1,752
Views
28
CrossRef citations to date
0
Altmetric
Reviews

X-ray fluorescence application in food, feed, and agricultural science: a critical review

, &

References

  • Allegretta, I., C. E. Gattullo, M. Renna, V. M. Paradiso, and R. Terzano. 2019. Rapid multi-element characterization of microgreens via total-reflection X-ray fluorescence (TXRF) spectrometry. Food Chemistry 296:86–93. doi: 10.1016/j.foodchem.2019.05.187.
  • Babos, D. V., V. C. Costa, M. A. Sperança, and E. R. Pereira-Filho. 2018. Direct determination of calciumand phosphorus in mineral supplements for cattle by wavelength dispersive X-ray fluorescence (WD-XRF). Microchemical Journal. 137:272–6. doi: 10.1016/j.microc.2017.11.002.
  • Bachiega, P., E. d Almeida, J. M. Salgado, M. A. Z. Arruda, E. L. Lehmann, M. C. Morzelle, and H. W. P. d Carvalho. 2019. Benchtop and handheld energy-dispersive X-ray fluorescence (EDXRF) as alternative for selenium concentration measurement in biofortified broccoli seedling. Food Analytical Methods 12 (7):1520–7. doi: 10.1007/s12161-019-01489-5.
  • Bamrah, R. K., P. Vijayan, C. Karunakaran, D. Muir, E. Hallin, J. Stobbs, B. Goetz, M. Nickerson, K. Tanino, and T. D. Warkentin. 2019. Evaluation of X-ray fluorescence spectroscopy as a tool for nutrient analysis of pea seeds. Crop Science 59 (6):2689–700. doi: 10.2135/cropsci2019.01.0004.
  • Borges, C. S., D. C. Weindorf, G. S. Carvalho, L. R. G. Guilherme, T. Takayama, N. Curi, G. Lima, and B. T. Ribeiro. 2020. Foliar elemental analysis of Brazilian crops via portable X-ray fluorescence spectrometry. Sensors (Basel) 20 (9):2509. doi: 10.3390/s20092509.
  • Bożym, M., I. Florczak, P. Zdanowska, J. Wojdalski, and M. Klimkiewicz. 2015. An analysis of metal concentrations in food wastes for biogas production. Renewable Energy 77:467–72. doi: 10.1016/j.renene.2014.11.010.
  • Briat, J. F., C. Dubos, and F. Gaymard. 2015. Iron nutrition, biomass production, and plant product quality. Trends in Plant Science 20 (1):33–40. doi: 10.1016/j.tplants.2014.07.005.
  • Bush, V. J., T. P. Moyer, K. P. Batts, and J. E. Parisi. 1995. Essential and toxic element concentrations in fresh and formalin-fixed human autopsy tissues. Clinical Chemistry 41 (2):284–94. doi: 10.1093/clinchem/41.2.284.
  • Castillo-Michel, H., J. Hernandez-Viezcas, K. M. Dokken, M. A. Marcus, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2011. Localization and speciation of arsenic in soil and desert plant Parkinsonia florida using μXRF and μXANES. Enviromental Science and Technology 45:7848–854. doi: 10.1021/es200632s.
  • Chao, D. Y., Y. Chen, J. Chen, S. Shi, Z. Chen, C. Wang, J. M. Danku, F. J. Zhao, and D. E. Salt. 2014. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biology 12 (12):e1002009doi: 10.1371/journal.pbio.1002009.
  • Chopra, A. K., and C. Pathak. 2015. Accumulation of heavy metals in the vegetables grown in wastewater irrigated areas of Dehradun, India with reference to human health risk. Environmental Monitoring and Assessment 187 (7):445 . doi: 10.1007/s10661-015-4648-6.
  • Chu, H. H., S. Car, A. L. Socha, M. N. Hindt, T. Punshon, and M. L. Guerinot. 2017. The Arabidopsis MTP8 transporter determines the localization of manganese and iron in seeds. Scientific Reports 7 (1):11024. doi: 10.1038/s41598-017-11250-9.
  • De Brier, N., S. V. Gomand, E. Donner, D. Paterson, E. Smolders, J. A. Delcour, and E. Lombi. 2016. Element distribution and iron speciation in mature wheat grains (Triticum aestivum L.) using synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure (XANES) imaging. Plant, Cell & Environment 39 (8):1835–47. doi: 10.1111/pce.12749.
  • de Castilhos, N. D. B., F. L. Melquiades, E. L. Thomaz, and R. O. Bastos. 2015. X-ray fluorescence and gamma-ray spectrometry combined with multivariate analysis for topographic studies in agricultural soil. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine 95:63–71. doi: 10.1016/j.apradiso.2014.09.013.
  • De Freitas, S. T., A. K. Handa, Q. Y. Wu, S. Park, and E. J. Mitcham. 2012. Role of pectin methylesterases in cellular calcium distribution and blossom-end rot development in tomato fruit. The Plant Journal: For Cell and Molecular Biology 71 (5):824–35. doi: 10.1111/j.1365-313X.2012.05034.x.
  • Falk, M. C., B. M. Chassy, S. K. Harlander, T. J. t Hoban, M. N. McGloughlin, and A. R. Akhlaghi. 2002. Food biotechnology: Benefits and concerns. The Journal of Nutrition 132 (6):1384–90. doi: 10.1093/jn/132.6.1384.
  • Farkas, J., and C. Mohacsi-Farkas. 2011. History and future of food irradiation. Trends in Food Science & Technology 22 (2-3):121–6. doi: 10.1016/j.tifs.2010.04.002.
  • Ferri, R., D. Hashim, D. R. Smith, S. Guazzetti, F. Donna, E. Ferretti, M. Curatolo, C. Moneta, G. M. Beone, and R. G. Lucchini. 2015. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: Implications for human exposure. The Science of the Total Environment 518-519:507–17. doi: 10.1016/j.scitotenv.2015.02.072.
  • Fukuda, N., A. Hokura, N. Kitajima, Y. Terada, H. Saito, T. Abe, and I. Nakai. 2008. Micro X-ray fluorescence imaging and micro X-ray absorption spectroscopy of cadmium hyper-accumulating plant, Arabidopsis halleri ssp. gemmifera, using high-energy synchrotron radiation. Journal of Analytical Atomic Spectrometry 23 (8):1068–75. doi: 10.1039/b803602k.
  • Gunes, A., A. Inala, and Y. K. Kadioglub. 2009. Determination of mineral element concentrations in wheat, sunflower, chickpea and lentil cultivars in response to P fertilization by polarized energy dispersive X-ray fluorescence. X-Ray Spectrometry 38:451–462. doi: 10.1002/xrs.1186.
  • Gupta, S., T. Rupasinghe, D. L. Callahan, S. H. A. Natera, P. M. C. Smith, C. B. Hill, U. Roessner, and B. A. Boughton. 2019. Spatio-temporal metabolite and elemental profiling of salt stressed barley seeds during initial stages of germination by MALDI-MSI and µ-XRF spectrometry. Frontiers in Plant Science 10:1139doi: 10.3389/fpls.2019.01139.
  • Ho, L. C., and P. J. White. 2005. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Annals of Botany 95 (4):571–81. doi: 10.1093/aob/mci065.
  • Hu, W., B. Huang, D. C. Weindorf, and Y. Chen. 2014. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry. Bulletin of Environmental Contamination and Toxicology 92 (4):420–6. doi: 10.1007/s00128-014-1236-3.
  • Iwai, T., M. Takahashi, K. Oda, Y. Terada, and K. T. Yoshida. 2012. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development. Plant Physiology 160 (4):2007–14. doi: 10.1104/pp.112.206573.
  • Jones, M. W. M., P. M. Kopittke, L. Casey, J. Reinhardt, F. P. C. Blamey, and A. V. D. Ent. 2020. Assessing radiation dose limits for X-ray fluorescence microscopy analysis of plant specimens. Annals of Botany 125 (4):599–610. doi: 10.1093/aob/mcz195.
  • Junior, G. T. C., L. C. Nunes, M. H. F. Gomes, E. d Almeida, and H. W. P. D. Carvalho. 2019. Direct determination of mineral nutrients in soybean leaves under vivo conditions by portable X‐ray fluorescence spectroscopy. X-Ray Spectrometry. 49:1–10.
  • Kaniu, M. I., K. H. Angeyo, A. K. Mwala, and F. K. Mwangi. 2012. Energy dispersive X-ray fluorescence and scattering assessment of soil quality via partial least squares and artificial neural networks analytical modeling approaches. Talanta 98:236–240. doi: 10.1016/j.talanta.2012.06.081.
  • Kalcsits, L. A. 2016. Non-destructive measurement of calcium and potassium in apple and pear using handheld X-ray fluorescence. Frontiers in Plant Science 7:442. doi: 10.3389/fpls.2016.00442.
  • Kempson, I., E. Smith, M. Gao, M. de Jonge, and B. Thierry. 2014. Large area synchrotron X-ray fluorescence mapping of biological samples. Journal of Instrumentation. doi: 10.1088/1748-0221/9/12/C12040.
  • Kim, S. A., T. Punshon, A. Lanzirotti, L. Li, J. M. Alonso, J. R. Ecker, J. Kaplan, and M. L. Guerinot. 2006. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science (New York, N.Y.) 314 (5803):1295–8. doi: 10.1126/science.1132563.
  • Koleleni, Y. I., and S. A. Mbike. 2018. Analysis of heavy metals in soil and maize grown around Namungo gold mine in Ruangwa District, Lindi Region in Tanzania using X-ray fluorescence. Chemical Science International Journal 24 (4):1–18. doi: 10.9734/CSJI/2018/44976.
  • Kopittke, P. M., T. Punshon, D. J. Paterson, R. V. Tappero, P. Wang, F. P. C. Blamey, A. van der Ent, and E. Lombi. 2018. Synchrotron-based X-Ray fluorescence microscopy as a technique for imaging of elements in plants. Plant Physiology 178 (2):507–23. doi: 10.1104/pp.18.00759.
  • Li, C., P. Wang, E. Lombi, M. Cheng, C. Tang, D. L. Howard, N. W. Menzies, and P. M. Kopittke. 2018. Absorption of foliar-applied Zn fertilizers by trichomes in soybean and tomato. Journal of Experimental Botany 69:2717–729. doi: 10.1093/jxb/ery085.
  • Lia, F., M. Z. Mangion, and C. Farrugia. 2020. Application of elemental analysis via energy dispersive X-ray fluorescence (ED-XRF) for the authentication of maltese extra virgin olive oil. Agriculture 10 (3):71. doi: 10.3390/agriculture10030071.
  • Lombi, E., K. G. Scheckel, and I. M. Kempson. 2011. In situ analysis of metal(loid)s in plants: State of the art and artefacts. Environmental and Experimental Botany. 72 (1):3–17. doi: 10.1016/j.envexpbot.2010.04.005.
  • Lombi, E., K. G. Scheckel, J. Pallon, A. M. Carey, Y. G. Zhu, and A. A. Meharg. 2009. Speciation and distribution of arsenic and localization of nutrients in rice grains. The New Phytologist 184 (1):193–201. doi: 10.1111/j.1469-8137.2009.02912.x.
  • Lu, L. L., S. K. Tian, H. B. Liao, J. Zhang, X. E. Yang, J. M. Labavitch, and W. R. Chen. 2013. Analysis of metal element distributions in rice (Oryza sativa L.) seeds and relocation during germination based on X-ray fluorescence imaging of Zn, Fe, K, Ca, and Mn. Plos One 8 (2):e57360. doi: 10.1371/journal.pone.0057360.
  • Mantler, M., and M. Schreiner. 2000. X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrometry 29 (1):3–17. doi: 10.1002/(SICI)1097-4539.
  • Matsuyama, S., M. Shimura, M. Fujii, K. Maeshima, H. Yumoto, H. Mimura, Y. Sano, M. Yabashi, Y. Nishino, K. Tamasaku, et al. 2010. Elemental mapping of frozen-hydrated cells with cryo-scanning X-ray fluorescence microscopy. X-Ray Spectrometry 39 (4):260–6. doi: 10.1002/xrs.1256.
  • McCarthy, W. P., K. Daly, A. Fenelon, C. O’Connor, N. A. McCarthy, S. A. Hogan, J. T. Tobin, and T. F. O’Callaghan. 2019. Energy-dispersive X-ray fluorescence spectrometry as a tool for the rapid determination of the five major minerals (Na, Mg, K, P and Ca) in skim milk powder. International Journal of Dairy Technology 73:459–67. doi:10.1111/1471-0307.12677.
  • McGladdery, C., D. C. Weindorf, S. Chakraborty, B. Li, L. Paulette, D. Podar, D. Pearson, N. Y. O. Kusi, and B. Duda. 2018. Elemental assessment of vegetation via portable X-ray fluorescence (PXRF) spectrometry. Journal of Environmental Management 210:210–25. doi: 10.1016/j.jenvman.2018.01.003.
  • McLaren, T. I., C. N. Guppy, and M. K. Tighe. 2012. A rapid and nondestructive plant nutrient analysis using portable X-ray fluorescence. Soil Science Society of America Journal 76:1446–453. doi: 10.2136/sssaj2011.0355.
  • Menguer, P. K., T. Vincent, A. J. Miller, J. K. M. Brown, E. Vincze, S. Borg, P. B. Holm, D. Sanders, and D. Podar. 2018. Improving zinc accumulation in cereal endosperm using HvMTP1, a transition metal transporter. Plant Biotechnology Journal 16 (1):63–71. doi: 10.1111/pbi.12749.
  • Mukhopadhyay, S., S. Chakraborty, P. B. S. Bhadoria, B. Li, and D. C.Weindorf. 2020. Assessment of heavy metal and soil organic carbon by portable X-ray fluorescence spectrometry and NixPro™ sensor in landfill soils of India. Geoderma Regional 20:e00249. doi: 10.1016/j.geodrs.2019.e00249.
  • Nabulo, G., C. R. Black, and S. D. Young. 2011. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge. Environmental Pollution (Barking, Essex : 1987) 159 (2):368–76. doi: 10.1016/j.envpol.2010.11.007.
  • Nawar, S., N. Delbecque, Y. Declercq, P. D. Smedt, P. Finke, A. Verdoodt, M. V. Meirvenne, and A. M. Mouazen. 2019. Can spectral analyses improve measurement of key soil fertility parameters with X-ray fluorescence spectrometry? Geoderma 350:29–39. doi: 10.1016/j.geoderma.2019.05.002.
  • Oli, P., R. Ward, B. Adhikari, A. J. Mawson, R. Adhikari, T. Wess, L. Pallas, K. Spiers, D. Paterson, and P. Torley. 2016. Synchrotron X-ray Fluorescence Microscopy study of the diffusion of iron, manganese, potassium and zinc in parboiled rice kernels. LWT - Food Science and Technology 71:138–48. doi: 10.1016/j.lwt.2016.03.034.
  • Pashkova, G. V., A. N. Smagunova, and A. L. Finkelshtein. 2018. X-ray fluorescence analysis of milk and dairy products: A review. TRAC Trends in Analytical Chemistry 106:183–9. doi: 10.1016/j.trac.2018.06.014.
  • Peralta, E., G. Pérez, G. Ojeda, J. M. Alcañiz, M. Valiente, M. López-Mesas, and M.-J. Sánchez-Martín. 2020. Heavy metal availability assessment using portable X-ray fluorescence and single extraction procedures on former vineyard polluted soils. The Science of the Total Environment 726:138670. doi: 10.1016/j.scitotenv.2020.138670.
  • Perring, L., and D. Andrey. 2003. ED-XRF as a tool for rapid minerals control in milk-based products. Journal of Agricultural and Food Chemistry 51 (15):4207–12. doi: 10.1021/jf034158p.
  • Perring, L., and A. Tschopp. 2019. Determination of ash content of milk-based powders by energy dispersive X-ray fluorescence. Microchemical Journal 145:162–167. doi: 10.1016/j.microc.2018.10.025.
  • Punshon, T., K. Hirschi, J. Yang, A. Lanzirotti, B. Lai, and M. L. Guerinot. 2012. The role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed. Plant Physiology 158 (1):352–62. doi: 10.1104/pp.111.184812.
  • Punshon, T., R. Tappero, F. K. Ricachenevsky, K. Hirschi, and P. A. Nakata. 2013. Contrasting calcium localization and speciation in leaves of the Medicago truncatula mutant cod5 analyzed via synchrotron X-ray techniques. The Plant Journal: For Cell and Molecular Biology 76 (4):627–33. doi: 10.1111/tpj.12322.
  • Pushie, M. J., I. J. Pickering, M. Korbas, M. J. Hackett, and G. N. George. 2014. Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chemical Reviews 114 (17):8499–541. doi: 10.1021/cr4007297.
  • Ramakrishnan, U. 2002. Prevalence of micronutrient malnutrition worldwide. Nutrition Reviews 60 (5 Pt 2):S46–S52. doi: 10.1301/00296640260130731.
  • Ravansari, R., S. C. Wilson, and M. Tighe. 2020. Portable X-ray fluorescence for environmental assessment of soils: Not just a point and shoot method. Environment International 134:105–20.
  • Rawal, A., S. Chakraborty, B. Li, K. Lewis, M. Godoy, L. Paulette, and D. C. Weindorf. 2019. Determination of base saturation percentage in agricultural soils via portable X-ray fluorescence spectrometer. Geoderma 338:375–82. doi: 10.1016/j.geoderma.2018.12.032.
  • Reynolds, S. B., A. D. E. Martin, B. Bucknall, and B. J. Chambers. 1989. A simplified X-ray-fluorescence (Xrf) procedure for the determination of sulfur in graminaceous materials. Journal of the Science of Food and Agriculture 47 (3):327–36. doi: 10.1002/jsfa.2740470307.
  • Rivard, C., B. Lanson and M. Cotte. 2015. Phosphorus speciation and micro-scale spatial distribution in North-American temperate agricultural soils from micro X-ray fluorescence and X-ray absorption near-edge spectroscopy. Plant Soil 401:7–22.
  • Rodrigues, E. S., M. H. F. Gomes, N. M. Duran, J. G. B. Cassanji, T. N. M. da Cruz, A. Sant’Anna Neto, S. M. Savassa, E. de Almeida and H. W. P. Carvalho. 2018. Laboratory microprobe X-ray fluorescence in plant science: Emerging applications and case studies. Frontier in Plant Science 9:1588. doi: 10.3389/fpls.2018.01588..
  • Rodriguez-Iruretagoiena, A., J. Trebolazabala, I. Martinez-Arkarazo, A. de Diego, and J. M. Madariaga. 2015. Metals and metalloids in fruits of tomatoes (Solanum lycopersicum) and their cultivation soils in the Basque Country: Concentrations and accumulation trends. Food Chemistry 173:1083–9. doi: 10.1016/j.foodchem.2014.10.133.
  • Sakai, H., T. Iwai, C. Matsubara, Y. Usui, M. Okamura, O. Yatou, Y. Terada, N. Aoki, S. Nishida, and K. T. Yoshida. 2015. A decrease in phytic acid content substantially affects the distribution of mineral elements within rice seeds. Plant Science: An International Journal of Experimental Plant Biology 238:170–7. doi: 10.1016/j.plantsci.2015.06.006.
  • Servin, A. D., H. Castillo-Michel, J. A. Hernandez-Viezcas, B. Corral Diaz, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2012. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Enviromental Science and Technology 46:7637–643. doi: 10.1021/es300955b.
  • Takahashi, M., T. Nozoye, N. Kitajima, N. Fukuda, A. Hokura, Y. Terada, I. Nakai, Y. Ishimaru, T. Kobayashi, H. Nakanishi, et al. 2009. In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray Fluorescence Imaging of Fe, Zn, Mn, and Cu. Plant and Soil 325 (1-2):39–51. doi: 10.1007/s11104-009-0045-7.
  • Tanino, K., R. Willick, K. Hamilton, P. Vijayan, Y. Jiang, G. S. Brar, P. Yu, L. Kalcsits, R. Lahlali, B. Smith, et al. 2017. Chemotyping using synchrotron mid-infrared and X-ray spectroscopy to improve agricultural production. Canadian Journal of Plant Science. 97 (6):982–96.
  • Vigani, G., S. Bohic, F. Faoro, B. Vekemans, L. Vincze, and R. Terzano. 2018. Cellular fractionation and nanoscopic X-ray fluorescence imaging analyses reveal changes of zinc distribution in leaf cells of iron-deficient plants. Frontiers in Plant Science 9:1112doi: 10.3389/fpls.2018.01112.
  • Walling, D. E. 2013. The evolution of sediment source fingerprint investigations in fluvial systems. Journal of Soils and Sediments 13 (10):1658–75. doi: 10.1007/s11368-013-0767-2.
  • Wan, M., W. Hu, M. Qu, K. Tian, H. Zhang, Y. Wang, and B. Huang. 2019. Application of arc emission spectrometry and portable X-ray fluorescence spectrometry to rapid risk assessment of heavy metals in agricultural soils. Ecological Indicators 101:583–94. doi: 10.1016/j.ecolind.2019.01.069.
  • Weekley, C. M., J. B. Aitken, L. Finney, S. Vogt, P. K. Witting, and H. H. Harris. 2013. Selenium metabolism in cancer cells: The combined application of XAS and XFM techniques to the problem of selenium speciation in biological systems. Nutrients 5 (5):1734–56. doi: 10.3390/nu5051734.
  • West, M., A. T. Ellis, P. J. Potts, C. Streli, S. Vanhoof, D. Wegrzynek, and P. Wobrauschek. 2013. Atomic spectrometry update - A review of advances in X-ray fluorescence spectrometry. Journal of Analytical Atomic Spectrometry 28 (10):1544–90. doi: 10.1039/c3ja90046k.
  • White, P. J., and M. R. Broadley. 2003. Calcium in plants. Annals of Botany 92 (4):487–511. doi: 10.1093/aob/mcg164.
  • Wiseman, C. L. S., F. Zereini, and W. Puttmann. 2013. Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto. Science of the Total Environment 442:86–95. doi: 10.1016/j.scitotenv.2012.10.051.
  • Xin, X. Y., G. Huang, C. J. An, and R. F. Feng. 2019. Interactive toxicity of triclosan and nano-TiO2 to green alga Eremosphaera viridis in Lake Erie: A new perspective based on Fourier transform infrared spectromicroscopy and synchrotron-based X-ray fluorescence imaging. Environmental Science & Technology 53 (16):9884–94. doi: 10.1021/acs.est.9b03117.
  • Young, L. W., N. D. Westcott, K. Attenkofer, and M. J. T. Reaney. 2006. A high throughput determination of metal concentrations in whole, intact, Arabidopsis thaliana seeds using synchrotron-based x-ray fluorescence spectroscopy. Journal of Synchrotron Radiation 13:304–13. doi: 10.1107/S0909049506019571.
  • Zhang, T., H. D. Sun, Z. Y. Lv, L. L. Cui, H. Mao, and P. M. Kopittke. 2018. Using synchrotron-based approaches to examine the foliar application of ZnSO4 and ZnO nanoparticles for field-grown winter wheat. Journal of Agricultural and Food Chemistry 66 (11):2572–9. doi: 10.1021/acs.jafc.7b04153.
  • Zhao, F. J., K. L. Moore, E. Lombi, and Y. G. Zhu. 2014. Imaging element distribution and speciation in plant cells. Trends in Plant Science 19 (3):183–92. doi: 10.1016/j.tplants.2013.12.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.