosa, M. I. M. J., C. D. Borsarelli, and A. Z. Mercadante. 2005. Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Research International 38 (8-9):989–94. doi: 10.1016/j.foodres.2005.02.018.
  • Barros, L., M. Dueñas, J. Pinela, A. M. Carvalho, C. S. Buelga, and I. C. F. R. Ferreira. 2012. Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmers’ varieties in Northeastern Portugal homegardens. Plant Foods for Human Nutrition 67 (3):229–34. doi: 10.1007/s11130-012-0307-z.
  • Baysal, T., S. Ersus, and D. A. J. Starmans. 2000. Supercritical CO2 extraction of β-carotene and lycopene from tomato paste waste. Journal of Agricultural and Food Chemistry 48 (11):5507–11. doi: 10.1021/jf000311t.
  • Bernal-Mercado, A. T., F. J. Vázquez-Armenta, G. A. González-Aguilar, and B. A. Silva-Espinoza. 2018. Integral exploitation of the plant food industry: Food security and sustainable development. In Plant food by-products: Industrial relevance for food additives and nutraceuticals, eds. J. F. Ayala-Zavala, G. A. González-Aguilar, and M. W. Siddiqui, 1–24. Florida, USA: Apple Academic Press.
  • Betz, M., and U. Kulozik. 2011. Whey protein gels for the entrapment of bioactive anthocyanins from bilberry extract. International Dairy Journal 21 (9):703–10. doi: 10.1016/j.idairyj.2011.04.003.
  • Bhatt, D., K. Vyas, S. Singh, P. J. John, and I. Soni. 2018. Tartrazine induced neurobiochemical alterations in rat brain sub-regions. Food and Chemical Toxicology 113:322–7. doi: 10.1016/j.fct.2018.02.011.
  • Blackhall, M. L., R. Berry, N. W. Davies, and J. T. Walls. 2018. Optimized extraction of anthocyanins from reid fruits’ Prunus avium ‘Lapins’ cherries. Food Chemistry 256:280–5. doi: 10.1016/j.foodchem.2018.02.137.
  • Briones-Labarca, V., C. Giovagnoli-Vicuña, and R. Cañas-Sarazúa. 2019. Optimization of extraction yield, flavonoids and lycopene from tomato pulp by high hydrostatic pressure-assisted extraction. Food Chemistry 278:751–9. doi: 10.1016/j.foodchem.2018.11.106.
  • Brito, E. S., M. C. P. Araújo, B. A. Clevidence, J. A. Novotny, R. E. Alves, and C. Carkeet. 2007. Anthocyanins present in selected tropical fruits: Acerola, jambolão, jussara, and guajiru. Journal of Agricultural and Food Chemistry 55 (23):9389–94. doi: 10.1021/jf0715020.
  • Buchweitz, M., M. Speth, D. R. Kammerer, and R. Carle. 2013. Impact of pectin type on the storage stability of black currant (Ribes nigrum l.) anthocyanins in pectic model solutions. Food Chemistry 139 (1–4):1168–78. doi: 10.1016/j.foodchem.2013.02.005.
  • Calvo, T. R. A., and P. R. Santagapita. 2018. Pink grapefruit lycopene encapsulated in alginate-based beads: Stability towards freezing and drying. International Journal of Food Science and Technology 54 (2):1–8.
  • Carocho, M., M. F. Barreiro, P. Morales, and I. C. F. R. Ferreira. 2014. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety 13 (4):377–99. doi: 10.1111/1541-4337.12065.
  • Castellanos-Santiago, E., and E. M. Yahia. 2008. Identification and quantification of betalains from the fruits of 10 mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry 56 (14):5758–64. doi: 10.1021/jf800362t.
  • Cavin, S., K. Bortlik, and M. Michel. 2013. “Quercetin for browning food surfaces.” Patent code WO 2013/037603 Al: Issued March 21, 2013.
  • Cebadera-Miranda, L., L. Domínguez, M. I. Dias, L. Barros, I. C. F. R. Ferreira, M. Igual, N. Martínez-Navarrete, V. Fernández-Ruiz, P. Morales, and M. Cámara. 2019. Sanguinello and tarocco (Citrus sinensis [L.] Osbeck): Bioactive compounds and colour appearance of blood oranges. Food Chemistry 270:395–402. doi: 10.1016/j.foodchem.2018.07.094.
  • Celli, G. B., A. Ghanem, and M. S. L. Brooks. 2015. Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using response surface methodology. Ultrasonics Sonochemistry 27:449–55. doi: 10.1016/j.ultsonch.2015.06.014.
  • Chen, F., Y. Sun, G. Zhao, X. Liao, X. Hu, J. Wu, and Z. Wang. 2007. Optimization of ultrasound-assisted extraction of anthocyanins in red raspberries and identification of anthocyanins in extract using high-performance liquid chromatography–mass spectrometry. Ultrasonics Sonochemistry 14 (6):767–78. doi: 10.1016/j.ultsonch.2006.12.011.
  • Chiang, H. J., and R. E. Wrolstad. 2006. Anthocyanin pigment composition of blackberries. Journal of Food Science 70 (3):C198–201. doi: 10.1111/j.1365-2621.2005.tb07125.x.
  • Comunian, T. A., R. Ravanfar, S. D. Alcaine, and A. Abbaspourrad. 2018. Water-in-oil-in-water emulsion obtained by glass microfluidic device for protection and heat-triggered release of natural pigments. Food Research International 106:945–51. doi: 10.1016/j.foodres.2018.02.008.
  • Conesa, A., F. C. Manera, J. M. Brotons, J. C. Fernandez-Zapata, I. Simón, S. Simón-Grao, M. Alfosea-Simón, J. J. Martínez Nicolás, J. M. Valverde, and F. García-Sanchez. 2019. Changes in the content of chlorophylls and carotenoids in the rind of fino 49 lemons during maturation and their relationship with parameters from the CIELAB color space. Scientia Horticulturae 243:252–60. doi: 10.1016/j.scienta.2018.08.030.
  • Corrales, M., A. F. García, P. Butz, and B. Tauscher. 2009. Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. Journal of Food Engineering 90 (4):415–21. doi: 10.1016/j.jfoodeng.2008.07.003.
  • Cox, K. A., T. K. McGhie, A. White, and A. B. Woolf. 2004. Skin colour and pigment changes during ripening of ‘hass’ avocado fruit. Postharvest Biology and Technology 31 (3):287–94. doi: 10.1016/j.postharvbio.2003.09.008.
  • D’Alessandro, L., Galván, K. Dimitrov, P. Vauchel, and I. Nikov. 2014. Kinetics of ultrasound assisted extraction of anthocyanins from Aronia melanocarpa (Black chokeberry) wastes. Chemical Engineering Research and Design 92 (10):1818–26. doi: 10.1016/j.cherd.2013.11.020.
  • Delgado-Pelayo, R., L. Gallardo-Guerrero, and D. Hornero-Méndez. 2014. Chlorophyll and carotenoid pigments in the peel and flesh of commercial apple fruit varieties. Food Research International 65:272–81. doi: 10.1016/j.foodres.2014.03.025.
  • Delia, S. C., G. M. Chávez, M. León-Martínez Frank, S. G. P. Araceli, A. L. Irais, and A. Franco. 2019. Spray drying microencapsulation of betalain rich extracts from Escontria chiotilla and Stenocereus queretaroensis fruits using cactus mucilage. Food Chemistry 272:715–22. doi: 10.1016/j.foodchem.2018.08.069.
  • Deng, J., Z. Xu, C. Xiang, J. Liu, L. Zhou, T. Li, Z. Yang, and C. Ding. 2017. Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives. Ultrasonics Sonochemistry 37:328–34. doi: 10.1016/j.ultsonch.2017.01.023.
  • Dranca, F., and M. Oroian. 2016. Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrasonics Sonochemistry 31:637–46. doi: 10.1016/j.ultsonch.2015.11.008.
  • EFSA. 2008. Use of lycopene as a food colour. EFSA Journal 674:66.
  • EFSA. 2012. Scientific opinion on the re-evaluation of mixed carotenes (E 160a (I)) and Beta-Carotene (E 160a (II)) as a food additive. EFSA Journal 10 (3):2593.
  • EFSA. 2013. Scientific Opinion on the Re-Evaluation of Anthocyanins (E 163) as a Food Additive. EFSA Journal 11 (4):3145.
  • EFSA. 2015a. Scientific opinion on the re-evaluation of beetroot Red (E 162) as food additive. EFSA Journal 13 (12):60.
  • EFSA. 2015b. Scientific opinion on the re‐evaluation of paprika extract (E 160c) as a food additive. EFSA Journal 13 (12):1–52.
  • EFSA. 2015c. Scientific opinion on the re-evaluation of chlorophylls (E 140 (I)) as food additive. EFSA Journal 15 (5):60.
  • EFSA. 2015d. Scientific opinion on re‐evaluation of chlorophyllins (E 140 (II)) as food additives. EFSA Journal 13 (5):1–42.
  • EFSA. 2016f. The safety of annatto extracts (E 160b) as a food additive. EFSA Journal 14 (8):87.
  • Eh, A. L.-S., and S.-G. Teoh. 2012. Novel modified ultrasonication technique for the extraction of lycopene from tomatoes. Ultrasonics Sonochemistry 19 (1):151–9. doi: 10.1016/j.ultsonch.2011.05.019.
  • Espada-Bellido, E.,. M. Ferreiro-González, C. Carrera, M. Palma, C. G. Barroso, and G. F. Barbero. 2017. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp. Food Chemistry 219:23–32. doi: 10.1016/j.foodchem.2016.09.122.
  • Fan, L., Y. Wang, P. Xie, L. Zhang, Y. Li, and J. Zhou. 2019. Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation. Food Chemistry 275:299–308. doi: 10.1016/j.foodchem.2018.09.103.
  • Faridah, A., R. Holinesti, and D. Syukri. 2015. Betalains from red pitaya peel (Hylocereus polyrhizus): Extraction, spectrophotometric and HPLC-DAD identification, bioactivity and toxicity screening. Pakistan Journal of Nutrition 14 (12):976–82. doi: 10.3923/pjn.2015.976.982.
  • Fernandes, A., M. A. A. Rocha, l MNBF. Santos, J. Brás, J. Oliveira, N. Mateus, and V. Freitas. 2018. Blackberry anthocyanins: β-cyclodextrin fortification for thermal and gastrointestinal stabilization. Food Chemistry 245:426–31. doi: 10.1016/j.foodchem.2017.10.109.
  • Fernández-López, J. A., M. J. Roca, J. M. Angosto, and J. M. Obón. 2018. Betaxanthin-rich extract from cactus pear fruits as yellow water-soluble colorant with potential application in foods. Plant Foods for Human Nutrition 73 (2):146–53. doi: 10.1007/s11130-018-0664-3.
  • Filho, G. L., V. V. De Rosso, M. A. A. Meireles, P. T. V. Rosa, A. L. Oliveira, A. Z. Mercadante, and F. A. Cabral. 2008. Supercritical CO2 Extraction of carotenoids from pitanga fruits (Eugenia uniflora L. ).” The Journal of Supercritical Fluids 46 (1):33–9. doi: 10.1016/j.supflu.2008.02.014.
  • Fredes, C., M. J. Osorio, J. Parada, and P. Robert. 2018. Stability and bioaccessibility of anthocyanins from maqui (Aristotelia chilensis [. Lwt .” LWT 91:549–56. doi: 10.1016/j.lwt.2018.01.090.
  • Gandía-Herrero, F., M. Jiménez-Atiénzar, J. Cabanes, F. García-Carmona, and J. Escribano. 2010. Stabilization of the bioactive pigment of Opuntia fruits through maltodextrin encapsulation. Journal of Agricultural and Food Chemistry 58 (19):10646–52. doi: 10.1021/jf101695f.
  • Gandul-Rojas, B., M. R. L. Cepero, and M. I. Mínguez-Mosquera. 1999. Chlorophyll and carotenoid patterns in olive fruits, Olea europaea cv. Arbequina. Journal of Agricultural and Food Chemistry 47 (6):2207–12. doi: 10.1021/jf981158u.
  • García-Cruz, L., M. Dueñas, C. Santos-Buelgas, S. Valle-Guadarrama, and Y. Salinas-Moreno. 2017. Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. pruinosus and S. stellatus). Food Chemistry 234:111–8. doi: 10.1016/j.foodchem.2017.04.174.
  • Garcia-Mendoza, P., F. A. Espinosa-Pardo, A. Mara, G. Fernández, M. Roberto, M. Junior, M. Ariel, and J. Martínez. 2017. Extraction of phenolic compounds and anthocyanins from juçara (Euterpe edulis Mart.) residues using pressurized liquids and supercritical fluids. The Journal of Supercritical Fluids 119:9–16. doi: 10.1016/j.supflu.2016.08.014.
  • Gironés-Vilaplana, A., N. Baenas, D. Villaño, H. Speisky, C. García-Viguera, and D. A. Moreno. 2014. Evaluation of Latin-American fruits rich in phytochemicals with biological effects. Journal of Functional Foods 7:599–608. doi: 10.1016/j.jff.2013.12.025.
  • Gol, N. B., M. L. Chaudhari, and T. V. R. Rao. 2015. Effect of edible coatings on quality and shelf life of carambola (Averrhoa carambola L.) fruit during storage. Journal of Food Science and Technology 52 (1):78–91. doi: 10.1007/s13197-013-0988-9.
  • Gutiérrez-Gamboa, G.,. S. Marín-San Román, V. Jofré, P. Rubio-Bretón, E. P. Pérez-Álvarez, and T. Garde-Cerdán. 2018. Effects on chlorophyll and carotenoid contents in different grape varieties (Vitis vinifera L.) after nitrogen and elicitor foliar applications to the vineyard. Food Chemistry 269:380–6. doi: 10.1016/j.foodchem.2018.07.019.
  • Guzman, I., M. H. Grace, G. G. Yousef, I. Raskin, and M. A. Lila. 2015. Novel strategies for capturing health-protective mango phytochemicals in shelf stable food matrices. International Journal of Food Sciences and Nutrition 66 (2):175–85. doi: 10.3109/09637486.2014.979315.
  • He, B., L. Zhang, X. Yue, J. Liang, J. Jiang, X. Gao, and P.-X. Yue. 2016. Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chemistry 204:70–6. doi: 10.1016/j.foodchem.2016.02.094.
  • Ho, K. K. H. Y., M. G. Ferruzzi, A. M. Liceaga, and M. F. San Martín-González. 2015. Microwave-assisted extraction of lycopene in tomato peels: Effect of extraction conditions on all-trans and cis-isomer yields. LWT - Food Science and Technology 62 (1):160–8. doi: 10.1016/j.lwt.2014.12.061.
  • Holzapfel, N. P., A. Shokoohmand, F. Wagner, M. Landgraf, S. Champ, B. M. Holzapfel, J. A. Clements, D. W. Hutmacher, and D. Loessner. 2017. Lycopene reduces ovarian tumor growth and intraperitoneal metastatic load. American Journal of Cancer Research 7 (6):1322–36.
  • Hong, K., J. Xie, L. Zhang, D. Sun, and D. Gong. 2012. Effects of chitosan coating on postharvest life and quality of guava (Psidium guajava L.) fruit during cold storage. Scientia Horticulturae 144:172–8. doi: 10.1016/j.scienta.2012.07.002.
  • Horuz, T. I., and K. B. Belibağlı. 2018. Nanoencapsulation by electrospinning to improve stability and water solubility of carotenoids extracted from tomato peels. Food Chemistry 268:86–93. doi: 10.1016/j.foodchem.2018.06.017.
  • Iñiguez, J. C., M. S. Hernández, M. L. A. Galarza, C. H. A. Arrazate, J. F. A. Medina, and L. M. R. Posadas. 2011. Caracterización bioquímica de variedades domesticadas de chayote Sechium edule (Jacq.) Sw. comparadas con parientes silvestres. Revista Chapingo. Serie Horticultura 17:45–55.
  • Kaewsuksaeng, S., N. Tatmala, V. Srilaong, and N. Pongprasert. 2015. Postharvest heat treatment delays chlorophyll degradation and maintains quality in thai lime (Citrus aurantifolia Swingle Cv. Paan) fruit. Postharvest Biology and Technology 100:1–7. doi: 10.1016/j.postharvbio.2014.09.020.
  • Kaimainen, M., O. Laaksonen, E. Järvenpää, M. Sandell, and R. Huopalahti. 2015. Consumer acceptance and stability of spray dried betanin in model juices. Food Chemistry 187:398–406. doi: 10.1016/j.foodchem.2015.04.064.
  • Kamal, A. A., and S. E.-S. Fawzia. 2018. Toxicological and safety assessment of tartrazine as a synthetic food additive on health biomarkers: A review. African Journal of Biotechnology 17 (6):139–49. doi: 10.5897/AJB2017.16300.
  • Kang, Y., Y. Lee, Y. J. Kim, and Y. K. Chang. 2019. Characterization and storage stability of chlorophylls microencapsulated in different combination of gum arabic and maltodextrin. Food Chemistry 272:337–46. doi: 10.1016/j.foodchem.2018.08.063.
  • Kaur, G., B. Thawkar, S. Dubey, and P. Jadhav. 2018. Pharmacological potentials of betalains. Journal of Complementary and Integrative Medicine 15 (3):1–9. doi: 10.1515/jcim-2017-0063.
  • Kavitkar, R. S., K. J. Rao, D. Mishra, and G. P. Deshmukh. 2017. Effect of beetroot extract on colour and sensory quality of flavoured milk. International Journal of Pure & Applied Bioscience 5 (5):1177–82. doi: 10.18782/2320-7051.2879.
  • Khan, M., I. Sri Harsha, P. S. C. P. Giridhar, and G. A. Ravishankar. 2012. Pigment identification, nutritional composition, bioactivity, and in vitro cancer cell cytotoxicity of Rivina humilis L. berries, potential source of betalains. LWT - Food Science and Technology 47 (2):315–23. doi: 10.1016/j.lwt.2012.01.025.
  • Khan, M. I. 2016. Stabilization of betalains: A review. Food Chemistry 197:1280–5. doi: 10.1016/j.foodchem.2015.11.043.
  • Khan, M. I., P. S. C. S. Harsha, A. S. Chauhan, S. V. N. Vijayendra, M. R. Asha, and P. Giridhar. 2015. Betalains rich Rivina humilis L. berry extract as natural colorant in product (fruit spread and RTS beverage) development. Journal of Food Science and Technology 52 (3):1808–13. doi: 10.1007/s13197-013-1175-8.
  • Klavins, L., J. Kviesis, I. Nakurte, and M. Klavins. 2018. Berry press residues as a valuable source of polyphenolics: extraction optimisation and analysis. Lwt 93:583–91. doi: 10.1016/j.lwt.2018.04.021.
  • Kopjar, M., K. Jakšić, and V. Piližota. 2012. Influence of sugars and chlorogenic acid addition on anthocyanin content, antioxidant activity and color of blackberry juice during storage. Journal of Food Processing and Preservation 36 (6):545–52. doi: 10.1111/j.1745-4549.2011.00631.x.
  • Koubaa, M., F. J. Barba, N. Grimi, H. Mhemdi, W. Koubaa, N. Boussetta, and E. Vorobiev. 2016. Recovery of colorants from red prickly pear peels and pulps enhanced by pulsed electric field and ultrasound. Innovative Food Science & Emerging Technologies 37:336–44. doi: 10.1016/j.ifset.2016.04.015.
  • Kumar, R., S. Vijayalakshmi, and S. Nadanasabapathi. 2017. Health benefits of quercetin. Defence Life Science Journal 2 (2):142–51. doi: 10.14429/dlsj.2.11359.
  • Kumar, S. S., P. Manoj, P. Giridhar, R. Shrivastava, and M. Bharadwaj. 2015. Fruit extracts of Basella rubra that are rich in bioactives and betalains exhibit antioxidant activity and cytotoxicity against human cervical carcinoma cells. Journal of Functional Foods 15:509–15. doi: 10.1016/j.jff.2015.03.052.
  • Leo, L., C. Loong, X. L. Ho, M. F. B. Raman, M. Y. T. Suan, and W. M. Loke. 2018. Occurrence of azo food dyes and their effects on cellular inflammatory responses. Nutrition 46:36–40. doi: 10.1016/j.nut.2017.08.010.
  • Leong, H., Yi, P. L. Show, M. H. Lim, C. W. Ooi, and T. C. Ling. 2018. Natural red pigments from plants and their health benefits: A review. Food Reviews International 34 (5):463–82. doi: 10.1080/87559129.2017.1326935.
  • Li, D., P. Wang, Y. Luo, M. Zhao, and F. Chen. 2017. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical Reviews in Food Science and Nutrition 57 (8):1729–41. doi: 10.1080/10408398.2015.1030064.
  • Li, Y., J. Yao, C. Han, J. Yang, M. T. Chaudhry, S. Wang, H. Liu, and Y. Yin. 2016. Quercetin, inflammation and immunity. Nutrients 8 (3):1–14. doi: 10.3390/nu8030167.
  • Liazid, A., R. F. Guerrero, E. Cantos, M. Palma, and C. G. Barroso. 2011. Microwave assisted extraction of anthocyanins from grape skins. Food Chemistry 124 (3):1238–43. doi: 10.1016/j.foodchem.2010.07.053.
  • Lima, V. L. A. G., E. A. Mélo, I. S. Maciel, M. F. G. Prazeres, R. S. Musser, and E. S. Daisyvângela, Lima. 2005. Total phenolic and carotenoid contents in acerola genotypes harvested at three ripening stages. Food Chemistry 90 (4):565–8. doi: 10.1016/j.foodchem.2004.04.014.
  • Liu, M., Y. J. Su, Y. L. Lin, Z. W. Wang, H. M. Gao, F. Li, X. Y. Wei, and H. L. Jiang. 2018. Optimization of green extraction of anthocyanins from purple passion fruit peels by response surface methodology. Journal of Food Processing and Preservation 42 (10):e13756–8. doi: 10.1111/jfpp.13756.
  • Liu, X., M. Zhang, Z. Chen, Y. Shi, and Y. Zou. 2013. Quantification and recovery of anthocyanins from litchi pericarps. Applied Mechanics and Materials 295-298:303–13. doi: 10.4028/www.scientific.net/AMM.295-298.303.
  • Lobato, K. B. S., K. Paese, J. C. Forgearini, S. S. Guterres, A. Jablonski, and A. O. Rios. 2015. Evaluation of stability of bixin in nanocapsules in model systems of photosensitization and heating. LWT - Food Science and Technology 60 (1):8–14. doi: 10.1016/j.lwt.2014.09.044.
  • Lobo, F. A. T. F., V. Silva, J. Domingues, S. Rodrigues, V. Costa, D. Falcão, and K. G. de Lima Araújo. 2018. Inclusion complexes of yellow bell pepper pigments with β-cyclodextrin: Preparation, characterisation and application as food natural colorant. Journal of the Science of Food and Agriculture 98 (7):2665–71. doi: 10.1002/jsfa.8760.
  • Longo, L., A. Scardino, and G. Vasapollo. 2007. Identification and quantification of anthocyanins in the berries of Pistacia lentiscus L., Phillyrea latifolia L. and Rubia peregrina L. Innovative Food Science & Emerging Technologies 8 (3):360–4. doi: 10.1016/j.ifset.2007.03.010.
  • Longo, L., and G. Vasapollo. 2005. Anthocyanins from bay (Laurus nobilis L.) berries. Journal of Agricultural and Food Chemistry 53 (20):8063–7. doi: 10.1021/jf051400e.
  • López, C. J., C. Caleja, M. A. Prieto, M. F. Barreiro, L. Barros, and I. C. F. R. Ferreira. 2018. Optimization and comparison of heat and ultrasound assisted extraction techniques to obtain anthocyanin compounds from Arbutus unedo L. Fruits. Food Chemistry 264:81–91. doi: 10.1016/j.foodchem.2018.04.103.
  • Machado, A. P. F., A. L. D. Pereira, G. F. Barbero, and J. Martínez. 2017. Recovery of Anthocyanins from residues of Rubus fruticosus, Vaccinium myrtillus and Eugenia brasiliensis by ultrasound assisted extraction, pressurized liquid extraction and their combination. Food Chemistry 231:1–10. doi: 10.1016/j.foodchem.2017.03.060.
  • Manoharan, R. K., H. J. Jung, I. Hwang, N. Jeong, K. H. Kho, M. Y. Chung, and I. S. Nou. 2017. Molecular breeding of a novel orangebrown tomato fruit with enhanced beta-carotene and chlorophyll accumulation. Hereditas 154 (1):1–8. doi: 10.1186/s41065-016-0023-z.
  • Maran, J. P., S. Manikandan, and V. Mekala. 2013. Modeling and optimization of betalain extraction from Opuntia ficus-indica using Box–Behnken design with desirability function. Industrial Crops and Products 49:304–11. doi: 10.1016/j.indcrop.2013.05.012.
  • Maran, J. P., and B. Priya. 2015. Natural pigments extraction from Basella rubra L. fruits by ultrasound-assisted extraction combined with Box-Behnken response surface design. Separation Science and Technology 50 (10):1532–40. doi: 10.1080/01496395.2014.980003.
  • Maran, J. P., B. Priya, and S. Manikandan. 2014. Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruit pulp. Journal of Food Science and Technology 51 (9):1938–46. doi: 10.1007/s13197-013-1237-y.
  • Martins, F. C. O. L., M. A. Sentanin, and D. Souza. 2019. Analytical methods in food additives determination : Compounds with functional applications. Food Chemistry 272:732–50. doi: 10.1016/j.foodchem.2018.08.060.
  • Martins, N., and I. C. F. R. Ferreira. 2017. Wastes and by-products: Upcoming sources of carotenoids for biotechnological purposes and health-related applications. Trends in Food Science & Technology 62:33–48. doi: 10.1016/j.tifs.2017.01.014.
  • Martins, N., C. L. Roriz, P. Morales, L. Barros, and I. C. F. R. Ferreira. 2016. Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology 52:1–15. doi: 10.1016/j.tifs.2016.03.009.
  • Martins, N., C. L. Roriz, P. Morales, L. Barros, and I. C. F. R. Ferreira. 2017. Coloring attributes of betalains: A key emphasis on stability and future applications. Food and Function 8 (4):1357–72. doi: 10.1039/c7fo00144d.
  • Masson, L., M. A. Salvatierra, P. Robert, C. Encina, and C. Camilo. 2011. Chemical and nutritional composition of copao fruit (Eulychnia acida Phil.) under three environmental conditions in the Coquimbo region. Chilean Journal of Agricultural Research 71 (4):521–9. doi: 10.4067/S0718-58392011000400004.
  • Mazeyar, P. 2009. An environmentally method for dyeing rug pile using fruit waste colorant. Research Journal of Chemistry Ans Environment 13 (3):49–53.
  • Melgar, B., M. I. Dias, A. Ciric, M. Sokovic, E. M. Garcia-Castello, A. D. Rodriguez-Lopez, L. Barros, and I. C. R. F. Ferreira. 2017. By-product recovery of Opuntia spp. peels: Betalainic and phenolic profiles and bioactive properties. Industrial Crops and Products 107:353–9. doi: 10.1016/j.indcrop.2017.06.011.
  • Melgar, B., M. I. Dias, A. Ciric, M. Sokovic, E. M. Garcia-Castello, A. D. Rodriguez-Lopez, L. Barros, and I. C. R. F. Ferreira. 2018. Bioactive characterization of Persea americana Mill. by-products: A rich source of inherent antioxidants. Industrial Crops and Products 111:212–8. doi: 10.1016/j.indcrop.2017.10.024.
  • Melgar, B., E. Pereira, M. B. P. P. Oliveira, E. M. Garcia-Castello, A. D. Rodriguez-Lopez, M. Sokovic, L. Barros, and I. C. F. R. Ferreira. 2017. Extensive profiling of three varieties of Opuntia spp. fruit for innovative food ingredients. Food Research International 101:259–65. doi: 10.1016/j.foodres.2017.09.024.
  • Miean, K. H., and S. Mohamed. 2001. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. Journal of Agricultural and Food Chemistry 49 (6):3106–12. doi: 10.1021/jf000892m.
  • Mikulic-Petkovsek, M., F. Stampar, R. Veberic, and H. Sircelj. 2016. Wild Prunus fruit species as a rich source of bioactive compounds. Journal of Food Science 81 (8):C1928–1937. doi: 10.1111/1750-3841.13398.
  • Montibeller, M. J., P. de Lima Monteiro, D. S. Tupuna-Yerovi, A. O. Rios, and V. Manfroi. 2018. Stability assessment of anthocyanins obtained from skin grape applied in kefir and carbonated water as a natural colorant. Journal of Food Processing and Preservation 42 (8):e13698–10. doi: 10.1111/jfpp.13698.
  • Morales, P., L. Barros, E. Ramírez-Moreno, C. Santos-Buelga, and I. C. F. R. Ferreira. 2015. Xoconostle fruit (Opuntia matudae Scheinvar cv. Rosa) by-products as potential functional ingredients. Food Chemistry 185:289–97. doi: 10.1016/j.foodchem.2015.04.012.
  • Morales, P., L. Barros, E. Ramírez-Moreno, C. Santos-Buelga, and I. C. F. R. Ferreira. 2014. Exploring xoconostle by-products as sources of bioactive compounds. Food Research International 65:437–44. doi: 10.1016/j.foodres.2014.05.067.
  • Moussa-Ayoub, T. E., S. K. El-Samahy, S. Rohn, and L. W. Kroh. 2011. Flavonols, betacyanins content and antioxidant activity of cactus Opuntia macrorhiza Fruits. Food Research International 44 (7):2169–74. doi: 10.1016/j.foodres.2011.02.014.
  • Mukhim, C., A. Nath, T. Swer, and B. Ghosh. 2016. Changes in pectin and total chlorophyll content assam lemon (Citrus limon Burm.) peel during fruit growth and development. Environment and Ecology 34:1477–9.
  • Nascimento, L. S. M., M. C. P. A. Santiago, E. M. M. Oliveira, R. G. Borguini, E. C. O. Braga, V. C. Martins, S. Pacheco, M. C. Souza, and R. L. O. Gogoy. 2017. Characterization of bioactive compounds in Eugenia brasiliensis, Lam. (Grumixama). Nutrition and Food Technology 3 (3):1–7.
  • Navarro, J. M., P. Flores, C. Garrido, and V. Martinez. 2006. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chemistry 96 (1):66–73. doi: 10.1016/j.foodchem.2005.01.057.
  • Nawirska-Olszańska, A., B. Stępień, and A. Biesiada. 2017. Effectiveness of the fountain-microwave drying method in some selected pumpkin cultivars. LWT 77:276–81. doi: 10.1016/j.lwt.2016.11.067.
  • Nazeri, M. A., and N. M. Zain. 2018. Effect of different operating parameters on extraction of active compounds from pitaya peel by microwave assisted extraction (MAE). Jurnal Teknologi 80 (2):51–8. doi: 10.11113/jt.v80.10974.
  • Neri-Numa, I. A., R. A. Soriano Sancho, A. P. A. Pereira, and G. M. Pastore. 2018. Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Research International 103:345–60. doi: 10.1016/j.foodres.2017.10.053.
  • Ngamwonglumlert, L., S. Devahastin, and N. Chiewchan. 2017. Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Critical Reviews in Food Science and Nutrition 57 (15):3243–59. doi: 10.1080/10408398.2015.1109498.
  • Nunes, A. N., A. S. Carmo, and C. M. M. Duarte. 2015. Production of natural red pigment derived from Opuntia spp. using a novel high pressure CO2 assisted-process. RSC Advances 5 (101):83106–14. doi: 10.1039/C5RA14998C.
  • Ordóñez-Santos, L. E., L. X. Pinzón-Zarate, and L. O. González-Salcedo. 2015. Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm fruit (Bactris gasipaes) by-products with sunflower oil using response surface methodology. Ultrasonics Sonochemistry 27:560–6. doi: 10.1016/j.ultsonch.2015.04.010.
  • Osorio-Esquivel, O., Alicia-Ortiz-Moreno, V. B. Álvarez, L. Dorantes-Álvarez, and M. M. Giusti. 2011. Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Research International 44 (7):2160–8. doi: 10.1016/j.foodres.2011.02.011.
  • Otálora, M. C., J. G. Carriazo, L. Iturriaga, M. A. Nazareno, and C. Osorio. 2015. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chemistry 187:174–81. doi: 10.1016/j.foodchem.2015.04.090.
  • Otálora, M. C., J. G. Carriazo, L. Iturriaga, C. Osorio, and M. A. Nazareno. 2016. Encapsulating betalains from Opuntia ficus-indica fruits by ionic gelation: Pigment chemical stability during storage of beads. Food Chemistry 202:373–82. doi: 10.1016/j.foodchem.2016.01.115.
  • Paes, J., R. Dotta, G. F. Barbero, and J. Martínez. 2014. Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. The Journal of Supercritical Fluids 95:8–16. doi: 10.1016/j.supflu.2014.07.025.
  • Pal, U. S., M. K. Khan, and S. N. Mohanty. 2008. Heat pump drying of green sweet pepper. Drying Technology 26 (12):1584–90. doi: 10.1080/07373930802467144.
  • Pap, N., S. Beszédes, E. Pongrácz, L. Myllykoski, M. Gábor, E. Gyimes, C. Hodúr, and R. L. Keiski. 2013. Microwave-assisted extraction of anthocyanins from Black Currant Marc. Food and Bioprocess Technology 6 (10):2666–74. doi: 10.1007/s11947-012-0964-9.
  • Peñafiel, C. O. M., I. F. B. Morejón, M. E. Cruz, A. W. García, S. L. R. Espinoza, M. M. Jaramillo, and L. V. del Salto. 2018. Usage of two extraction methods for natural dyes (anthocyanin) from blackberries of castilla (Rubus glaucus Benth) and its application in yogurt. Journal of Food and Nutrition Research 6 (11):699–705.
  • Peng, Y., K. Lin-Wang, J. M. Cooney, T. Wang, R. V. Espley, and A. C. Allan. 2019. Differential regulation of the anthocyanin profile in purple kiwifruit (Actinidia species). Horticulture Research 6 (1):3. doi: 10.1038/s41438-018-0076-4.
  • Pinela, J., M. A. Prieto, A. M. Carvalho, M. F. Barreiro, M. B. P. P. Oliveira, L. Barros, and I. C. F. R. Ferreira. 2016. Microwave-assisted extraction of phenolic acids and flavonoids and production of antioxidant ingredients from tomato: A nutraceutical-oriented optimization study. Separation and Purification Technology 164:114–24. doi: 10.1016/j.seppur.2016.03.030.
  • Piovesan, N., V. B. Viera, R. O. Mello, R. C. V. dos Santos, R. A. Vaucher, V. L. Dressler, C. A. Bizzi, and L. L. M. Fries. 2017. Microwave-assisted extraction of bioactive compounds from blueberry (Vaccinium ashei Reade) and their antioxidant and antimicrobial capacity. International Food Research Journal 24 (6):2526–33.
  • Pires, T. C. S. P., M. I. Dias, L. Barros, R. C. Calhelha, M. J. Alves, C. Santos-Buelga, and I. C. F. R. Ferreira. 2018. Phenolic compounds profile, nutritional compounds and bioactive properties of Lycium barbarum L.: A comparative study with stems and fruits. Industrial Crops and Products 122:574–81. doi: 10.1016/j.indcrop.2018.06.046.
  • Pumilia, G., M. J. Cichon, J. L. Cooperstone, D. Giuffrida, G. Dugo, and S. J. Schwartz. 2014. Changes in chlorophylls, chlorophyll degradation products and lutein in pistachio kernels (Pistacia vera L.) during roasting. Food Research International 65:193–8. doi: 10.1016/j.foodres.2014.05.047.
  • Putnik, P., D. B. Kovačević, D. Ježek, I. Šustić, Z. Zorić, and V. Dragović-Uzelac. 2018. High-pressure recovery of anthocyanins from grape skin pomace (Vitis vinifera Cv. Teran) at moderate temperature. Journal of Food Processing and Preservation 42 (1):e13342–11. doi: 10.1111/jfpp.13342.
  • Ramakrishnan, Y., N. M. Adzahan, Y. A. Yusof, and K. Muhammad. 2018. Effect of wall materials on the spray drying efficiency, powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technology 328:406–14. doi: 10.1016/j.powtec.2017.12.018.
  • Ravanfar, R., M. Moein, M. Niakousari, and A. Tamaddon. 2018. Extraction and fractionation of anthocyanins from red cabbage: Ultrasonic-assisted extraction and conventional percolation method. Journal of Food Measurement and Characterization 12 (4):2271–7. doi: 10.1007/s11694-018-9844-y.
  • Rizk, E. M., A. T. El-Kady, and A. R. El-Bialy. 2014. Charactrization of carotenoids (lyco-red) extracted from tomato peels and its uses as natural colorants and antioxidants of ice cream. Annals of Agricultural Sciences 59 (1):53–61. doi: 10.1016/j.aoas.2014.06.008.
  • Robert, P., V. Torres, P. García, C. Vergara, and C. Sáenz. 2015. The encapsulation of purple cactus pear (Opuntia ficus-indica) pulp by using polysaccharide-proteins as encapsulating agents. LWT - Food Science and Technology 60 (2):1039–45. doi: 10.1016/j.lwt.2014.10.038.
  • Roberts, J. E., and J. Dennison. 2015. The photobiology of lutein and zeaxanthin in the eye. Journal of Ophthalmology 2015:8. doi: 10.1155/2015/687173.
  • Rodrigues, S., F. A. N. Fernandes, E. S. de Brito, A. D. Sousa, and N. Narain. 2015. Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Industrial Crops and Products 69:400–7. doi: 10.1016/j.indcrop.2015.02.059.
  • Rodriguez-Amaya, D. B. 2016. Natural food pigments and colorants. Current Opinion in Food Science 7:20–30. doi: 10.1016/j.cofs.2015.08.004.
  • Rodriguez-Amaya, D. B. 2018. Update on natural food pigments - a mini-review on carotenoids, anthocyanins, and betalains. Food Research International 124:200–5. doi: 10.1016/j.foodres.2018.05.028.
  • Rodriguez-Amaya, D. B. 2001. A guide to carotenoid analysis in foods. Washington: ILSI Press.
  • Rodriguez-Concepcion, M., J. Avalos, M. L. Bonet, A. Boronat, L. Gomez-Gomez, D. Hornero-Mendez, M. C. Limon, et al. 2018. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research 70:62–93. doi: 10.1016/j.plipres.2018.04.004.
  • Rosso, V. V., and A. Z. Mercadante. 2007. HPLC-PDA-MS/MS of anthocyanins and carotenoids from dovyalis and tamarillo fruits. Journal of Agricultural and Food Chemistry 55 (22):9135–41. doi: 10.1021/jf071316u.
  • Sagrillo, M. R., L. F. M. Garcia, O. C. Souza Filho, M. M. M. F. Duarte, E. E. Ribeiro, F. C. Cadoná, and I. B M. Cruz. 2015. Tucumã fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chemistry 173:741–8. doi: 10.1016/j.foodchem.2014.10.067.
  • Saini, R. K., and Y. Keum. 2018. Carotenoid extraction methods: A review of recent developments. Food Chemistry 240:90–103. doi: 10.1016/j.foodchem.2017.07.099.
  • Sanchez-Gonzalez, N., M. R. Jaime-Fonseca, E. San Martin-Martinez, and L. G. Zepeda. 2013. Extraction, stability, and separation of betalains from Opuntia joconostle cv. using response surface methodology. Journal of Agricultural and Food Chemistry 61 (49):11995–2004. doi: 10.1021/jf401705h.
  • Sant'Anna, V., F. D. P. Christiano, L. D. F. Marczak, I. C. Tessaro, and R. C. S. Thys. 2014. The effect of the incorporation of grape marc powder in fettuccini pasta properties. LWT - Food Science and Technology 58 (2):497–501. doi: 10.1016/j.lwt.2014.04.008.
  • Santos, D. T., J. Q. Albarelli, M. M. Beppu, and M. A. A. Meireles. 2013. Stabilization of anthocyanin extract from jabuticaba skins by encapsulation using supercritical CO2 as solvent. Food Research International 50 (2):617–24. doi: 10.1016/j.foodres.2011.04.019.
  • Seabra, I. J., M. E. M. Braga, M. T. Batista, and H. C. De Sousa. 2010. Effect of solvent (CO2/Ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elderberry pomace. The Journal of Supercritical Fluids 54 (2):145–52. doi: 10.1016/j.supflu.2010.05.001.
  • Seraglio, S. K. T., M. Schulz, P. Nehring, F. D. Betta, A. C. Valese, H. Daguer, L. V. Gonzaga, R. Fett, and A. C. O. Costa. 2018. Nutritional and bioactive potential of Myrtaceae fruits during ripening. Food Chemistry 239:649–56. doi: 10.1016/j.foodchem.2017.06.118.
  • Setiawan, B., A. Sulaeman, D. W. Giraud, and J. A. Driskell. 2001. carotenoid content of selected indonesian fruits. Journal of Food Composition and Analysis 14 (2):169–76. doi: 10.1006/jfca.2000.0969.
  • Shaddel, R., J. Hesari, S. Azadmard-Damirchi, H. Hamishehkar, B. Fathi-Achachlouei, and Q. Huang. 2018. Use of gelatin and gum arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules 107:1800–10. doi: 10.1016/j.ijbiomac.2017.10.044.
  • Shao, S., S. L. Tan, and H. Li. 2016. Interactive effects of inoculated cucumber (Cucumis sativus L.) seedlings and saline soil. Communications in Soil Science and Plant Analysis 47 (4):1–13. doi: 10.1080/00103624.2015.1123716.
  • Sigurdson, G. T., P. Tang, and M. M. Giusti. 2017. Natural colorants: Food colorants from natural sources. Annual Review of Food Science and Technology 8 (1):261–80. doi: 10.1146/annurev-food-030216-025923.
  • Silva, F. L., M. T. Escribano-Bailón, J. J. P. Alonso, J. C. Rivas-Gonzalo, and C. Santos-Buelga. 2007. Anthocyanin pigments in strawberry. LWT - Food Science and Technology 40 (2):374–82. doi: 10.1016/j.lwt.2005.09.018.
  • Slimen, I. B., T. Najar, and M. Abderrabba. 2017. Chemical and antioxidant properties of betalains. Journal of Agricultural and Food Chemistry 65 (4):675–89. doi: 10.1021/acs.jafc.6b04208.
  • Soquetta, M. B., F. S. Stefanello, K. M. Huerta, S. S. Monteiro, C. S. Rosa, and N. N. Terra. 2016. Characterization of physiochemical and microbiological properties, and bioactive compounds, of flour made from the skin and bagasse of kiwi fruit (Actinidia deliciosa). Food Chemistry 199:471–8. doi: 10.1016/j.foodchem.2015.12.022.
  • Soriano-Santos, J., M. E. Franco-Zavaleta, C. Pelayo-Zaldivar, M. A. Armella-Villalpando, M. L. Yanez-Lopez, and I. Guerrero-Legarreta. 2007. A partial characterization of the red pigment from the Mexican fruit cactus ‘jiotilla. Revista Mexicana De Ingenieria Quimica 6 (1):19–25.
  • Souza, A. C. P., P. D. Gurak, and L. D. F. Marczak. 2017. Maltodextrin, pectin and soy protein isolate as carrier agents in the encapsulation of anthocyanins-rich extract from Jaboticaba pomace. Food and Bioproducts Processing 102:186–94.
  • Souza, A. L. R., D. W. Hidalgo-Chávez, S. M. Pontes, F. S. Gomes, L. M. C. Cabral, and R. V. Tonon. 2018. Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. LWT 91:286–92. doi: 10.1016/j.lwt.2018.01.053.
  • Souza, R. L. A., M. F. S. Santana, E. M. S. Macedo, E. S. Brito, and R. T. P. Correia. 2015. Physicochemical, bioactive and functional evaluation of the exotic fruits Opuntia ficus-indica and Pilosocereus pachycladus Ritter from the Brazilian caatinga. Journal of Food Science and Technology 52 (11):7329–36. doi: 10.1007/s13197-015-1821-4.
  • Strati, I. F., E. Gogou, and V. Oreopoulou. 2015. Food and bioproducts processing enzyme and high pressure assisted extraction of carotenoids from tomato waste. Food and Bioproducts Processing 94:668–74. doi: 10.1016/j.fbp.2014.09.012.
  • Stenmarck, Å., C. Jensen, T. Quested, and G. Moates. 2016. Estimates of European food waste levels. Report of the project FUSIONS (contract number: 311972) granted by the European Commission (FP7).
  • Sueprasarn, J., S. Reabroy, and T. Pirak. 2017. Antioxidant properties of karanda (Carissa carandas Linn.) extracts and its application in Thai Traditional fermented pork sausage (nham). International Food Research Journal 24 (4):1667–75.
  • Sultana, B., and F. Anwar. 2008. Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chemistry 108 (3):879–84. doi: 10.1016/j.foodchem.2007.11.053.
  • Sun, Y., and L. Li. 2018. Cyanidin 3- glucoside inhibits inflammatory activities in human fibroblast- like synoviocytes and in mice with collagen- induced arthritis. ClinExp Pharmacol Physiol 45:1038–45. doi: 10.1111/1440-1681.12970.
  • Sun, Y., X. Liao, Z. Wang, X. Hu, and F. Chen. 2007. Optimization of microwave-assisted extraction of anthocyanins in red raspberries and identification of anthocyanin of extracts using high-performance liquid chromatography - mass spectrometry. European Food Research and Technology 225 (3-4):511–23. doi: 10.1007/s00217-006-0447-1.
  • Swer, T. L., C. Mukhim, K. Bashir, and K. Chauhan. 2018. Optimization of enzyme aided extraction of anthocyanins from Prunus nepalensis L. LWT 91:382–90. doi: 10.1016/j.lwt.2018.01.043.
  • Tadmor, Y., J. Burger, I. Yaakov, A. Feder, S. E. Libhaber, V. Portnoy, and A. Meir. 2010. Genetics of flavonoid, carotenoid, and chlorophyll pigments in melon fruit rinds. Journal of Agricultural and Food Chemistry 58 (19):10722–8. doi: 10.1021/jf1021797.
  • Tan, C., G. B. Celli, M. J. Selig, and A. Abbaspourrad. 2018. Catechin modulates the copigmentation and encapsulation of anthocyanins in polyelectrolyte complexes (PECs) for natural colorant stabilization. Food Chemistry 264:342–9. doi: 10.1016/j.foodchem.2018.05.018.
  • Tan, D., Y. Wang, B. Bai, X. Yang, and J. Han. 2015. Betanin attenuates oxidative stress and inflammatory reaction in kidney of paraquat-treated Rat. Food and Chemical Toxicology 78:141–6. doi: 10.1016/j.fct.2015.01.018.
  • Thirugnanasambandham, K., and V. Sivakumar. 2017. Microwave assisted extraction process of betalain from dragon fruit and its antioxidant activities. Journal of the Saudi Society of Agricultural Sciences 16 (1):41–8. doi: 10.1016/j.jssas.2015.02.001.
  • Vareed, S. K., M. K. Reddy, R. E. Schutzki, and M. G. Nair. 2006. Anthocyanins in Cornus alternifolia, Cornus controversa, Cornus kousa and Cornus florida fruits with health benefits. Life Sciences 78 (7):777–84. doi: 10.1016/j.lfs.2005.05.094.
  • Vargas-Campos, L., S. Valle-Guadarrama, F. Martínez-Bustos, Y. Salinas-Moreno, C. Lobato-Calleros, and A. D. Calvo-López. 2018. Encapsulation and pigmenting potential of betalains of pitaya (Stenocereus pruinosus) fruit. Journal of Food Science and Technology 55 (7):2436–45. doi: 10.1007/s13197-018-3161-7.
  • Veberic, R., J. Jakopic, F. Stampar, and V. Schmitzer. 2009. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chemistry 114 (2):511–5. doi: 10.1016/j.foodchem.2008.09.080.
  • Viera, I., A. Pérez-Gálvez, and M. Roca. 2019. Green natural colorants. Molecules 24 (1):154. doi: 10.3390/molecules24010154.
  • Viganó, J., J. P. Coutinho, D. S. Souza, N. A. F. Baroni, H. T. Godoy, J. A. Macedo, and J. Martínez. 2016. Exploring the selectivity of supercritical CO2 to obtain nonpolar fractions of passion fruit bagasse extracts. The Journal of Supercritical Fluids 110:1–10. doi: 10.1016/j.supflu.2015.12.001.
  • Wang, Y. C., Y. C. Chuang, and H. W. Hsu. 2008. The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chemistry 106 (1):277–84. doi: 10.1016/j.foodchem.2007.05.086.
  • WHO/FAO. 2018. Codex alimentarius: General standard for food additives. 2018th ed. Rome, Italy: WHO/FAO.
  • Wybraniec, S., and Y. Mizrahi. 2002. Fruit flesh betacyanin pigments in Hylocereus cacti. Journal of Agricultural and Food Chemistry 50 (21):6086–9. doi: 10.1021/jf020145k.
  • Xi, J. 2006. Effect of high pressure processing on the extraction of lycopene in tomato paste waste. Chemical Engineering & Technology 29 (6):736–9. doi: 10.1002/ceat.200600024.
  • Yan, S., S. Pan, and J. Ji. 2018. Silk fabric dyed with extract of sophora flower bud. Natural Product Research 32 (3):308–15. doi: 10.1080/14786419.2017.1359170.
  • Yang, B., X. Liu, and Y. Gao. 2009. Extraction optimization of bioactive compounds (crocin, geniposide and total phenolic compounds) from gardenia (Gardenia jasminoides Ellis) fruits with response surface methodology. Innovative Food Science & Emerging Technologies 10 (4):610–5. doi: 10.1016/j.ifset.2009.03.003.
  • Yong, Y. Y., G. Dykes, S. M. Lee, and W. S. Choo. 2017. Comparative study of betacyanin profile and antimicrobial activity of red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius). Plant Foods for Human Nutrition 72 (1):41–7. doi: 10.1007/s11130-016-0586-x.
  • You, Y.,. X. Han, J. Guo, Y. Guo, M. Yin, G. Liu, W. Huang, and J. Zhan. 2018. Cyanidin-3-glucoside attenuates high-fat and high-fructose diet-induced obesity by promoting the thermogenic capacity of brown adipose tissue. Journal of Functional Foods 41:62–71. doi: 10.1016/j.jff.2017.12.025.
  • Zaghdoudi, K., X. Framboisier, C. Frochot, R. Vanderesse, D. Barth, J. Kalthoum-Cherif, F. Blanchard, and Y. Guiavarc’h. 2016. Response surface methodology applied to supercritical fluid extraction (SFE) of carotenoids from persimmon (Diospyros kaki L.). Food Chemistry 208:209–19. doi: 10.1016/j.foodchem.2016.03.104.
  • Zaghdoudi, K., S. Pontvianne, X. Framboisier, M. Achard, R. Kudaibergenova, M. Ayadi-Trabelsi, J. Kalthoum-Cherif, R. Vanderesse, C. Frochot, and Y. Guiavarc’h. 2015. Accelerated solvent extraction of carotenoids from: Tunisian kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.). Food Chemistry 184:131–9. doi: 10.1016/j.foodchem.2015.03.072.
  • Zhang, Y., E. Butelli, and C. Martin. 2014. Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology 19:81–90. doi: 10.1016/j.pbi.2014.05.011.
  • Zhang, Y., and Q. Zhong. 2013. Encapsulation of bixin in sodium caseinate to deliver the colorant in transparent dispersions. Food Hydrocolloids. 33 (1):1–9. doi: 10.1016/j.foodhyd.2013.02.009.
  • Zou, T., D. Wang, H. Guo, Y. Zhu, X. Luo, F. Liu, and W. Ling. 2012. Optimization of microwave-assisted extraction of anthocyanins from mulberry and identification of anthocyanins in extract using HPLC-ESI-MS. Journal of Food Science 77 (1):C46–50. doi: 10.1111/j.1750-3841.2011.02447.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.