608
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Everybody loves cheese: crosslink between persistence and virulence of Shiga-toxin Escherichia coli

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Ades, S. E. 2004. Control of the alternative sigma factor sigmaE in Escherichia coli. Current Opinion in Microbiology 7 (2):157–62. doi: 10.1016/j.mib.2004.02.010.
  • Ades, S. E., L. E. Connolly, B. M. Alba, and C. A. Gross. 1999. The Escherichia coli sigma(E)-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor. Genes & Development 13 (18):2449–61. doi: 10.1101/gad.13.18.2449.
  • Ades, S. E., I. L. Grigorova, and C. A. Gross. 2003. Regulation of the alternative sigma factor sigma(E) during initiation, adaptation, and shutoff of the extracytoplasmic heat shock response in Escherichia coli. Journal of Bacteriology 185 (8):2512–9. doi: 10.1128/jb.185.8.2512-2519.2003.
  • Ahmed, A. M., and T. Shimamoto. 2015. Molecular analysis of multidrug resistance in Shiga toxin-producing Escherichia coli O157:H7 isolated from meat and dairy products. International Journal of Food Microbiology 193:68–73. doi: 10.1016/j.ijfoodmicro.2014.10.014.
  • Ahmed, W. F., and A. Samer. 2017. Detection of Shiga toxin – Producing Escherichia coli in raw and pasteurized milk. Zagazig Veterinary Journal 45 (1):47–54. doi: 10.21608/zvjz.2017.7686.
  • Akhtar, M., A. Maserati, F. Diez-Gonzalez, and F. Sampedro. 2016. Does antibiotic resistance influence Shiga-toxigenic Escherichia coli O26 and O103 survival to stress environments? Food Control 68:330–6. doi: 10.1016/j.foodcont.2016.04.011.
  • Alba, B. M., H. J. Zhong, J. C. Pelayo, and C. A. Gross. 2001. DegS (HhoB) is an essential Escherichia coli gene whose indispensable function is to provide sigma (E) activity. Molecular Microbiology 40 (6):1323–33. doi: 10.1046/j.1365-2958.2001.02475.x.
  • Allen, K. J., D. Lepp, R. C. McKellar, and M. W. Griffiths. 2008. Examination of stress and virulence gene expression in Escherichia coli O157:H7 using targeted microarray analysis. Foodborne Pathogens and Disease 5 (4):437–47.
  • Altendorf, K., P. Voelkner, and W. Puppe. 1994. The sensor kinase KdpD and the response regulator KdpE control expression of the KdpFABC operon in Escherichia coli. Research in Microbiology 145 (5–6):374–81. doi: 10.1016/0923-2508(94)90084-1.
  • Andreoletti, O., H. Budka, S. Buncic, P. Colin, J. D. Collins, A. De, J. Griffin, A. Havelaar, J. Hope, G. Klein, et al. 2007. Monitoring of verotoxigenic Escherichia coli (VTEC) and identification of human pathogenic VTEC types. The EFSA Journal 579:1–61.
  • Arnold, K. W., and C. W. Kaspar. 1995. Starvation- and stationary-phase-induced acid tolerance in Escherichia coli O157:H7. Applied and Environmental Microbiology 61 (5):2037–9. doi: 10.1128/AEM.61.5.2037-2039.1995.
  • Arsène, F., T. Tomoyasu, and B. Bukau. 2000. The heat shock response of Escherichia coli. International Journal of Food Microbiology 55 (1–3):3–9. doi: 10.1016/S0168-1605(00)00206-3.
  • Artursson, K., J. Schelin, S. Thisted Lambertz, I. Hansson, and E. Olsson Engvall. 2018. Foodborne pathogens in unpasteurized milk in Sweden. International Journal of Food Microbiology 284:120–7. doi: 10.1016/j.ijfoodmicro.2018.05.015.
  • Bae, Y.-M., and S.-Y. Lee. 2017. Effect of salt addition on acid resistance response of Escherichia coli O157:H7 against acetic acid. Food Microbiology 65:74–82. doi: 10.1016/j.fm.2016.12.021.
  • Bandyopadhyay, S., C. Lodh, H. Rahaman, D. Bhattacharya, A. K. Bera, F. A. Ahmed, A. Mahanti, I. Samanta, D. K. Mondal, S. Bandyopadhyay, et al. 2012. Characterization of Shiga toxin producing (STEC) and enteropathogenic Escherichia coli (EPEC) in raw yak (Poephagus grunniens) milk and milk products. Research in Veterinary Science 93 (2):604–10. doi: 10.1016/j.rvsc.2011.12.011.
  • Batty, D., J. G. Waite-Cusic, and L. Meunier-Goddik. 2019. Influence of cheese-making recipes on the composition and characteristics of Camembert-type cheese. Journal of Dairy Science 102 (1):164–76. doi: 10.3168/jds.2018-14964.
  • Baylis, C. L. 2009. Raw milk and raw milk cheeses as vehicles for infection by verocytotoxin-producing Escherichia coli. International Journal of Dairy Technology 62 (3):293–307. doi: 10.1111/j.1471-0307.2009.00504.x.
  • Bearson, S., B. Bearson, and J. W. Foster. 1997. Acid stress responses in Enterobacteria. FEMS Microbiology Letters 147 (2):173–80. doi: 10.1111/j.1574-6968.1997.tb10238.x.
  • Bekele, B., E. B. Hansen, M. Eshetu, R. Ipsen, and Y. Hailu. 2019. Effect of starter cultures on properties of soft white cheese made from camel (Camelus dromedarius) milk. Journal of Dairy Science 102 (2):1108–15. doi: 10.3168/jds.2018-15084.
  • Benkerroum, N. 2016. Biogenic amines in dairy products: Origin, incidence, and control means. Comprehensive Reviews in Food Science and Food Safety 15 (4):801–26. doi: 10.1111/1541-4337.12212.
  • Bennett, R. J., and K. A. Johnston. 2004. General aspects of cheese technology. In Cheese: Chemistry, physics and microbiology, eds. P. F. Fox, P. L. H. McSweeney, T. M. Cogan, and T. P. Guinee, 23–XIII. Cambridge, MA: Academic Press.
  • Bergholz, T. M., S. K. Vanaja, and T. S. Whittam. 2009. Gene expression induced in Escherichia coli O157:H7 upon exposure to model apple juice. Applied and Environmental Microbiology 75 (11):3542–53. doi: 10.1128/AEM.02841-08.
  • Blaiotta, G., N. Murru, A. D. Cerbo, M. Succi, R. Coppola, and M. Aponte. 2017. Commercially standardized process for probiotic “Italico” cheese production. LWT - Food Science and Technology 79:601–8. doi: 10.1016/j.lwt.2016.11.008.
  • Bojer, M. S., C. Struve, H. Ingmer, D. S. Hansen, and K. A. Krogfelt. 2010. Heat resistance mediated by a new plasmid encoded Clp ATPase, ClpK, as a possible novel mechanism for nosocomial persistence of Klebsiella pneumoniae. PLoS One 5 (11):e15467. doi: 10.1371/journal.pone.0015467.
  • Bolton, D. J. 2011. Verocytotoxigenic (Shiga toxin-producing) Escherichia coli: Virulence factors and pathogenicity in the farm to fork paradigm. Foodborne Pathogens and Disease 8 (3):357–65. doi: 10.1089/fpd.2010.0699.
  • Bonanno, L., B. Delubac, V. Michel, and F. Auvray. 2017. Influence of stress factors related to cheese-making process and to STEC detection procedure on the induction of Stx phages from STEC O26:H11. Frontiers in Microbiology 8:296. doi: 10.3389/fmicb.2017.00296.
  • Braig, K., Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, and P. B. Sigler. 1994. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371 (6498):578–86. doi: 10.1038/371578a0.
  • Brasil - ANVISA. 2001. Agência Nacional de Vigilância Sanitária - Resolução RDC nᵒ12, de 02 de janeiro de 2001. Aprova o regulamento técnico sobre padrões microbiológicos para alimentos. Diário Oficial da República Federativa do Brasil, Brasília. Accessed February 3, 2019. http://portal.anvisa.gov.br/wps/wcm/connect/a47bab8047458b909541d53fbc4c6735/RDC_12_2001.pdf?MO D=AJPERES.
  • Bukau, B. 1993. Regulation of the Escherichia coli heat-shock response. Molecular Microbiology 9 (4):671–80. doi: 10.1111/j.1365-2958.1993.tb01727.x.
  • Bukau, B., and A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92 (3):351–66. doi: 10.1016/S0092-8674(00)80928-9.
  • Bulat, T., and A. Topcu. 2019. The effect of oxidation-reduction potential on the characteristics of uf white cheese produced using single strains of Lactococcus lactis. LWT 109:296–304. doi: 10.1016/j.lwt.2019.04.025.
  • Burgess, C. M., A. Gianotti, N. Gruzdev, J. Holah, S. Knøchel, A. Lehner, E. Margas, S. S. Esser, S. Sela (Saldinger), and O. Tresse. 2016. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. International Journal of Food Microbiology 221: 37–53. doi: 10.1016/j.ijfoodmicro.2015.12.014.
  • Byrd, W., F. Ruiz-Perez, P. Setty, C. Zhu, and E. C. Boedeker. 2017. Secretion of the shiga toxin b subunit (Stx1B) via an autotransporter protein optimizes the protective immune response to the antigen expressed in an attenuated E. coli (REPEC E22Δler) vaccine strain. Veterinary Microbiology 211:180–8. doi: 10.1016/j.vetmic.2017.10.006.
  • Cai, S. J., and M. Inouye. 2002. EnvZ-OmpR interaction and osmoregulation in Escherichia coli. The Journal of Biological Chemistry 277 (27):24155–61. doi: 10.1074/jbc.M110715200.
  • Callon, C., C. Arliguie, and M.-C. Montel. 2016. Control of Shigatoxin-producing Escherichia coli in cheese by dairy bacterial strains. Food Microbiology 53 (Pt B):63–70. doi: 10.1016/j.fm.2015.08.009.
  • Campbell, E. A., J. L. Tupy, T. M. Gruber, S. Wang, M. M. Sharp, C. A. Gross, and S. A. Darst. 2003. Crystal structure of Escherichia coli ΣE with the cytoplasmic domain of its Anti-σ RseA. Molecular Cell 11 (4):1067–78. doi: 10.1016/S1097-2765(03)00148-5.
  • Cardoso, P., and J. M. Marin. 2016. Occurrence of non-O157 Shiga toxin-encoding Escherichia coli in artisanal Mozzarella cheese in Brazil: Risk factor associated with food workers. Food Science and Technology 37 (1):41–4. doi: 10.1590/1678-457x.06316.
  • Caro, I., and M. R. García-Armesto. 2007. Occurrence of Shiga toxin-producing Escherichia coli in a Spanish raw ewe’s milk cheese. International Journal of Food Microbiology 116 (3):410–3. doi: 10.1016/j.ijfoodmicro.2007.02.015.
  • Carruthers, M. D., and C. Minion. 2009. Transcriptome analysis of Escherichia coli O157:H7 EDL933 during heat shock. FEMS Microbiology Letters 295 (1):96–102. doi: 10.1111/j.1574-6968.2009.01587.x.
  • Castanie-Cornet, M. P., T. A. Penfound, D. Smith, J. F. Elliott, and J. W. Foster. 1999. Control of acid resistance in Escherichia coli. Journal of Bacteriology 181 (11):3525–35. doi: 10.1128/JB.181.11.3525-3535.1999.
  • Castro, V. S., D. K. A. Rosario, Y. S. Mutz, A. C. C. Paletta, E. E. S. Figueiredo, and C. A. Conte-Junior. 2019. Modelling inactivation of wild-type and clinical Escherichia coli O26 strains using UV-C and thermal treatment and subsequent persistence in simulated gastric fluid. Journal of Applied Microbiology 127 (5):1564–75. doi: 10.1111/jam.14397.
  • Castro, V. S., L. A. C. Teixeira, D. dos, P. Rodrigues, L. F. dos Santos, C. A. Conte-Junior, and E. E. d. S. Figueiredo. 2019. Occurrence and antimicrobial resistance of E. coli Non-O157 isolated from beef in Mato Grosso, Brazil. Tropical Animal Health and Production 51 (5):1117–23. doi: 10.1007/s11250-018-01792-z.
  • Castro, V. S., R. C. T. Carvalho, C. A. Conte-Junior, and E. E. S. Figuiredo. 2017. Shiga-toxin producing Escherichia coli: Pathogenicity, supershedding, diagnostic methods, occurrence, and foodborne outbreaks. Comprehensive Reviews in Food Science and Food Safety 16 (6):1269–80. doi: 10.1111/1541-4337.12302.
  • CDC. 2015. Foodborne outbreak online database. Accessed February 3, 2019. http://wwwn.cdc.gov/foodborneoutbreaks/.
  • CDC. 2017. National enteric disease surveillance: Shiga toxin-producing Escherichia coli (STEC) annual report, 2015. Accessed February 3, 2019. https://www.cdc.gov/nationalsurveillance/pdfs/STEC_Annual_Summary_2015-508c.pdf.
  • Centre for Food Safety. 2007. Microbial guidelines for ready-to-eat food. Accessed February 3, 2019. http://blpd.dss.go.th/micro/ready.pdf.
  • Chase-Topping, M., D. Gally, C. Low, L. Matthews, and M. Woolhouse. 2008. Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nature Reviews. Microbiology 6 (12):904–12. doi: 10.1038/nrmicro2029.
  • Chen, J., S. M. Lee, and Y. Mao. 2004. Protective effect of exopolysaccharide colanic acid of Escherichia coli O157:H7 to osmotic and oxidative stress. International Journal of Food Microbiology 93 (3):281–6. doi: 10.1016/j.ijfoodmicro.2003.12.004.
  • Cheng, H.-Y., H.-Y. Yang, and C.-C. Chou. 2002. Influence of acid adaptation on the tolerance of Escherichia coli O157:H7 to some subsequent stresses. Journal of Food Protection 65 (2):260–5. doi: 10.4315/0362-028x-65.2.260.
  • Cheville, A. M., K. W. Arnold, C. Buchrieser, C. M. Cheng, and C. W. Kaspar. 1996. RpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7. Applied and Environmental Microbiology 62 (5):1822–4. doi: 10.1128/AEM.62.5.1822-1824.1996.
  • Conway, T., and P. S. Cohen. 2015. Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiology Spectrum 3 (3). doi: 10.1128/microbiolspec.MBP-0006-2014.
  • Corratgé-Faillie, C., M. Jabnoune, S. Zimmermann, A.-A. Véry, C. Fizames, and H. Sentenac. 2010. Potassium and sodium transport in non-animal cells: The Trk/Ktr/HKT transporter family. Cellular and Molecular Life Sciences: CMLS 67 (15):2511–32. doi: 10.1007/s00018-010-0317-7.
  • Costa, M. J., L. C. Maciel, J. A. Teixeira, A. A. Vicente, and M. A. Cerqueira. 2018. Use of edible films and coatings in cheese preservation: Opportunities and challenges. Food Research International (Ottawa, Ont.) 107:84–92. doi: 10.1016/j.foodres.2018.02.013.
  • Costa, M. P., and C. A. Conte-Junior. 2015. Chromatographic methods for the determination of carbohydrates and organic acids in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety 14 (5):586–600.
  • Costa, M. P., and C. A. Conte-Junior. 2016. Chromatographic analysis of organic acids in food from animal origin. In Organic acids: Characteristics, properties and synthesis, 15. Hauppauge, NY: Nova Science Publishers.
  • Costa, M. P., B. L. Rodrigues, B. S. Frasao, and C. A. Conte-Junior. 2018. Biogenic amines as food quality index and chemical risk for human consumption. In Food quality: Balancing health and disease, eds. A. M. Grumezescu and A. M. Holban, 75–108. Cambridge, MA: Academic Press.
  • Costard, S., L. Espejo, H. Groenendaal, and F. J. Zagmutt. 2017. Outbreak-related disease burden associated with consumption of unpasteurized cow’s milk and cheese, United States, 2009–2014. Emerging Infectious Diseases 23 (6):957–64. doi: 10.3201/eid2306.151603.
  • Crépin, S., S.-M. Chekabab, G. Le Bihan, N. Bertrand, C. M. Dozois, and J. Harel. 2011. The Pho regulon and the pathogenesis of Escherichia coli. Veterinary Microbiology 153 (1–2):82–8. doi: 10.1016/j.vetmic.2011.05.043.
  • Davis, J. G. 1965. Cheese: Basic Technology. vol. 1. London: Churchill Livingstone.
  • D’Amico, D. J., and C. W. Donnelly. 2017. Growth and survival of microbial pathogens in cheese. In Cheese, 573–94. Amsterdam, the Netherlands: Elsevier.
  • D’Aoust, J. Y., C. E. Park, R. A. Szabo, E. C. Todd, D. B. Emmons, and R. C. McKellar. 1988. Thermal inactivation of Campylobacter species, Yersinia enterocolitica, and Hemorrhagic Escherichia coli O157:H7 in fluid milk. Journal of Dairy Science 71 (12):3230–6. doi: 10.3168/jds.S0022-0302(88)79928-2.
  • De Biase, D., and P. A. Lund. 2015. The Escherichia coli acid stress response and its significance for pathogenesis. Advances in Applied Microbiology 92:49–88. doi: 10.1016/bs.aambs.2015.03.002.
  • De Giorgi, S., N. Raddadi, A. Fabbri, T. Gallina Toschi, and F. Fava. 2018. Potential use of ricotta cheese whey for the production of lactobionic acid by Pseudomonas taetrolens strains. New Biotechnology 42:71–6. doi: 10.1016/j.nbt.2018.02.010.
  • Deegan, K. C., N. Heikintalo, T. Ritvanen, T. Putkonen, J. Rekonen, P. L. H. McSweeney, T. Alatossava, and H. Tuorila. 2013. Effects of low-pressure homogenisation on the sensory and chemical properties of Emmental cheese. Innovative Food Science & Emerging Technologies 19:104–14. doi: 10.1016/j.ifset.2013.04.008.
  • Delgado-Martínez, F. J., A. I. Carrapiso, R. Contador, and M. R. Ramírez. 2019. Volatile compounds and sensory changes after high pressure processing of mature “Torta Del Casar” (Raw Ewe’s Milk Cheese) during refrigerated storage. Innovative Food Science & Emerging Technologies 52:34–41. doi: 10.1016/j.ifset.2018.11.004.
  • Diezhandino, I., D. Fernández, L. González, P. L. H. McSweeney, and J. M. Fresno. 2015. Microbiological, physico-chemical and proteolytic changes in a Spanish blue cheese during ripening (Valdeón Cheese). Food Chemistry 168:134–41. doi: 10.1016/j.foodchem.2014.07.039.
  • Dineen, S. S., K. Takeuchi, J. E. Soudah, and K. J. Boor. 1998. Persistence of Escherichia coli O157:H7 in dairy fermentation systems. Journal of Food Protection 61 (12):1602–8. doi: 10.4315/0362-028x-61.12.1602.
  • Dinnbier, U., E. Limpinsel, R. Schmid, and E. P. Bakker. 1988. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Archives of Microbiology 150 (4):348–57. doi: 10.1007/BF00408306.
  • Dlusskaya, E. A., L. M. McMullen, and M. G. Gänzle. 2011. Characterization of an extremely heat-resistant Escherichia coli obtained from a beef processing facility: Heat resistant E. coli. Journal of Applied Microbiology 110 (3):840–9. doi: 10.1111/j.1365-2672.2011.04943.x.
  • Elhadidy, M., and A. Álvarez-Ordóñez. 2016. Diversity of survival patterns among Escherichia coli O157:H7 genotypes subjected to food-related stress conditions. Frontiers in Microbiology 7:132. doi: 10.3389/fmicb.2016.00322.
  • Elhanafi, D., B. Leenanon, W. Bang, and M. A. Drake. 2004. Impact of cold and cold-acid stress on poststress tolerance and virulence factor expression of Escherichia coli O157:H7. Journal of Food Protection 67 (1):19–26. doi: 10.4315/0362-028X-67.1.19.
  • Engels, W., E.-M. Dusterhoft, and T. Huppertz. 2017. Starter cultures for cheese manufacture. In Reference module in food science. Amsterdam, the Netherlands: Elsevier.
  • Epstein, W. 2003. The roles and regulation of potassium in bacteria. Progress in Nucleic Acid Research and Molecular Biology 75:293–320. doi: 10.1016/s0079-6603(03)75008-9.
  • Eshoo, M. W. 1988. Lac fusion analysis of the bet genes of Escherichia coli: Regulation by osmolarity, temperature, oxygen, choline, and glycine betaine. Journal of Bacteriology 170 (11):5208–15. doi: 10.1128/jb.170.11.5208-5215.1988.
  • European Commission. 2005. Commission regulation (EC) no 2073/2005 of 15 941 November 2005 on microbiological criteria for foodstuffs. Official Journal of the 942 European Communities L 338:1–26.
  • Exeni, R. A., R. J. Fernandez-Brando, A. P. Santiago, G. A. Fiorentino, A. M. Exeni, M. V. Ramos, and M. S. Palermo. 2018. Pathogenic role of inflammatory response during Shiga toxin-associated hemolytic uremic syndrome (HUS). Pediatric Nephrology (Berlin, Germany) 33 (11):2057–71. doi: 10.1007/s00467-017-3876-0.
  • Farrokh, C., K. Jordan, F. Auvray, K. Glass, H. Oppegaard, S. Raynaud, D. Thevenot, R. Condron, K. De Reu, A. Govaris, et al. 2013. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. International Journal of Food Microbiology 162 (2):190–212. doi: 10.1016/j.ijfoodmicro.2012.08.008.
  • Favaro, L., A. L. Barretto Penna, and S. D. Todorov. 2015. Bacteriocinogenic LAB from cheeses – Application in biopreservation? TrAC Tends in Food Science & Technology 41 (1):37–48. doi: 10.1016/j.tifs.2014.09.001.
  • Felicio, T. L., E. A. Esmerino, V. A. S. Vidal, L. P. Cappato, R. K. A. Garcia, R. N. Cavalcanti, M. Q. Freitas, C. A. Conte Junior, M. C. Padilha, M. C. Silva, et al. 2016. Physico-chemical changes during storage and sensory acceptance of low sodium probiotic Minas cheese added with arginine. Food Chemistry 196:628–37. doi: 10.1016/j.foodchem.2015.09.102.
  • Feng, X., R. Oropeza, and L. J. Kenney. 2003. Dual regulation by phospho-OmpR of SsrA/B gene expression in Salmonella pathogenicity island 2. Molecular Microbiology 48 (4):1131–43. doi: 10.1046/j.1365-2958.2003.03502.x.
  • Fereydouni, F., and M. Darbouy. 2015. Isolation and characterization of Shiga toxin producing Escherichia coli isolates from raw milk and cheese by biochemical and PCR of the specific genes in Fars province, Iran. African Journal of Agricultural Science and Technology 3 (11):461–6.
  • Food and Drug Administration (FDA). 2013. Revised guidelines for the assessment of microbiological quality of processed foods. Accessed February 3, 2019. https://ww2.fda.gov.ph/attachments/article/17218/FC2013-010.pdf.
  • Food and Drug Administration (FDA). 2017. Grade “A” pasteurized milk ordinance 2017 revision. Accessed February 3, 2019. https://www.fda.gov/downloads/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/Milk/UCM612027.pdf.
  • Food Standards Australia New Zealand. 2016. Compendium of microbiological criteria for food. Accessed February 3, 2019. https://www.foodstandards.gov.au/publications/Documents/Compedium%20of%20Microbiological%20Criteria/Compendium%20of%20Microbiological%20Criteria.pdf.
  • Foster, J. W. 1999. When protons attack: Microbial strategies of acid adaptation. Current Opinion in Microbiology 2 (2):170–4. doi: 10.1016/S1369-5274(99)80030-7.
  • Foster, J. W. 2004. Escherichia coli acid resistance: Tales of an amateur acidophile. Nature Reviews. Microbiology 2 (11):898–907. doi: 10.1038/nrmicro1021.
  • Fox, P. F., and P. L. H. McSweeney. 2017. Chapter 1 – Cheese: An overview. In Cheese (fourth edition), eds. P. L. H. McSweeney, P. F. Fox, P. D. Cotter, and D. W. Everett, 5–21. San Diego, CA: Academic Press.
  • Fox, P. F., T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney. 2017a. Cheese: Historical aspects. In Fundamentals of cheese science, eds. P. F. Fox, T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney, 1–10. Boston, MA: Springer US.
  • Fox, P. F., T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney. 2017b. Overview of cheese manufacture. In Fundamentals of cheese science, eds. P. F. Fox, T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney, 11–25. Boston, MA: Springer US.
  • Fox, P. F., T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney. 2017c. Biochemistry of cheese ripening. In Fundamentals of cheese science, eds. P. F. Fox, T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney, 391–442. Boston, MA: Springer US.
  • Fox, P. F., T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney. 2017d. Post-coagulation treatment of the renneted-milk gel. In Fundamentals of cheese science, eds. P. F. Fox, T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney, 231–49. Boston, MA: Springer US.
  • Fox, P. F., T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney. 2017e. Factors that affect cheese quality. In Fundamentals of cheese science, eds. P. F. Fox, T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney, 533–42. Boston, MA: Springer US.
  • Fox, P. F., T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney. 2017f. Salting of cheese curd. In Fundamentals of cheese science, eds. P. F. Fox, T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney, 251–77. Boston, MA: Springer US.
  • Fromm, H. I., and K. J. Boor. 2004. Characterization of pasteurized fluid milk shelf-life attributes. Journal of Food Science 69 (8):M207–214. doi: 10.1111/j.1365-2621.2004.tb09889.x.
  • Fuentes, L., J. Mateo, E. J. Quinto, and I. Caro. 2015. Changes in quality of nonaged pasta filata Mexican cheese during refrigerated vacuum storage. Journal of Dairy Science 98 (5):2833–42. doi: 10.3168/jds.2014-8152.
  • Fujita, C., A. Nishimura, R. Iwamoto, and K. Ikehara. 2002. Guanosine 5′-diphosphate 3′-diphosphate (ppGpp) synthetic activities on Escherichia coli SpoT domains. Bioscience, Biotechnology, and Biochemistry 66 (7):1515–23. doi: 10.1271/bbb.66.1515.
  • Fusco, V., M. Riccardi, and G. M. Quero. 2012. Thin agar layer- versus most probable number-PCR to enumerate viable and stressed Escherichia coli O157:H7 and application in a traditional raw milk pasta filata cheese. International Journal of Food Microbiology 159 (1):1–8. doi: 10.1016/j.ijfoodmicro.2012.07.013.
  • Gabriel, A. A., and H. Nakano. 2011. Effects of culture conditions on the subsequent heat inactivation of E. coli O157:H7 in apple juice. Food Control 22 (8):1456–60. doi: 10.1016/j.foodcont.2011.03.011.
  • Gajdosova, J., K. Benedikovicova, N. Kamodyova, L. Tothova, E. Kaclikova, S. Stuchlik, J. Turna, and H. Drahovska. 2011. Analysis of the DNA region mediating increased thermotolerance at 58 °C in Cronobacter Sp. and other enterobacterial strains. Antonie Van Leeuwenhoek 100 (2):279–89. doi: 10.1007/s10482-011-9585-y.
  • Garwin, J. L., and J. E. Cronan. 1980. Thermal modulation of fatty acid synthesis in Escherichia coli does not involve de novo enzyme synthesis. Journal of Bacteriology 141 (3):1457–9. doi: 10.1128/JB.141.3.1457-1459.1980.
  • Gayán, E., N. Rutten, J. Van Impe, C. W. Michiels, and A. Aertsen. 2019. Identification of novel genes involved in high hydrostatic pressure resistance of Escherichia coli. Food Microbiology 78:171–78.
  • Gentry, D. R., V. J. Hernandez, L. H. Nguyen, D. B. Jensen, and M. Cashel. 1993. Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp. Journal of Bacteriology 175 (24):7982–9. doi: 10.1128/jb.175.24.7982-7989.1993.
  • Georgopoulos, C., and W. J. Welch. 1993. Role of the major heat shock proteins as molecular chaperones. Annual Review of Cell Biology 9:601–34. doi: 10.1146/annurev.cb.09.110193.003125.
  • Giaever, H. M., O. B. Styrvold, I. Kaasen, and A. R. Strøm. 1988. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. Journal of Bacteriology 170 (6):2841–9. doi: 10.1128/jb.170.6.2841-2849.1988.
  • Gobbetti, M. 2004. Extra-hard varieties. In Cheese: Chemistry, physics and microbiology, eds. P. F. Fox, P. L. H. McSweeney, T. M. Cogan, and T. P. Guinee, vol. 2, 51–70. Cambridge, MA: Academic Press.
  • Gomes, T. A. T., W. P. Elias, I. C. A. Scaletsky, B. E. C. Guth, J. F. Rodrigues, R. M. F. Piazza, L. C. S. Ferreira, and M. B. Martinez. 2016. Diarrheagenic Escherichia coli. Brazilian Journal of Microbiology 47:3–30. doi: 10.1016/j.bjm.2016.10.015.
  • Gonzales-Barron, U., A. Gonçalves-Tenório, V. Rodrigues, and V. Cadavez. 2017. Foodborne pathogens in raw milk and cheese of sheep and goat origin: A meta-analysis approach. Current Opinion in Food Science 18:7–13. doi: 10.1016/j.cofs.2017.10.002.
  • Gonzalez, A. G. M., and A. M. F. Cerqueira. 2019. Shiga toxin-producing Escherichia coli in the animal reservoir and food in Brazil. Journal of Applied Microbiology. doi: 10.1111/jam.14500.
  • Gorden, J., and P. L. Small. 1993. Acid resistance in enteric bacteria. Infection and Immunity 61 (1):364–7. doi: 10.1128/IAI.61.1.364-367.1993.
  • Gregersen, V. R., and J. A. Lucey. 2016. Cheese: Rennet-induced coagulation of milk. In Reference module in food science. Amsterdam, The Netherlands: Elsevier.
  • Grimshaw, J. P., I. Jelesarov, H. J. Schönfeld, and P. Christen. 2001. Reversible thermal transition in GrpE, the nucleotide exchange factor of the DnaK heat-shock system. The Journal of Biological Chemistry 276 (9):6098–104. doi: 10.1074/jbc.M009290200.
  • Gross, D. S., C. C. Adams, K. E. English, K. W. Collins, and S. Lee. 1990. Promoter function and in situ protein/DNA interactions upstream of the yeast HSP90 heat shock genes. Antonie Van Leeuwenhoek 58 (3):175–86. doi: 10.1007/BF00548930.
  • Gross, M. 2018. On the origins of cheese. Current Biology 28 (20):R1171–1173. doi: 10.1016/j.cub.2018.10.008.
  • Guinee, T. P. 2004. Salting and the role of salt in cheese. International Journal of Dairy Technology 57 (2–3):99–109. doi: 10.1111/j.1471-0307.2004.00145.x.
  • Haberbeck, L. U., X. Wang, C. Michiels, F. Devlieghere, M. Uyttendaele, and A. H. Geeraerd. 2017. Cross-protection between controlled acid-adaptation and thermal inactivation for 48 Escherichia coli strains. International Journal of Food Microbiology 241:206–14. doi: 10.1016/j.ijfoodmicro.2016.10.006.
  • Harris, S. M., W.-F. Yue, S. A. Olsen, J. Hu, W. J. Means, R. J. McCormick, M. Du, and M.-J. Zhu. 2012. Salt at concentrations relevant to meat processing enhances Shiga toxin 2 production in Escherichia coli O157:H7. International Journal of Food Microbiology 159 (3):186–92. doi: 10.1016/j.ijfoodmicro.2012.09.007.
  • Hayaloglu, A. A., and N. Y. Farkye. 2011. Cheese | Cheese with added herbs, spices and condiments. In Encyclopedia of dairy sciences, 783–9. Amsterdam, the Netherlands: Elsevier.
  • Hengge-Aronis, R. 2002. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiology and Molecular Biology Reviews: MMBR 66 (3):373–95. doi: 10.1128/mmbr.66.3.373-395.2002.
  • Hengge-Aronis, R., W. Klein, R. Lange, M. Rimmele, and W. Boos. 1991. Trehalose synthesis genes are controlled by the putative sigma factor encoded by RpoS and are involved in stationary-phase thermotolerance in Escherichia coli. Journal of Bacteriology 173 (24):7918–24. doi: 10.1128/jb.173.24.7918-7924.1991.
  • Hoffmann, T., B. Warmbold, S. H. J. Smits, B. Tschapek, S. Ronzheimer, A. Bashir, C. Chen, A. Rolbetzki, M. Pittelkow, M. Jebbar, et al. 2018. Arsenobetaine: An ecophysiologically important organoarsenical confers cytoprotection against osmotic stress and growth temperature extremes. Environmental Microbiology 20 (1):305–23. doi: 10.1111/1462-2920.13999.
  • House, B., J. V. Kus, N. Prayitno, R. Mair, L. Que, F. Chingcuanco, V. Gannon, D. G. Cvitkovitch, and D. Barnett Foster. 2009. Acid-stress-induced changes in enterohaemorrhagic Escherichia coli O157:H7 virulence. Microbiology (Reading, England) 155 (Pt 9):2907–18. doi: 10.1099/mic.0.025171-0.
  • Hsieh, Y.-J., and B. L. Wanner. 2010. Global regulation by the seven-component Pi signaling system. Current Opinion in Microbiology 13 (2):198–203. doi: 10.1016/j.mib.2010.01.014.
  • Hunt, J. F., A. J. Weaver, S. J. Landry, L. Gierasch, and J. Deisenhofer. 1996. The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature 379 (6560):37–45. doi: 10.1038/379037a0.
  • Imamovic, L., and M. Muniesa. 2012. Characterizing RecA-independent induction of Shiga toxin2-encoding phages by EDTA treatment. PLoS One 7 (2):e32393. doi: 10.1371/journal.pone.0032393.
  • Ingham, S. C., Y.-C. Su, and D. S. Spangenberg. 2000. Survival of Salmonella typhimurium and Escherichia coli O157:H7 in cheese brines. International Journal of Food Microbiology 61 (1):73–9. doi: 10.1016/S0168-1605(00)00331-7.
  • Iweriebor, B. C., C. J. Iwu, L. C. Obi, U. U. Nwodo, and A. I. Okoh. 2015. Multiple antibiotic resistances among Shiga toxin producing Escherichia coli O157 in feces of dairy cattle farms in eastern cape of South Africa. BMC Microbiology 15 (1):213. doi: 10.1186/s12866-015-0553-y.
  • Jha, V., N. A. Dafale, and H. J. Purohit. 2019. Regulatory rewiring through global gene regulations by PhoB and alarmone (p)ppGpp under various stress conditions. Microbiological Research 227:126309. doi: 10.1016/j.micres.2019.126309.
  • Johnson, M. E. 2016. Cheese: Preparation of cheese milk. In Reference module in food science. Amsterdam, the Netherlands: Elsevier.
  • Johnson, M. E. 2017. A 100-year review: Cheese production and quality. Journal of Dairy Science 100 (12):9952–65. doi: 10.3168/jds.2017-12979.
  • Jones, P. G., and M. Inouye. 1996. RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response. Molecular Microbiology 21 (6):1207–18. doi: 10.1111/j.1365-2958.1996.tb02582.x.
  • Kazmierczak, M. J., M. Wiedmann, and K. J. Boor. 2005. Alternative sigma factors and their roles in bacterial virulence. Microbiology and Molecular Biology Reviews 69 (4):527–43.
  • Kanehara, K., K. Ito, and Y. Akiyama. 2002. YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA. Genes & Development 16 (16):2147–55. doi: 10.1101/gad.1002302.
  • Kintz, E., J. Brainard, L. Hooper, and P. Hunter. 2017. Transmission pathways for sporadic Shiga-toxin producing E. coli infections: A systematic review and meta-analysis. International Journal of Hygiene and Environmental Health 220 (1):57–67. doi: 10.1016/j.ijheh.2016.10.011.
  • Knoll, L. P. 2005. Origins of the regulation of raw milk cheeses in the United States (2005 Third Year Paper): 73.
  • Kocharunchitt, C., T. King, K. Gobius, J. P. Bowman, and T. Ross. 2012. Integrated transcriptomic and proteomic analysis of the physiological response of Escherichia coli O157:H7 Sakai to steady-state conditions of cold and water activity stress. Molecular & Cellular Proteomics: MCP 11 (1):M111.009019. doi: 10.1074/mcp.M111.009019.
  • Koudelka, G. B., J. W. Arnold, and D. Chakraborty. 2018. Evolution of STEC virulence: Insights from the antipredator activities of Shiga toxin producing E. coli. International Journal of Medical Microbiology: IJMM 308 (7):956–61. doi: 10.1016/j.ijmm.2018.07.001.
  • Krämer, R. 2010. Bacterial stimulus perception and signal transduction: Response to osmotic stress. Chemical Record (New York, N.Y.) 10 (4):217–29. doi: 10.1002/tcr.201000005.
  • Lawrence, R. C., J. Gilles, L. K. Creamer, V. L. Crow, H. A. Heap, C. G. Honoré, K. A. Johnston, and P. K. Samal. 2004. Cheddar cheese and related dry-salted cheese varieties. In Cheese: Chemistry, physics and microbiology, ed. P. F. Fox, P. L. H. McSweeney, T. M. Cogan, and T. P. Guinee, vol. 2, 71–102. Cambridge, MA: Academic Press.
  • Lee, H., S. Lee, S. Kim, J. Ha, J. Lee, K.-H. Choi, and Y. Yoon. 2016. Nacl influences thermal resistance and cell morphology of Escherichia coli strains. Journal of Food Safety 36 (1):62–8. doi: 10.1111/jfs.12213.
  • Lee, K., N. P. French, G. Jones, Y. Hara-Kudo, S. Iyoda, H. Kobayashi, Y. Sugita-Konishi, H. Tsubone, and S. Kumagai. 2012. Variation in stress resistance patterns among Stx genotypes and genetic lineages of Shiga toxin-producing Escherichia coli O157. Applied and Environmental Microbiology 78 (9):3361–8. doi: 10.1128/AEM.06646-11.
  • Lee, M.-S., S. Koo, D. G. Jeong, and V. L. Tesh. 2016. Shiga toxins as multi-functional proteins: Induction of host cellular stress responses, role in pathogenesis and therapeutic applications. Toxins 8 (3):77. doi: 10.3390/toxins8030077.
  • Lee, S.-Y., and D.-H. Kang. 2016. Survival mechanism of Escherichia coli O157:H7 against combined treatment with acetic acid and sodium chloride. Food Microbiology 55:95–104. doi: 10.1016/j.fm.2015.10.021.
  • Leenanon, B., and M. A. Drake. 2001. Acid stress, starvation, and cold stress affect poststress behavior of Escherichia coli O157:H7 and nonpathogenic Escherichia coli. Journal of Food Protection 64 (7):970–4. doi: 10.4315/0362-028x-64.7.970.
  • Leenanon, B., D. Elhanafi, and M. A. Drake. 2003. Acid adaptation and starvation effects on Shiga toxin production by Escherichia coli O157:H7. Journal of Food Protection 66 (6):970–7. doi: 10.4315/0362-028x-66.6.970.
  • Legg, A. K., A. J. Carr, R. J. Bennett, and K. A. Johnston. 2017. Chapter 26 – General aspects of cheese technology. In Cheese (fourth edition), eds. P. L. H. McSweeney, P. F. Fox, P. D. Cotter, and D. W. Everett, 643–75. San Diego, CA: Academic Press.
  • Leistner, L. 2000. Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology 55 (1–3):181–6. doi: 10.1016/S0168-1605(00)00161-6.
  • Leyer, G. J., L. L. Wang, and E. A. Johnson. 1995. Acid adaptation of Escherichia coli O157:H7 increases survival in acidic foods. Applied and Environmental Microbiology 61 (10):3752–5. doi: 10.1128/AEM.61.10.3752-3755.1995.
  • Li, H., and M. Gänzle. 2016. Some like it hot: Heat resistance of Escherichia coli in food. Frontiers in Microbiology 7:1763. doi: 10.3389/fmicb.2016.01763.
  • Li, Y., D. Zhou, S. Hu, X. Xiao, Y. Yu, and X. Li. 2018. Transcriptomic analysis by RNA-seq of Escherichia coli O157:H7 response to prolonged cold stress. LWT 97:17–24. doi: 10.1016/j.lwt.2018.06.025.
  • Lianou, A., G.-J. E. Nychas, and K. P. Koutsoumanis. 2017. Variability in the adaptive acid tolerance response phenotype of Salmonella enterica strains. Food Microbiol 62:99–105. doi: 10.1016/j.fm.2016.10.011.
  • Liu, Y., A. Gill, L. Mcmullen, and M. G. Gänzle. 2015. Variation in heat and pressure resistance of verotoxigenic and nontoxigenic Escherichia coli. Journal of Food Protection 78 (1):111–20. doi: 10.4315/0362-028X.JFP-14-267.
  • Lucey, J. A. 2011. Cheese | Acid- and acid/heat coagulated cheese. In Encyclopedia of dairy sciences (second edition), ed. J. W. Fuquay, 698–705. San Diego, CA: Academic Press.
  • Lucht, J. M., and E. Bremer. 1994. Adaptation of Escherichia coli to high osmolarity environments: Osmoregulation of the high-affinity glycine betaine transport system ProU. FEMS Microbiology Reviews 14 (1):3–20. doi: 10.1111/j.1574-6976.1994.tb00067.x.
  • Marcial, G. E., C. L. Gerez, M. N. de Kairuz, V. C. Araoz, C. Schuff, and G. F. de Valdez. 2016. Influence of oregano essential oil on traditional Argentinean cheese elaboration: Effect on lactic starter cultures. Revista Argentina de Microbiologia 48 (3):229–35. doi: 10.1016/j.ram.2016.04.006.
  • Martin, N. H., A. Trmčić, T.-H. Hsieh, K. J. Boor, and M. Wiedmann. 2016. The evolving role of coliforms as indicators of unhygienic processing conditions in dairy foods. Frontiers in Microbiology 7:1549. doi: 10.3389/fmicb.2016.01549.
  • Mattick, K. L., R. J. Rowbury, and T. J. Humphrey. 2003. Morphological changes to Escherichia coli O157:H7, commensal E. coli and Salmonella spp in response to marginal growth conditions, with special reference to mildly stressing temperatures. Science Progress 86 (Pt 1–2):103–13. doi: 10.3184/003685003783238725.
  • Mayer, M. P., H. Schröder, S. Rüdiger, K. Paal, T. Laufen, and B. Bukau. 2000. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nature Structural Biology 7 (7):586–93. doi: 10.1038/76819.
  • McKenna, R., T. N. Lombana, M. Yamada, K. Mukhyala, and K. Veeravalli. 2019. Engineered sigma factors increase full-length antibody expression in Escherichia coli. Metabolic Engineering 52:315–23. doi: 10.1016/j.ymben.2018.12.009.
  • McSweeney, P. L. H., G. Ottogalli, and P. F. Fox. 2004. Diversity of Cheese Varieties: An overview. In Cheese: Chemistry, physics and microbiology, eds. P. F. Fox, P. L. H. McSweeney, T. M. Cogan, and T. P. Guinee, 2:1–23. Cambridge, MA: Academic Press.
  • Mecsas, J., P. E. Rouviere, J. W. Erickson, T. J. Donohue, and C. A. Gross. 1993. The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes & Development 7 (12B):2618–28. doi: 10.1101/gad.7.12b.2618.
  • Mei, G.-Y., J. Tang, C. Carey, S. Bach, and M. Kostrzynska. 2015. The effect of oxidative stress on gene expression of Shiga toxin-producing Escherichia coli (STEC) O157:H7 and non-O157 serotypes. International Journal of Food Microbiology 215:7–15. doi: 10.1016/j.ijfoodmicro.2015.07.029.
  • Meira, N. V. B., R. A. Holley, K. Bordin, R. E. F. de Macedo, and F. B. Luciano. 2017. Combination of essential oil compounds and phenolic acids against Escherichia coli O157:H7 in vitro and in dry-fermented sausage production. International Journal of Food Microbiology 260:59–64. doi: 10.1016/j.ijfoodmicro.2017.08.010.
  • Mellies, J., A. Wise, and M. Villarejo. 1995. Two different Escherichia coli ProP promoters respond to osmotic and growth phase signals. Journal of Bacteriology 177 (1):144–51. doi: 10.1128/jb.177.1.144-151.1995.
  • Melton-Celsa, A., K. Mohawk, L. Teel, and A. O’Brien. 2011. Pathogenesis of Shiga-toxin producing Escherichia coli. In Ricin and Shiga toxins, ed. N. Mantis, 357:67–103. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Mercer, R. G., B. D. Walker, X. Yang, L. M. McMullen, and M. G. Gänzle. 2017. The locus of heat resistance (LHR) mediates heat resistance in Salmonella enterica, Escherichia coli and Enterobacter cloacae. Food Microbiology 64:96–103. doi: 10.1016/j.fm.2016.12.018.
  • Mercier, S., S. Villeneuve, M. Mondor, and I. Uysal. 2017. Time-temperature management along the food cold chain: A review of recent developments. Comprehensive Reviews in Food Science and Food Safety 16 (4):647–67. doi: 10.1111/1541-4337.12269.
  • Meunier-Goddik, L., and S. Sandra. 2016. Liquid milk products: Pasteurized milk. In Reference module in food science. Amsterdam, the Netherlands: Elsevier.
  • Mileykovskaya, E., and W. Dowhan. 1997. The Cpx two-component signal transduction pathway is activated in Escherichia coli mutant strains lacking phosphatidylethanolamine. Journal of Bacteriology 179 (4):1029–34. doi: 10.1128/jb.179.4.1029-1034.1997.
  • Miszczycha, S. D., N. Bel, P. Gay-Perret, V. Michel, M. C. Montel, and D. Sergentet-Thevenot. 2016. Short communication: Behavior of different Shiga toxin-producing Escherichia coli serotypes (O26:H11, O103:H2, O145:H28, O157:H7) during the manufacture, ripening, and storage of a white mold cheese. Journal of Dairy Science 99 (7):5224–9. doi: 10.3168/jds.2015-10803.
  • Miszczycha, S. D., F. Perrin, S. Ganet, E. Jamet, F. Tenenhaus-Aziza, M.-C. Montel, and D. Thevenot-Sergentet. 2013. Behavior of different Shiga toxin-producing Escherichia coli serotypes in various experimentally contaminated raw-milk cheeses. Applied and Environmental Microbiology 79 (1):150–8. doi: 10.1128/AEM.02192-12.
  • Miszczycha, S. D., J. Thévenot, S. Denis, C. Callon, V. Livrelli, M. Alric, M.-C. Montel, S. Blanquet-Diot, and D. Thevenot-Sergentet. 2014. Survival of Escherichia coli O26:H11 exceeds that of Escherichia coli O157:H7 as assessed by simulated human digestion of contaminated raw milk cheeses. International Journal of Food Microbiology 172:40–8. doi: 10.1016/j.ijfoodmicro.2013.11.029.
  • Mitta, M., L. Fang, and M. Inouye. 1997. Deletion analysis of CspA of Escherichia coli: Requirement of the AT-Rich UP element for CspA transcription and the downstream box in the coding region for its cold shock induction. Molecular Microbiology 26 (2):321–35. doi: 10.1046/j.1365-2958.1997.5771943.x.
  • Morita, M., M. Kanemori, H. Yanagi, and T. Yura. 1999. Heat-induced synthesis of Σ32 in Escherichia coli: Structural and functional dissection of RpoH MRNA secondary structure. Journal of Bacteriology 181 (2):401–10. doi: 10.1128/JB.181.2.401-410.1999.
  • Moubarac, J.-C., D. C. Parra, G. Cannon, and C. A. Monteiro. 2014. Food classification systems based on food processing: Significance and implications for policies and actions: A systematic literature review and assessment. Current Obesity Reports 3 (2):256–72. doi: 10.1007/s13679-014-0092-0.
  • Mutz, Y. S., D. K. Rosario, P. C. Bernardes, V. M. Paschoalin, and C. A. Conte-Junior. 2020. Modeling Salmonella Typhimurium inactivation in dry-fermented sausages: Previous habituation in the food matrix undermines UV-C decontamination efficacy. Frontiers in Microbiology 11:591. doi: 10.3389/fmicb.2020.00591.
  • Mutz, Y. S., D. K. Rosario, V. M. F. Paschoalin, and C. A. Conte-Junior. 2019. Salmonella enterica: A hidden risk for dry-cured meat consumption? Critical Reviews in Food Science and Nutrition 60 (6):976–15. doi: 10.1080/10408398.2018.1555132.
  • Mutz, Y. S., D. K. Rosario, V. S. Castro, P. C. Bernardes, V. M. Paschoalin, and C. A. Conte-Junior. 2019. Prior exposure to dry-cured meat promotes resistance to simulated gastric fluid in Salmonella Typhimurium. Foods 8 (12):603. doi: 10.3390/foods8120603.
  • Nagai, H., H. Yuzawa, M. Kanemori, and T. Yura. 1994. A distinct segment of the Σ32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli. Proceedings of the National Academy of Sciences 91 (22):10280–4. doi: 10.1073/pnas.91.22.10280.
  • Nagai, H., H. Yuzawa, and T. Yura. 1991. Interplay of two cis-acting MRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 88 (23):10515–9. doi: 10.1073/pnas.88.23.10515.
  • Neuhaus, K., S. Rapposch, K. P. Francis, and S. Scherer. 2000. Restart of exponential growth of cold-shocked Yersinia enterocolitica occurs after down-regulation of CspA1/A2 MRNA. Journal of Bacteriology 182 (11):3285–8. doi: 10.1128/jb.182.11.3285-3288.2000.
  • Nobili, G., I. Franconieri, M. G. Basanisi, G. La Bella, R. Tozzoli, A. Caprioli, and G. La Salandra. 2016. Short Communication: Isolation of Shiga toxin-producing Escherichia coli in raw milk and Mozzarella cheese in southern Italy. Journal of Dairy Science 99 (10):7877–80. doi: 10.3168/jds.2016-11613.
  • Olesen, I., and L. Jespersen. 2010. Relative gene transcription and pathogenicity of enterohemorrhagic Escherichia coli after long-term adaptation to acid and salt stress. International Journal of Food Microbiology 141 (3):248–53. doi: 10.1016/j.ijfoodmicro.2010.05.019.
  • Oliveira, G. B., L. Favarin, R. H. Luchese, and D. McIntosh. 2015. Psychrotrophic bacteria in milk: How much do we really know? Brazilian Journal of Microbiology 46 (2):313–21. doi: 10.1590/S1517-838246220130963.
  • Ophir, T., and D. L. Gutnick. 1994. A role for exopolysaccharides in the protection of microorganisms from desiccation. Applied and Environmental Microbiology 60 (2):740–5. doi: 10.1128/AEM.60.2.740-745.1994.
  • Otero, V., R. Becerril, J. A. Santos, J. M. Rodríguez-Calleja, C. Nerín, and M.-L. García-López. 2014. Evaluation of two antimicrobial packaging films against Escherichia coli O157:H7 strains in vitro and during storage of a Spanish ripened sheep cheese (Zamorano). Food Control 42:296–302. doi: 10.1016/j.foodcont.2014.02.022.
  • Otero, V., S. Sánchez, S. Herrera-León, J.-M. Rodríguez-Calleja, A. Otero, M.-L. García-López, and J. A. Santos. 2017. Detection and characterization of Shiga toxin-producing Escherichia coli (STEC) in bulk tank ewes’ milk and sheep farm environment. Small Ruminant Research 154:110–4. doi: 10.1016/j.smallrumres.2017.08.002.
  • Özcelik, S., E. Kuley, and F. Özogul. 2016. Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT 73:536–42. doi: 10.1016/j.lwt.2016.06.066.
  • Peng, S., W. Hoffmann, W. Bockelmann, J. Hummerjohann, R. Stephan, and P. Hammer. 2013. Fate of Shiga toxin-producing and generic Escherichia coli during production and ripening of semihard raw milk cheese. Journal of Dairy Science 96 (2):815–23. doi: 10.3168/jds.2012-5865.
  • Peng, S., T. Tasara, J. Hummerjohann, and R. Stephan. 2011. An overview of molecular stress response mechanisms in Escherichia coli contributing to survival of Shiga toxin-producing Escherichia coli during raw milk cheese production. Journal of Food Protection 74 (5):849–64. doi: 10.4315/0362-028X.JFP-10-469.
  • Pérez, L. M., C. E. Balagué, A. C. Rubiolo, and R. A. Verdini. 2011. Evaluation of the biocide properties of whey-protein edible films with potassium sorbate to control non-O157 Shiga toxin producing Escherichia coli. Procedia Food Science 1:203–9. doi: 10.1016/j.profoo.2011.09.032.
  • Phadtare, S., J. Alsina, and M. Inouye. 1999. Cold-shock response and cold-shock proteins. Current Opinion in Microbiology 2 (2):175–80. doi: 10.1016/S1369-5274(99)80031-9.
  • Poolman, B. 1993. Energy transduction in lactic acid bacteria. FEMS Microbiology Reviews 12 (1–3):125–47. doi: 10.1111/j.1574-6976.1993.tb00015.x.
  • Portilla-Vázquez, S., A. Rodríguez, M. Ramírez-Lepe, P. G. Mendoza-García, and B. Martínez. 2016. Biodiversity of bacteriocin-producing lactic acid bacteria from Mexican regional cheeses and their contribution to milk fermentation. Food Biotechnology 30 (3):155–72. doi: 10.1080/08905436.2016.1198263.
  • Qi, P. X., D. Ren, Y. Xiao, and P. M. Tomasula. 2015. Effect of homogenization and pasteurization on the structure and stability of whey protein in milk. Journal of Dairy Science 98 (5):2884–97. doi: 10.3168/jds.2014-8920.
  • Raivio, T. L., and T. J. Silhavy. 2001. Periplasmic stress and ECF sigma factors. Annual Review of Microbiology 55 (1):591–624. doi: 10.1146/annurev.micro.55.1.591.
  • Rasooly, R., and P. M. Do. 2010. Shiga toxin Stx2 is heat-stable and not inactivated by pasteurization. International Journal of Food Microbiology 136 (3):290–4. doi: 10.1016/j.ijfoodmicro.2009.10.005.
  • Riordan, D. C. R., G. Duffy, J. J. Sheridan, R. C. Whiting, I. S. Blair, and D. A. McDowell. 2000. Effects of acid adaptation, product ph, and heating on survival of Escherichia coli O157:H7 in pepperoni. Applied and Environmental Microbiology 66 (4):1726–9. doi: 10.1128/aem.66.4.1726-1729.2000.
  • Robey, M., A. Benito, R. H. Hutson, C. Pascual, S. F. Park, and B. M. Mackey. 2001. Variation in resistance to high hydrostatic pressure and RpoS heterogeneity in natural isolates of Escherichia coli O157:H7. Applied and Environmental Microbiology 67 (10):4901–7. doi: 10.1128/aem.67.10.4901-4907.2001.
  • Robins-Browne, R. M., K. E. Holt, D. J. Ingle, D. M. Hocking, J. Yang, and M. Tauschek. 2016. Are Escherichia coli pathotypes still relevant in the era of whole-genome sequencing? Frontiers in Cellular and Infection Microbiology 6:141. doi: 10.3389/fcimb.2016.00141.
  • Rodriguez, F., F. Arsène-Ploetze, W. Rist, S. Rüdiger, J. Schneider-Mergener, M. P. Mayer, and B. Bukau. 2008. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Molecular Cell 32 (3):347–58. doi: 10.1016/j.molcel.2008.09.016.
  • Roe, A. J., D. McLaggan, I. Davidson, C. O'Byrne, and I. R. Booth. 1998. Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. Journal of Bacteriology 180 (4):767–72. doi: 10.1128/JB.180.4.767-772.1998.
  • Ruiz, N., and T. J. Silhavy. 2003. Constitutive activation of the Escherichia coli Pho regulon upregulates rpoS translation in an hfq-dependent fashion. Journal of Bacteriology 185 (20):5984–92. doi: 10.1128/jb.185.20.5984-5992.2003.
  • Rye, H. S., S. G. Burston, W. A. Fenton, J. M. Beechem, Z. Xu, P. B. Sigler, and A. L. Horwich. 1997. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388 (6644):792–8. doi: 10.1038/42047.
  • Schlesser, J. E., R. Gerdes, S. Ravishankar, K. Madsen, J. Mowbray, and A. Y.-L. Teo. 2006. Survival of a five-strain cocktail of Escherichia coli O157:H7 during the 60-day aging period of cheddar cheese made from unpasteurized milk. Journal of Food Protection 69 (5):990–8. doi: 10.4315/0362-028x-69.5.990.
  • Schmid, J., V. Sieber, and B. Rehm. 2015. Bacterial exopolysaccharides: Biosynthesis pathways and engineering strategies. Frontiers in Microbiology 6:496. doi: 10.3389/fmicb.2015.00496.
  • Schulz, A., N. Stöveken, I. M. Binzen, T. Hoffmann, J. Heider, and E. Bremer. 2017. Feeding on compatible solutes: A substrate-induced pathway for uptake and catabolism of ectoines and its genetic control by EnuR. Environmental Microbiology 19 (3):926–46. doi: 10.1111/1462-2920.13414.
  • Shadbolt, C., T. Ross, and T. A. McMeekin. 2001. Differentiation of the effects of lethal pH and water activity: Food safety implications. Letters in Applied Microbiology 32 (2):99–102. doi: 10.1046/j.1472-765x.2001.00862.x.
  • Shashi, S., R. Cerchione, R. Singh, P. Centobelli, and A. Shabani. 2018. Food cold chain management. The International Journal of Logistics Management 29 (3):792–821. doi: 10.1108/IJLM-01-2017-0007.
  • Shaw, M. B. 1981. The manufacture of soft, surface mould, ripened cheese in France with particular reference to Camembert. International Journal of Dairy Technology 34 (4):131–8. doi: 10.1111/j.1471-0307.1981.tb01510.x.
  • Shkilnyj, P., and G. B. Koudelka. 2007. Effect of salt shock on stability of ^imm434 lysogens. Journal of Bacteriology 189 (8):3115–123.
  • Silva, V. B., and M. P. Costa. 2019. 11 – Influence of processing on rheological and textural characteristics of goat and sheep milk beverages and methods of analysis. In Processing and sustainability of beverages, eds. A. M. Grumezescu and A. M. Holban, 373–412. Sawston, UK: Woodhead Publishing.
  • Singh, R., and X. Jiang. 2015. Expression of stress and virulence genes in Escherichia coli O157:H7 heat shocked in fresh dairy compost. Journal of Food Protection 78 (1):31–41. doi: 10.4315/0362-028X.JFP-13-529.
  • Skeie, S. 2010. 16 – Milk quality requirements for cheesemaking. In Improving the safety and quality of milk, ed. M. W. Griffiths, 433–53. Woodhead Publishing Series in Food Science, Technology and Nutrition. Sawston, UK: Woodhead Publishing.
  • Steiner, T. S. 2016. New insights into Shiga toxigenic Escherichia coli pathogenesis: When less is more. The Journal of Infectious Diseases 213 (8):1214–5. doi: 10.1093/infdis/jiv558.
  • Stella, A. E., D. Luz, R. M. F. Piazza, and B. Spira. 2017. PpGpp and cytotoxicity diversity in Shiga toxin-producing Escherichia coli (STEC) isolates. Epidemiology and Infection 145 (11):2204–11. doi: 10.1017/S0950268817001091.
  • Stephan, R., S. Schumacher, S. Corti, G. Krause, J. Danuser, and L. Beutin. 2008. Prevalence and characteristics of Shiga toxin-producing Escherichia coli in Swiss raw milk cheeses collected at producer level. Journal of Dairy Science 91 (7):2561–5. doi: 10.3168/jds.2008-1055.
  • Talbot-Walsh, G., D. Kannar, and C. Selomulya. 2018. A review on technological parameters and recent advances in the fortification of processed cheese. Trends in Food Science & Technology 81:193–202. doi: 10.1016/j.tifs.2018.09.023.
  • Tatsuta, T., T. Tomoyasu, B. Bukau, M. Kitagawa, H. Mori, K. Karata, and T. Ogura. 1998. Heat shock regulation in the FtsH null mutant of Escherichia coli: Dissection of stability and activity control mechanisms of Sigma32 in vivo. Molecular Microbiology 30 (3):583–93. doi: 10.1046/j.1365-2958.1998.01091.x.
  • Todaro, M., M. Palmeri, L. Settanni, M. L. Scatassa, F. Mazza, A. Bonanno, and A. D. Grigoli. 2017. Effect of refrigerated storage on microbiological, chemical and sensory characteristics of a ewes’ raw milk stretched cheese. Food Packaging and Shelf Life 11:67–73. doi: 10.1016/j.fpsl.2017.01.005.
  • Tran, S.-L., C. Jenkins, V. Livrelli, and S. Schüller. 2018. Shiga toxin 2 translocation across intestinal epithelium is linked to virulence of Shiga toxin-producing Escherichia coli in humans. Microbiology (Reading, England) 164 (4):509–16. doi: 10.1099/mic.0.000645.
  • Trmčić, A., R. Ralyea, L. Meunier-Goddik, C. Donnelly, K. Glass, D. D'Amico, E. Meredith, M. Kehler, N. Tranchina, C. McCue, et al. 2017. Consensus categorization of cheese based on water activity and pH-A rational approach to systemizing cheese diversity. Journal of Dairy Science 100 (1):841–7. doi: 10.3168/jds.2016-11621.
  • van den Berg, G., W. C. Meijer, E.-M. Düsterhöft, and G. Smit. 2004. Gouda and related cheeses. In Cheese: Chemistry, physics and microbiology, eds. P. F. Fox, P. L. H. McSweeney, T. M. Cogan, and T. P. Guinee, 103–40. Cambridge, MA: Academic Press.
  • Velázquez-Varela, J., M. Castro-Giraldez, L. Cuibus, J. A. Tomas-Egea, C. Socaciu, and P. J. Fito. 2018. Study of the cheese salting process by dielectric properties at microwave frequencies. Journal of Food Engineering 224:121–8. doi: 10.1016/j.jfoodeng.2017.12.024.
  • Vidovic, S., A. K. Mangalappalli-Illathu, and D. R. Korber. 2011. Prolonged cold stress response of Escherichia coli O157 and the role of RpoS. International Journal of Food Microbiology 146 (2):163–9. doi: 10.1016/j.ijfoodmicro.2011.02.018.
  • Vidovic, S., and D. R. Korber. 2016. Escherichia coli O157: Insights into the adaptive stress physiology and the influence of stressors on epidemiology and ecology of this human pathogen. Critical Reviews in Microbiology 42 (1):83–93. doi: 10.3109/1040841X.2014.889654.
  • Vorachek-Warren, M. K., S. M. Carty, S. Lin, R. J. Cotter, and C. R. H. Raetz. 2002. An Escherichia coli mutant lacking the cold shock-induced palmitoleoyltransferase of lipid a biosynthesis: Absence of unsaturated acyl chains and antibiotic hypersensitivity at 12 degrees C. The Journal of Biological Chemistry 277 (16):14186–93. doi: 10.1074/jbc.M200408200.
  • Walsh, N. P., B. M. Alba, B. Bose, C. A. Gross, and R. T. Sauer. 2003. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113 (1):61–71. doi: 10.1016/S0092-8674(03)00203-4.
  • Wang, H., C. O. Gill, and X. Yang. 2014. Development of a real-time PCR procedure for quantification of viable Escherichia coli in populations of E. coli exposed to lactic acid, and the acid tolerance of verotoxigenic E. coli (VTEC) from cattle hides. Food Control 43:104–109.
  • Watts, S. 2016. A mini review on technique of milk pasteurization. Journal of Pharmacognosy and Phytochemistry 5 (5):99–101.
  • Wood, J. M. 1999. Osmosensing by bacteria: Signals and membrane-based sensors. Microbiology and Molecular Biology Reviews: MMBR 63 (1):230–62. doi: 10.1128/MMBR.63.1.230-262.1999.
  • Yamanaka, K. 1999. Cold shock response in Escherichia coli. Journal of Molecular Microbiology and Biotechnology 1 (2):193–202.
  • Yamanaka, K., and M. Inouye. 2001. Selective MRNA degradation by polynucleotide phosphorylase in cold shock Adaptation in Escherichia coli. Journal of Bacteriology 183 (9):2808–16. doi: 10.1128/JB.183.9.2808-2816.2001.
  • Yoo, B. K., and J. Chen. 2010. Role of cellulose in protecting Shiga toxin-producing Escherichia coli against osmotic and chlorine stress. Journal of Food Protection 73 (11):2084–8. doi: 10.4315/0362-028X-73.11.2084.
  • Yoon, Y., S. Lee, and K.-H. Choi. 2016. Microbial benefits and risks of raw milk cheese. Food Control 63:201–15. doi: 10.1016/j.foodcont.2015.11.013.
  • Yura, T. 1996. Regulation and conservation of the heat-shock transcription factor Sigma32. Genes to Cells 1 (3):277–84. doi: 10.1046/j.1365-2443.1996.28028.x.
  • Yura, T. 2019. Regulation of the heat shock response in Escherichia coli: History and perspectives. Genes & Genetic Systems 94 (3):103–8. doi: 10.1266/ggs.19-00005.
  • Yura, T., H. Nagai, and H. Mori. 1993. Regulation of the heat-shock response in bacteria. Annual Review of Microbiology 47:321–50. doi: 10.1146/annurev.mi.47.100193.001541.
  • Zhao, B., and W. A. Houry. 2010. Acid stress response in enteropathogenic gammaproteobacteria: An aptitude for survival. Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire 88 (2):301–14. doi: 10.1139/o09-182.]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.