3,486
Views
55
CrossRef citations to date
0
Altmetric
Reviews

High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Agus, A.,. J. Denizot, J. Thevenot, M. Martinez-Medina, S. Massier, P. Sauvanet, A. Bernalier-Donadille, S. Denis, P. Hofman, R. Bonnet, et al. 2016. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Scientific Reports 6:19032. doi: 10.1038/srep19032.
  • Andre, C., O. Guzman-Quevedo, C. Rey, J. Remus-Borel, S. Clark, A. Castellanos-Jankiewicz, E. Ladeveze, T. Leste-Lasserre, A. Nadjar, D. N. Abrous, et al. 2017. Inhibiting microglia expansion prevents diet-induced hypothalamic and peripheral inflammation. Diabetes 66 (4):908–e919. doi: 10.2337/db16-0586.
  • Arentsen, T., Y. Qian, S. Gkotzis, T. Femenia, T. Wang, K. Udekwu, H. Forssberg, and R. Diaz Heijtz. 2017. The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Molecular Psychiatry 22 (2):257–66. doi: 10.1038/mp.2016.182.
  • Bailey, M. A., and H. D. Holscher. 2018. Microbiome-Mediated Effects of the Mediterranean Diet on Inflammation. Advances in Nutrition (Bethesda, Md.) 9 (3):193–206. doi: 10.1093/advances/nmy013.
  • Balfego, M., S. Canivell, F. A. Hanzu, A. Sala-Vila, M. Martinez-Medina, S. Murillo, T. Mur, E. G. Ruano, F. Linares, N. Porras, et al. 2016. Effects of sardine-enriched diet on metabolic control, inflammation and gut microbiota in drug-naive patients with type 2 diabetes: A pilot randomized trial. Lipids in Health and Disease 15:78. doi: 10.1186/s12944-016-0245-0.
  • Barajon, I., G. Serrao, F. Arnaboldi, E. Opizzi, G. Ripamonti, A. Balsari, and C. Rumio. 2009. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. The Journal of Histochemistry and Cytochemistry : official Journal of the Histochemistry Society 57 (11):1013–e1023. doi: 10.1369/jhc.2009.953539.
  • Beilharz, J. E., N. O. Kaakoush, J. Maniam, and M. J. Morris. 2016. The effect of short-term exposure to energy-matched diets enriched in fat or sugar on memory, gut microbiota and markers of brain inflammation and plasticity. Brain, Behavior, and Immunity 57:304–13. doi: 10.1016/j.bbi.2016.07.151.
  • Blander, J. M., R. S. Longman, I. D. Iliev, G. F. Sonnenberg, and D. Artis. 2017. Regulation of inflammation by microbiota interactions with the host. Nature Immunology 18 (8):851–60. doi: 10.1038/ni.3780.
  • Blaut, M. K., and  S. 2012. Intestinal microbiota and obesity. Handbook of Experimental Pharmacology. 209:251–73. doi: 10.1007/978-3-642-24716-3_11.
  • Bonder, M. J., A. Kurilshikov, E. F. Tigchelaar, Z. Mujagic, F. Imhann, A. V. Vila, P. Deelen, T. Vatanen, M. Schirmer, S. P. Smeekens, et al. 2016. The effect of host genetics on the gut microbiome. Nature Genetics 48 (11):1407–12. doi: 10.1038/ng.3663.
  • Bonaz, B.,. T. Bazin, and S. Pellissier. 2018. The vagus nerve at the interface of the microbiota-gut-brain Axis. Frontiers in Neuroscience 12:49. doi: 10.3389/fnins.2018.00049.
  • Bruce-Keller, A. J., J. M. Salbaum, M. Luo, E. I. V. Blanchard, C. M. Taylor, D. A. Welsh, and H. R. Berthoud. 2015. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biological Psychiatry 77 (7):607–15. doi: 10.1016/j.biopsych.2014.07.012.
  • Bruce-Keller, A. J., J. M. Salbaum, M. Luo, E. I. V. Blanchard, C. M. Taylor, D. A. Welsh, and H. R. Berthoud. 2016. Reply to: High-fat diet-induced dysbiosis as a cause of neuroinflammation. Biological Psychiatry 80 (1):e5–6. doi: 10.1016/j.biopsych.2015.11.006.
  • Brun, P., M. C. Giron, M. Qesari, A. Porzionato, V. Caputi, C. Zoppellaro, S. Banzato, A. R. Grillo, L. Spagnol, R. De Caro, et al. 2013. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 145 (6):1323–33. doi: 10.1053/j.gastro.2013.08.047.
  • Brun, P., S. Gobbo, V. Caputi, L. Spagnol, G. Schirato, M. Pasqualin, E. Levorato, G. Palù, M. C. Giron, and I. Castagliuolo. 2015. Toll like receptor-2 regulates production of glial-derived neurotrophic factors in murine intestinal smooth muscle cells. Molecular and Cellular Neurosciences 68:24–35. doi: 10.1016/j.mcn.2015.03.018.
  • Caesar, R., V. Tremaroli, P. Kovatcheva-Datchary, P. D. Cani, and F. Bäckhed. 2015. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metabolism 22 (4):658–68. doi: 10.1016/j.cmet.2015.07.026.
  • Cândido, F. G., F. X. Valente, ŁM. Grześkowiak, A. P. B. Moreira, D. Rocha, and R. Alfenas. 2018. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: Mechanisms and clinical implications on obesity. International Journal of Food Sciences and Nutrition 69 (2):125–43. doi: 10.1080/09637486.2017.1343286.
  • Cani, P. D., J. Amar, M. A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A. M. Neyrinck, F. Fava, K. M. Tuohy, C. Chabo, et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56 (7):1761–72. doi: 10.2337/db06-1491.
  • Cani, P. D., and C. Knauf. 2016. How gut microbes talk to organs: The role of endocrine and nervous routes. Molecular Metabolism 5 (9):743–52. doi: 10.1016/j.molmet.2016.05.011.
  • Carabotti, M., A. Scirocco, M. A. Maselli, and C. Severi. 2015. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology 28 (2):203–9.
  • Carraro, R. S., G. F. Souza, C. Solon, D. S. Razolli, B. Chausse, R. Barbizan, S. C. Victorio, and L. A. Velloso. 2018. Hypothalamic mitochondrial abnormalities occur downstream of inflammation in diet-induced obesity. Molecular and Cellular Endocrinology 460:238–45. doi: 10.1016/j.mce.2017.07.029.
  • Cazareth, J., A. Guyon, C. Heurteaux, J. Chabry, and A. Petit-Paitel. 2014. Molecular and cellular neuroinflammatory status of mouse brain after systemic lipopolysaccharide challenge: Importance of CCR2/CCL2 signaling. Journal of Neuroinflammation 11:132. doi: 10.1186/1742-2094-11-132.
  • Chung, W. S. F., A. W. Walker, P. Louis, J. Parkhill, J. Vermeiren, D. Bosscher, S. H. Duncan, and H. J. Flint. 2016. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biology 14:3. doi: 10.1186/s12915-015-0224-3.
  • Cintra, D. E., E. R. Ropelle, J. C. Moraes, J. R. Pauli, J. Morari, C. T. Souza, R. Grimaldi, M. Stahl, J. B. Carvalheira, M. J. Saad, et al. 2012. Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS One. 7 (1):e30571. doi: 10.1371/journal.pone.0030571.
  • Daniel, H., A. M. Gholami, D. Berry, C. Desmarchelier, H. Hahne, G. Loh, S. Mondot, P. Lepage, M. Rothballer, A. Walker, et al. 2014. High-fat diet alters gut microbiota physiology in mice. The ISME Journal 8 (2):295–308. doi: 10.1038/ismej.2013.155.
  • de Lartigue, G., C. Barbier de la Serre, E. Espero, J. Lee, and H. E. Raybould. 2011. Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. American Journal of Physiology. Endocrinology and Metabolism 301 (1):E187–95. doi: 10.1152/ajpendo.00056.2011.
  • Della Corte, K. W., I. Perrar, K. J. Penczynski, L. Schwingshackl, C. Herder, and A. E. Buyken. 2018. Effect of Dietary Sugar Intake on Biomarkers of Subclinical Inflammation: A Systematic Review and Meta-Analysis of Intervention Studies. Nutrients 10 (5):606. doi: 10.3390/nu10050606.
  • de La Serre, C. B., G. de Lartigue, and H. E. Raybould. 2015. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons. Physiology & Behavior 139:188–94. doi: 10.1016/j.physbeh.2014.10.032.
  • Desai, M. S., A. M. Seekatz, N. M. Koropatkin, N. Kamada, C. A. Hickey, M. Wolter, N. A. Pudlo, S. Kitamoto, N. Terrapon, A. Muller, et al. 2016. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 167 (5):1339–53.e21. doi: 10.1016/j.cell.2016.10.043.
  • De Vadder, F., P. Kovatcheva-Datchary, D. Goncalves, J. Vinera, C. Zitoun, A. Duchampt, F. Bäckhed, and G. Mithieux. 2014. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156 (1-2):84–96. doi: 10.1016/j.cell.2013.12.016.
  • Devkota, S., Y. Wang, M. W. Musch, V. Leone, H. Fehlner-Peach, A. Nadimpalli, D. A. Antonopoulos, B. Jabri, and E. B. Chang. 2012. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 487 (7405):104–8. doi: 10.1038/nature11225.
  • De Weirdt, R., E. Hernandez-Sanabria, V. Fievez, E. Mees, A. Geirnaert, F. Van Herreweghen, R. Vilchez-Vargas, P. Van den Abbeele, R. Jauregui, D. H. Pieper, et al. 2017. Mucosa-associated biohydrogenating microbes protect the simulated colon microbiome from stress associated with high concentrations of poly-unsaturated fat. Environmental Microbiology 19 (2):722–39. doi: 10.1111/1462-2920.13622.
  • de Wit, N., M. Derrien, H. Bosch-Vermeulen, E. Oosterink, S. Keshtkar, C. Duval, J. de Vogel-van den Bosch, M. Kleerebezem, M. Müller, and R. van der Meer. 2012. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. American Journal of Physiology. Gastrointestinal and Liver Physiology 303 (5):G589–99. doi: 10.1152/ajpgi.00488.2011.
  • DiNicolantonio, J. J., V. Mehta, N. Onkaramurthy, and J. H. O'Keefe. 2018. Fructose-induced inflammation and increased cortisol: A new mechanism for how sugar induces visceral adiposity. Progress in Cardiovascular Diseases 61 (1):3–9. doi: 10.1016/j.pcad.2017.12.001.
  • Do, M. H., E. Lee, M. J. Oh, Y. Kim, and H. Y. Park. 2018. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change. Nutrients 10 (6):761. doi: 10.3390/nu10060761.
  • Dragano, N. R. V., C. Solon, A. F. Ramalho, R. F. de Moura, D. S. Razolli, E. Christiansen, C. Azevedo, T. Ulven, and L. A. Velloso. 2017. Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation. Journal of Neuroinflammation 14 (1):91. doi: 10.1186/s12974-017-0869-7.
  • Druart, C., L. B. Bindels, R. Schmaltz, A. M. Neyrinck, P. D. Cani, J. Walter, A. E. Ramer-Tait, and N. M. Delzenne. 2015. Ability of the gut microbiota to produce PUFA-derived bacterial metabolites: Proof of concept in germ-free versus conventionalized mice. Molecular Nutrition & Food Research 59 (8):1603–13. doi: 10.1002/mnfr.201500014.
  • Eikelboom, R., and R. Hewitt. 2016. Intermittent access to a sucrose solution for rats causes long-term increases in consumption. Physiology & Behavior 165:77–85. doi: 10.1016/j.physbeh.2016.07.002.
  • Erny, D., A. L. Hrabě de Angelis, D. Jaitin, P. Wieghofer, O. Staszewski, E. David, H. Keren-Shaul, T. Mahlakoiv, K. Jakobshagen, T. Buch, et al. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience 18 (7):965–77. doi: 10.1038/nn.4030.
  • Everard, A., C. Belzer, L. Geurts, J. P. Ouwerkerk, C. Druart, L. B. Bindels, Y. Guiot, M. Derrien, G. G. Muccioli, N. M. Delzenne, et al. 2013. Cross-talk between Akkermansiamuciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America 110 (22):9066–71. doi: 10.1073/pnas.1219451110.
  • Fava, F.,. R. Gitau, B. A. Griffin, G. R. Gibson, K. M. Tuohy, and J. A. Lovegrove. 2013. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. International Journal of Obesity (2005) 37 (2):216–23. doi: 10.1038/ijo.2012.33.
  • Fernandes, M. F., M. C. Tache, S. L. Klingel, F. Leri, and D. M. Mutch. 2018. Safflower (n-6) and flaxseed (n-3) high-fat diets differentially regulate hypothalamic fatty acid profiles, gene expression, and insulin signalling. Prostaglandins, Leukotrienes, and Essential Fatty Acids 128:67–73. doi: 10.1016/j.plefa.2017.12.002.
  • Forsythe, P., and W. A. Kunze. 2013. Voices from within: Gut microbes and the CNS. Cellular and Molecular Life Sciences : CMLS 70 (1):55–69. doi: 10.1007/s00018-012-1028-z.
  • Forsythe, P., W. Kunze, and J. Bienenstock. 2016. Moody microbes or fecal phrenology: What do we know about the microbiota-gut-brain axis? BMC Medicine 14:58. doi: 10.1186/s12916-016-0604-8.
  • Freeman, C. R., A. Zehra, V. Ramirez, C. E. Wiers, N. D. Volkow, and G. J. Wang. 2018. Impact of sugar on the body, brain, and behavior. Frontiers in Bioscience (Landmark Edition) 23:2255–66. (Landmark Ed). doi: 10.2741/4704.
  • Frost, G., M. L. Sleeth, M. Sahuri-Arisoylu, B. Lizarbe, S. Cerdan, L. Brody, J. Anastasovska, S. Ghourab, M. Hankir, S. Zhang, et al. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications 5:3611. doi: 10.1038/ncomms4611.
  • Fuente-Martín, E., C. García-Cáceres, F. Díaz, P. Argente-Arizón, M. Granado, V. Barrios, J. Argente, and J. A. Chowen. 2013. Hypothalamic inflammation without astrogliosis in response to high sucrose intake is modulated by neonatal nutrition in male rats. Endocrinology 154 (7):2318–30. doi: 10.1210/en.2012-2196.
  • Furness, J. B., L. R. Rivera, H. J. Cho, D. M. Bravo, and B. Callaghan. 2013. The gut as a sensory organ. Nature Reviews. Gastroenterology & Hepatology 10 (12):729–40. doi: 10.1038/nrgastro.2013.180.
  • Gao, R., C. Zhu, H. Li, M. Yin, C. Pan, L. Huang, C. Kong, X. Wang, Y. Zhang, S. Qu, et al. 2018. Dysbiosis Signatures of Gut Microbiota Along the Sequence from Healthy, Young Patients to Those with Overweight and Obesity. Obesity (Silver Spring, Md.) 26 (2):351–61. doi: 10.1002/oby.22088.
  • Ghosh, S., E. Molcan, D. DeCoffe, C. Dai, and D. L. Gibson. 2013. Diets rich in n-6 PUFA induce intestinal microbial dysbiosis in aged mice. The British Journal of Nutrition 110 (3):515–23. doi: 10.1017/S0007114512005326.
  • Graf, D., R. Di Cagno, F. Fåk, H. J. Flint, M. Nyman, M. Saarela, and B. Watzl. 2015. Contribution of diet to the composition of the human gut microbiota. Microbial Ecology in Health and Disease 26:26164. doi: 10.3402/mehd.v26.26164.
  • Greenfield, L. K., and C. Whitfield. 2012. Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. Carbohydrate Research 356:12–24. doi: 10.1016/j.carres.2012.02.027.
  • Hamilton, M. K., and H. E. Raybould. 2016. Bugs, guts and brains, and the regulation of food intake and body weight. International Journal of Obesity Supplements 6 (Suppl 1):S8–S14. doi: 10.1038/ijosup.2016.3.
  • Hargrave, S. L., T. L. Davidson, W. Zheng, and K. P. Kinzig. 2016. Western diets induce blood-brain barrier leakage and alter spatial strategies in rats. Behavioral Neuroscience 130 (1):123–35. doi: 10.1037/bne0000110.
  • Hsu, T. M., V. R. Konanur, L. Taing, R. Usui, B. D. Kayser, M. I. Goran, and S. E. Kanoski. 2015. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus 25 (2):227–39. doi: 10.1002/hipo.22368.
  • Jamar, G., A. B. Santamarina, G. C. Dias, D. C. L. Masquio, V. V. de Rosso, and L. P. Pisani. 2018. Relationship between fatty acids intake and Clostridium coccoides in obese individuals with metabolic syndrome. Food Research International (Ottawa, Ont.) 113:86–92. doi: 10.1016/j.foodres.2018.07.002.
  • Jang, C., S. Hui, W. Lu, A. J. Cowan, R. J. Morscher, G. Lee, W. Liu, G. J. Tesz, M. J. Birnbaum, and J. D. Rabinowitz. 2018. The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids. Cell Metabolism 27 (2):351–61. doi: 10.1016/j.cmet.2017.12.016.
  • Jena, P. K., L. Sheng, J. Di Lucente, L. W. Jin, I. Maezawa, and Y. Y. Wan. 2018. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity. FASEB Journal : official Publication of the Federation of American Societies for Experimental Biology 32 (5):2866–77. doi: 10.1096/fj.201700984RR.
  • Jin, R., A. Willment, S. S. Patel, X. Sun, M. Song, Y. O. Mannery, A. Kosters, C. J. McClain, and M. B. Vos. 2014. Fructose induced endotoxemia in pediatric nonalcoholic Fatty liver disease. International Journal of Hepatology 2014:560620. doi: 10.1155/2014/560620.
  • Kaliannan, K.,. B. Wang, X. Y. Li, K. J. Kim, and J. X. Kang. 2015. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Scientific Reports 5:11276. doi: 10.1038/srep11276.
  • Kavanagh, K.,. A. T. Wylie, K. L. Tucker, T. J. Hamp, R. Z. Gharaibeh, A. A. Fodor, and J. M. Cullen. 2013. Dietary fructose induces endotoxemia and hepatic injury in calorically controlled primates. The American Journal of Clinical Nutrition 98 (2):349–57. doi: 10.3945/ajcn.112.057331.
  • Kishino, S., M. Takeuchi, S. B. Park, A. Hirata, N. Kitamura, J. Kunisawa, H. Kiyono, R. Iwamoto, Y. Isobe, M. Arita, et al. 2013. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proceedings of the National Academy of Sciences of the United States of America 110 (44):17808–13. doi: 10.1073/pnas.1312937110.
  • Kleerebezem, M. 2018. Microbial metabolic gatekeeping in the jejunum. Nature Microbiology 3 (6):650–1. doi: 10.1038/s41564-018-0172-0.
  • Korpela, K. 2018. Diet, Microbiota, and Metabolic Health: Trade-Off Between Saccharolytic and Proteolytic Fermentation. Annual Review of Food Science and Technology 9:65–84. doi: 10.1146/annurev-food-030117-012830.
  • Kreutzer, C., S. Peters, D. M. Schulte, D. Fangmann, K. Türk, S. Wolff, T. van Eimeren, M. Ahrens, J. Beckmann, C. Schafmayer, et al. 2017. Hypothalamic inflammation in human obesity is mediated by environmental and genetic factors. Diabetes 66 (9):2407–15. doi: 10.2337/db17-0067.
  • Kunze, W. A., Y. K. Mao, B. Wang, J. D. Huizinga, X. Ma, P. Forsythe, and J. Bienenstock. 2009. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium dependent potassium channel opening. Journal of Cellular and Molecular Medicine 13 (8B):2261–70. doi: 10.1111/j.1582-4934.2009.00686.x.
  • Lancaster, G. I., K. G. Langley, N. A. Berglund, H. L. Kammoun, S. Reibe, E. Estevez, J. Weir, N. A. Mellett, G. Pernes, J. R. W. Conway, et al. 2018. Evidence that TLR4 Is Not a Receptor for Saturated Fatty Acids but Mediates Lipid-Induced Inflammation by Reprogramming Macrophage Metabolism. Cell Metabolism 27 (5):1096–110.e5. doi: 10.1016/j.cmet.2018.03.014.
  • Laugerette, F., J. P. Furet, C. Debard, P. Daira, E. Loizon, A. Geloen, C. O. Soulage, C. Simonet, J. Lefils-Lacourtablaise, N. Bernoud-Hubac, et al. 2012. Oil composition of high-fat diet affects metabolic inflammation differently in connection with endotoxin receptors in mice. American Journal of Physiology. Endocrinology and Metabolism 302 (3):e374–86. doi: 10.1152/ajpendo.00314.2011.
  • Lecomte, V., N. O. Kaakoush, C. A. Maloney, M. Raipuria, K. D. Huinao, H. M. Mitchell, and M. J. Morris. 2015. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLoS One. 10 (5):e0126931. doi: 10.1371/journal.pone.0126931.
  • Lee, H. C., S. C. Yu, Y. C. Lo, I. H. Lin, T. H. Tung, and S. Y. Huang. 2019. A high linoleic acid diet exacerbates metabolic responses and gut microbiota dysbiosis in obese rats with diabetes mellitus. Food & Function 10 (2):786–98. doi: 10.1039/c8fo02423e.
  • Lowette, K., L. Roosen, J. Tack, and P. Vanden Berghe. 2015. Effects of high-fructose diets on central appetite signaling and cognitive function. Frontiers in Nutrition 2:5. doi: 10.3389/fnut.2015.00005. eCollection 2015. Review.
  • Li, J. M., C. X. Ge, M. X. Xu, W. Wang, R. Yu, C. Y. Fan, and L. D. Kong. 2015. Betaine recovers hypothalamic neural injury by inhibiting astrogliosis and inflammation in fructose-fed rats. Molecular Nutrition & Food Research 59 (2):189–202. doi: 10.1002/mnfr.201400307.
  • Liu, T., H. Hougen, A. C. Vollmer, and S. M. Hiebert. 2012. Gut bacteria profiles of Mus musculus at the phylum and family levels are influenced by saturation of dietary fatty acids. Anaerobe 18 (3):331–7. doi: 10.1016/j.anaerobe.2012.02.004.
  • Macia, L., A. N. Thorburn, L. C. Binge, E. Marino, K. E. Rogers, K. M. Maslowski, A. T. Vieira, J. Kranich, and C. R. Mackay. 2012. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunological Reviews 245 (1):164–76. doi: 10.1111/j.1600-065X.2011.01080.x.
  • Mamounis, K. J., A. Yasrebi, and T. A. Roepke. 2017. Linoleic acid causes greater weight gain than saturated fat without hypothalamic inflammation in the male mouse. The Journal of Nutritional Biochemistry 40:122–31. doi: 10.1016/j.jnutbio.2016.10.016.
  • Marques, C., M. Meireles, A. Faria, and C. Calhau. 2016. High-fat diet-induced dysbiosis as a cause of neuroinflammation. Biological Psychiatry 80 (1):e3–4. doi: 10.1016/j.biopsych.2015.10.027.
  • Matt, S. M., J. M. Allen, M. A. Lawson, L. J. Mailing, J. A. Woods, and R. W. Johnson. 2018. Butyrate and Dietary Soluble Fiber Improve Neuroinflammation Associated With Aging in Mice. Frontiers in Immunology 9:1832. doi: 10.3389/fimmu.2018.01832.
  • McVey Neufeld, K. A., Y. K. Mao, J. Bienenstock, J. A. Foster, and W. A. Kunze. 2013. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterology and Motility : The Official Journal of the European Gastrointestinal Motility Society 25 (2):183–e88. doi: 10.1111/nmo.12049.
  • Meireles, M.,. C. Marques, S. Norberto, I. Fernandes, N. Mateus, C. Rendeiro, J. P. Spencer, A. Faria, and C. Calhau. 2015. The impact of chronic blackberry intake on the neuroinflammatory status of rats fed a standard or high-fat diet. The Journal of Nutritional Biochemistry 26 (11):1166–73. doi: 10.1016/j.jnutbio.2015.05.008.
  • Meireles, M.,. L. M. Rodríguez-Alcalá, C. Marques, S. Norberto, J. Freitas, I. Fernandes, N. Mateus, A. Gomes, A. Faria, and C. Calhau. 2016. Effect of chronic consumption of blackberry extract on high-fat induced obesity in rats and its correlation with metabolic and brain outcomes. Food & Function 7 (1):127–39. doi: 10.1039/c5fo00925a.
  • Meneses, G., M. Bautista, A. Florentino, G. Díaz, G. Acero, H. Besedovsky, D. Meneses, A. Fleury, A. Del Rey, G. Gevorkian, et al. 2016. Electric stimulation of the vagus nerve reduced mouse neuroinflammation induced by lipopolysaccharide. J. Inflamm 13 (33) (Lond).
  • Michel, L., and A. Prat. 2016. One more role for the gut: Microbiota and blood brain barrier. Annals of Translational Medicine 4 (1):15. doi: 10.3978/j.issn.2305-5839.2015.10.16.
  • Milanski, M.,. G. Degasperi, A. Coope, J. Morari, R. Denis, D. E. Cintra, D. M. Tsukumo, G. Anhe, M. E. Amaral, H. K. Takahashi, et al. 2009. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: Implications for the pathogenesis of obesity. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 29 (2):359–70. doi: 10.1523/JNEUROSCI.2760-08.2009.
  • Moraes, J. C., A. Coope, J. Morari, D. E. Cintra, E. A. Roman, J. R. Pauli, T. Romanatto, J. B. Carvalheira, A. L. Oliveira, M. J. Saad, et al. 2009. High-fat diet induces apoptosis of hypothalamic neurons. PLoS One. 4 (4):e5045. doi: 10.1371/journal.pone.0005045.
  • Mujico, J. R., G. C. Baccan, A. Gheorghe, L. E. Diaz, and A. Marcos. 2013. Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. The British Journal of Nutrition 110 (4):711–20. doi: 10.1017/S0007114512005612.
  • Mulders, R. J., K. C. G. de Git, E. Schéle, S. L. Dickson, Y. Sanz, and R. A. H. Adan. 2018. Microbiota in obesity: Interactions with enteroendocrine, immune and central nervous systems. Obesity Reviews : An Official Journal of the International Association for the Study of Obesity 19 (4):435–51. doi: 10.1111/obr.12661.
  • Nakandakari, S. C. B. R., V. R. Muñoz, G. K. Kuga, R. C. Gaspar, M. R. Sant’Ana, I. C. B. Pavan, L. G. S. da Silva, F. M. Simabuco, A. S. R. da Silva, L. P. de Moura, et al. 2019. Short-term high-fat diet modulates several inflammatory, ER stress, and apoptosis markers in the hippocampus of young mice. Brain Behav. Immun S0889-1591:30181–3. doi: 10.1016/j.bbi.2019.02.016.
  • Nakayama, J., A. Yamamoto, L. A. Palermo-Conde, K. Higashi, K. Sonomoto, J. Tan, and Y. K. Lee. 2017. Impact of westernized diet on gut microbiota in children on Leyte island. Frontiers in Microbiology 8:197. doi: 10.3389/fmicb.2017.00197.
  • Ochoa, M., J. P. Lallès, C. H. Malbert, and D. Val-Laillet. 2015. Dietary sugars: Their detection by the gut–brain axis and their peripheral and central effects in health and diseases. European Journal of Nutrition 54 (1):1–24. doi: 10.1007/s00394-014-0776-y.
  • O'Neill, L. A. J., D. Golenbock, and A. G. Bowie. 2013. The history of Toll-like receptors – redefining innate immunity. Nature Reviews. Immunology 13 (6):453–60. doi: 10.1038/nri3446.
  • Patnala, R., T. V. Arumugam, N. Gupta, and S. T. Dheen. 2017. HDAC inhibitor sodium butyrate-mediated epigenetic regulation enhances neuroprotective function of microglia during ischemic stroke. Molecular Neurobiology 54 (8):6391–411. doi: 10.1007/s12035-016-0149-z.
  • Perez-Burgos, A., Y. K. Mao, J. Bienenstock, and W. A. Kunze. 2014. The gut-brain axis rewired: Adding a functional vagal nicotinic “sensory synapse. FASEB Journal: official Publication of the Federation of American Societies for Experimental Biology 28 (7):3064–74. doi: 10.1096/fj.13-245282.
  • Pisani, L. P., D. Estadella, and D. A. Ribeiro. 2017. The Role of Toll Like Receptors (TLRs) in Oral Carcinogenesis. Anticancer Research 37 (10):5389–94.
  • Portune, K. J., A. Benítez-Páez, E. M. Del Pulgar, V. Cerrudo, and Y. Sanz. 2017. Gut microbiota, diet, and obesity-related disorders – The good, the bad, and the future challenges. Molecular Nutrition & Food Research. :61. doi: 10.1002/mnfr.201600252.
  • Prinz, M. 2014. Microglia and monocytes: Molecularly defined. Acta Neuropathologica 128 (3):317–8. doi: 10.1007/s00401-014-1331-x.
  • Pu, S., H. R. Khazanehei, D. O. Krause, S. G. West, P. M. Kris-Etherton, D. J. Jenkins, B. Lamarche, P. J. Jones, and E. Khafipour. 2012. Effects of unsaturated fatty acids (USFA) on human gut microbiome profile in a subset of canola oil multicenter intervention trial (COMIT). FASEB Journal. 27
  • Pu, S., H. Khazanehei, P. J. Jones, and E. Khafipour. 2016. Interactions between Obesity Status and Dietary Intake of Monounsaturated and Polyunsaturated Oils on Human Gut Microbiome Profiles in the Canola Oil Multicenter Intervention Trial (COMIT). Frontiers in Microbiology 7:1612.
  • Rajkumar, H., N. Mahmood, M. Kumar, S. R. Varikuti, H. R. Challa, and S. P. Myakala. 2014. Effect of probiotic (VSL#3) and omega-3 on lipid profile, insulin sensitivity, inflammatory markers, and gut colonization in overweight adults: A randomized, controlled trial. Mediators of Inflammation 2014:348959. doi: 10.1155/2014/348959.
  • Reigstad, C. S., C. E. Salmonson, J. F. Rainey, 3rd., J. H. Szurszewski, D. R. Linden, J. L. Sonnenburg, G. Farrugia, and P. C. Kashyap. 2015. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB Journal : official Publication of the Federation of American Societies for Experimental Biology 29 (4):1395–403. doi: 10.1096/fj.14-259598.
  • Robertson, R. C., C. Seira Oriach, K. Murphy, G. M. Moloney, J. F. Cryan, T. G. Dinan, R. Paul Ross, and C. Stanton. 2017. Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood. Brain, Behavior, and Immunity 59:21–37. doi: 10.1016/j.bbi.2016.07.145.
  • Roland, B. C., D. Lee, L. S. Miller, A. Vegesna, R. Yolken, E. Severance, E. Prandovszky, X. E. Zheng, and G. E. Mullin. 2018. Obesity increases the risk of small intestinal bacterial overgrowth (SIBO). Neurogastroenterol. Motil 30 doi: 10.1111/nmo.13199.
  • Rosas-Villegas, A., M. Sánchez-Tapia, A. Avila-Nava, V. Ramírez, A. R. Tovar, and N. Torres. 2017. Differential effect of sucrose and fructose in combination with a high fat diet on intestinal microbiota and kidney oxidative stress. Nutrients 9 (4):393. doi: 10.3390/nu9040393.
  • Roytio, H., K. Mokkala, T. Vahlberg, and K. Laitinen. 2017. Dietary intake of fat and fibre according to reference values relates to higher gut microbiota richness in overweight pregnant women. The British Journal of Nutrition 118 (5):343–52. doi: 10.1017/S0007114517002100.
  • Scott, K. P., S. W. Gratz, P. O. Sheridan, H. J. Flint, and S. H. Duncan. 2013. The influence of diet on the gut microbiota. Pharmacological Research 69 (1):52–60. doi: 10.1016/j.phrs.2012.10.020.
  • Sears, B., and M. Perry. 2015. The role of fatty acids in insulin resistance. Lipids in Health and Disease 14:121. doi: 10.1186/s12944-015-0123-1.
  • Seeley, J. J., and S. Ghosh. 2017. Molecular mechanisms of innate memory and tolerance to LPS. Journal of Leukocyte Biology 101 (1):107–19. doi: 10.1189/jlb.3MR0316-118RR.
  • Semova, I., J. D. Carten, J. Stombaugh, L. C. Mackey, R. Knight, S. A. Farber, and J. F. Rawls. 2012. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host & Microbe 12 (3):277–88. doi: 10.1016/j.chom.2012.08.003.
  • Sen, T., C. R. Cawthon, B. T. Ihde, A. Hajnal, P. M. DiLorenzo, C. B. de La Serre, and K. Czaja. 2017. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiology & Behavior 173:305–17. doi: 10.1016/j.physbeh.2017.02.027.
  • Shabab, T., R. Khanabdali, S. Z. Moghadamtousi, H. A. Kadir, and G. Mohan. 2017. Neuroinflammation pathways: A general review. The International Journal of Neuroscience 127 (7):624–33. doi: 10.1080/00207454.2016.1212854.
  • Shapiro, A., N. Tumer, Y. Gao, K. Y. Cheng, and P. J. Scarpace. 2011. Prevention and reversal of diet induced leptin resistance with a sugar-free diet despite high fat content. The British Journal of Nutrition 106 (3):390–7. doi: 10.1017/S000711451100033X.
  • Shechter, A., and G. J. Schwartz. 2018. Gut-brain nutrient sensing in food reward. Appetite 122:32–5. X. doi: 10.1016/j.appet.2016.12.009.
  • Shi, H., M. V. Kokoeva, K. Inouye, I. Tzameli, H. Yin, and J. S. Flier. 2006. TLR4 links innate immunity and fatty acid–induced insulin resistance. J. Clin. Invest 116:3015–25. doi: 10.1172/JCI28898.
  • Soliman, M. L., M. D. Smith, H. M. Houdek, and T. A. Rosenberger. 2012. Acetate supplementation modulates brain histone acetylation and decreases interleukin-1β expression in a rat model of neuroinflammation. J. Neuroinflammation 9:51.
  • Stecher, B., L. Maier, and W. D. Hardt. 2013. Blooming” in the gut: How dysbiosis might contribute to pathogen evolution. Nature Reviews Microbiology. 11:277–84. doi: 10.1038/nrmicro2989.
  • Takechi, R., M. M. Pallebage-Gamarallage, V. Lam, C. Giles, and J. C. Mamo. 2013. Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood-brain barrier function in wildtype mice. J. Neuroinflammation 10:73.
  • Tay, T. L., J. C. Savage, C. W. Hui, K. Bisht, and M. È. Tremblay. 2017. Microglia across the lifespan: From origin to function in brain development, plasticity and cognition. Journal of Physiology. 595:1929–45. doi: 10.1113/JP272134.
  • Thaler, J. P., C. X. Yi, E. A. Schur, S. J. Guyenet, B. H. Hwang, M. O. Dietrich, X. Zhao, D. A. Sarruf, V. Izgur, and K. R. Maravilla. 2012. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest 122:153–62. doi: 10.1172/JCI59660.
  • Torres-Fuentes, C., H. Schellekens, T. G. Dinan, and J. F. Cryan. 2017. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol. Hepatol 2:747–56. doi: 10.1016/S2468-1253(17)30147-4.
  • Tran, D. Q., E. K. Tse, M. H. Kim, and D. D. Belsham. 2016. Diet-induced cellular neuroinflammation in the hypothalamus: Mechanistic insights from investigation of neurons and microglia. Molecular and Cellular Endocrinology. 438:18–26. doi: 10.1016/j.mce.2016.05.015.
  • Turnbaugh, P. J., F. Bäckhed, L. Fulton, and J. I. Gordon. 2008. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host & Microbe. 3:213–23. doi: 10.1016/j.chom.2008.02.015.
  • Department Of, U. S., H. Human. and  S. andU.S. Department of Agriculture (USDA)December 2015. 2015-2020 dietary guidelines for Americans. 8th ed.
  • Valdearcos, M., M. M. Robblee, D. I. Benjamin, D. K. Nomura, A. W. Xu, and S. K. Koliwad. 2014. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep 9:2124–38. doi: 10.1016/j.celrep.2014.11.018.
  • Volynets, V.,. S. Louis, D. Pretz, L. Lang, M. J. Ostaff, J. Wehkamp, and S. C. Bischoff. 2017. Intestinal barrier function and the gut microbiome are differentially affected in mice fed a Western-style diet or drinking water supplemented with fructose. Journal of Nutrition. 147:770–80. doi: 10.3945/jn.116.242859.
  • Wadhwa, M., A. Prabhakar, K. Ray, K. Roy, P. Kumari, P. K. Jha, K. Kishore, S. Kumar, and U. Panjwani. 2017. Inhibiting the microglia activation improves the spatial memory and adult neurogenesis in rat hippocampus during 48 h of sleep deprivation. J. Neuroinflammation 14:222. doi: 10.1186/s12974-017-0998-z.
  • Wang, G. J., D. Tomasi, A. Convit, J. Logan, C. T. Wong, E. Shumay, J. S. Fowler, and N. D. Volkow. 2014. BMI modulates calorie-dependent dopamine changes in accumbens from glucose intake. PLoS One. 9:e101585. doi: 10.1371/journal.pone.0101585.
  • Watanabe, R. L., I. S. Andrade, M. M. Telles, K. T. Albuquerque, C. M. Nascimento, L. M. Oyama, D. E. Casarini, and E. B. Ribeiro. 2010. Long-term consumption of fish oil-enriched diet impairs serotonin hypophagia in rats. Cell Mol. Neurobiol 30:1025–33. doi: 10.1007/s10571-010-9533-9.
  • Watson, H., S. Mitra, F. C. Croden, M. Taylor, H. M. Wood, S. L. Perry, J. A. Spencer, P. Quirke, G. J. Toogood, C. L. Lawton, et al. 2018. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 67:1974–83. doi: 10.1136/gutjnl-2017-314968.
  • Wolters, M., J. Ahrens, M. Romaní-Pérez, C. Watkins, Y. Sanz, A. Benítez-Páez, C. Stanton, and K. Günther. 2018. Dietary fat, the gut microbiota, and metabolic health – A systematic review conducted within the MyNewGut project. Clin. Nutr S0261-5614:32592–5. doi: 10.1016/j.clnu.2018.12.024.
  • Wu, H. W., L. F. Ren, X. Zhou, and D. W. Han. 2015. A high-fructose diet induces hippocampal insulin resistance and exacerbates memory deficits in male Sprague-Dawley rats. Nutr Neurosci 18:323–8. doi: 10.1179/1476830514Y.0000000133.
  • Xu, M. X., R. Yu, L. F. Shao, Y. X. Zhang, C. X. Ge, X. M. Liu, W. Y. Wu, J. M. Li, and L. D. Kong. 2016. Up-regulated fractalkine (FKN) and its receptor CX3CR1 are involved in fructose-induced neuroinflammation: Suppression by curcumin. Brain Behav. Immun 58:69–81. doi: 10.1016/j.bbi.2016.01.001.
  • Yano, J. M., K. Yu, G. P. Donaldson, G. G. Shastri, P. Ann, L. Ma, C. R. Nagler, R. F. Ismagilov, S. K. Mazmanian, and E. Y. Hsiao. 2015. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–76. doi: 10.1016/j.cell.2015.02.047.
  • Yin, X., D. D. Heeney, Y. T. Srisengfa, S. Y. Chen, C. M. Slupsky, and M. L. Marco. 2018. Sucrose metabolism alters Lactobacillus plantarum survival and interactions with the microbiota in the digestive tract. FEMS Microbiology Ecology. 94 doi: 10.1093/femsec/fiy084.
  • Zhang, C., M. Zhang, S. Wang, R. Han, Y. Cao, W. Hua, Y. Mao, X. Zhang, X. Pang, C. Wei, et al. 2010. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME Journal. 4:232–41. doi: 10.1038/ismej.2009.112.
  • Zhang, C., M. Zhang, X. Pang, Y. Zhao, L. Wang, and L. Zhao. 2012. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME Journal. 6:1848e57. doi: 10.1038/ismej.2012.27.
  • Zhernakova, A., A. Kurilshikov, M. J. Bonder, E. F. Tigchelaar, M. Schirmer, T. Vatanen, Z. Mujagic, A. V. Vila, G. Falony, S. Vieira-Silva, et al. 2016. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352:565–9. doi: 10.1126/science.aad3369.
  • Zhuang, P., Q. Shou, Y. Lu, G. Wang, J. Qiu, J. Wang, L. He, J. Chen, J. Jiao, and Y. Zhang. 2017. Arachidonic acid sex-dependently affects obesity through linking gut microbiota-driven inflammation to hypothalamus-adipose-liver axis. Biochim. Biophys. Acta. Mol. Basis. Dis 1863:2715–26. doi: 10.1016/j.bbadis.2017.07.003.
  • Zoetendal, E. G., and W. M. de Vos. 2014. Effect of diet on the intestinal microbiota and its activity. Curr. Opin. Gastroenterol 30:189–95. doi: 10.1097/MOG.0000000000000048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.