2,023
Views
42
CrossRef citations to date
0
Altmetric
Reviews

Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials

&

References

  • Ahmad, M., N. P. Nirmal, M. Danish, J. Chuprom, and S. Jafarzedeh. 2016. Characterisation of composite films fabricated from collagen/chitosan and collagen/soy protein isolate for food packaging applications. RSC Advances 6 (85):82191–204. doi: 10.1039/C6RA13043G.
  • Ahmed, J., Y. A. Arfat, E. Castro-Aguirre, and R. Auras. 2016a. Mechanical, structural and thermal properties of Ag–Cu and ZnO reinforced polylactide nanocomposite films. International Journal of Biological Macromolecules 86:885–92. doi: 10.1016/j.ijbiomac.2016.02.034.
  • Ahmed, J., Y. A. Arfat, E. Castro-Aguirre, and R. Auras. 2016b. Thermal properties of ZnO and bimetallic Ag–Cu alloy reinforced poly (lactic acid) nanocomposite films. Journal of Thermal Analysis and Calorimetry 125 (1):205–14. doi: 10.1007/s10973-016-5402-1.
  • Ahmed, J., G. Luciano, and S. Maggiore. 2020. Nonisothermal crystallization behavior of polylactide/polyethylene glycol/graphene oxide nanosheets composite films. Polymer Composites 41 (5):2108–119.
  • Ahmed, J., M. Mulla, A. Joseph, M. Ejaz, and M. Maniruzzaman. 2020. Zinc oxide/clove essential oil incorporated type B gelatin nanocomposite formulations: A proof-of-concept study for 3D printing applications. Food Hydrocolloids 98:105256. doi: 10.1016/j.foodhyd.2019.105256.
  • Akbariazam, M., M. Ahmadi, N. Javadian, and A. M. Nafchi. 2016. Fabrication and characterization of soluble soybean polysaccharide and nanorod-rich ZnO bionanocomposite. International Journal of Biological Macromolecules 89:369–75. doi: 10.1016/j.ijbiomac.2016.04.088.
  • Amini, J., V. Farhang, T. Javadi, and J. Nazemi. 2016. Antifungal effect of plant essential oils on controlling Phytophthora species. The Plant Pathology Journal 32 (1):16–24. doi: 10.5423/PPJ.OA.05.2015.0091.
  • Arfat, Y. A., J. Ahmed, A. Al-Hazza, H. Jacob, and A. Joseph. 2017. Comparative effects of untreated and 3-methacryloxypropyltrimethoxysilane treated ZnO nanoparticle reinforcement on properties of polylactide-based nanocomposite films. International Journal of Biological Macromolecules 101:1041–50. doi: 10.1016/j.ijbiomac.2017.03.176.
  • Arfat, Y. A., J. Ahmed, and H. Jacob. 2017. Preparation and characterization of agar-based nanocomposite films reinforced with bimetallic (Ag-Cu) alloy nanoparticles. Carbohydrate Polymers 155:382–90. doi: 10.1016/j.carbpol.2016.08.097.
  • Arfat, Y. A., J. Ahmed, N. Hiremath, R. Auras, and A. Joseph. 2017. Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles. Food Hydrocolloids 62:191–202. doi: 10.1016/j.foodhyd.2016.08.009.
  • Arfat, Y. A., M. Ejaz, H. Jacob, and J. Ahmed. 2017. Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydrate Polymers 157 (10):65–71. doi: 10.1016/j.carbpol.2016.09.069.
  • Avérous, L., and E. Pollet. 2012. Biodegradable polymers. In Environmental silicate nano-biocomposites, ed. E. Pollet, 13–39. London, UK: Springer.
  • Bahrami, A., R. Delshadi, E. Assadpour, S. M. Jafari, and L. Williams. 2020. Antimicrobial-loaded nanocarriers for food packaging applications. Advances in Colloid and Interface Science 278:102140. doi: 10.1016/j.cis.2020.102140.
  • Bikiaris, D. N., and K. S. Triantafyllidis. 2013. HDPE/Cu-nanofiber nanocomposites with enhanced antibacterial and oxygen barrier properties appropriate for food packaging applications. Materials Letters 93:1–4. doi: 10.1016/j.matlet.2012.10.128.
  • Billmeyer, F. W. J. R. 2007. Text book of polymer science. 3rd ed. Hoboken, NY: John Wiley.
  • Cacciotti, I., E. Fortunati, D. Puglia, J. M. Kenny, and F. Nanni. 2014. Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly (lactic) acid mats: Morphology, thermal properties and mechanical behavior. Carbohydrate polymers 103:22–31.
  • Carbone, M., D. T. Donia, G. Sabbatella, and R. Antiochia. 2016. Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University - Science 28 (4):273–9. doi: 10.1016/j.jksus.2016.05.004.
  • Castro-Mayorga, J. L., M. J. Fabra, and J. M. Lagaron. 2016. Stabilized nanosilver based antimicrobial poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites of interest in active food packaging. Innovative Food Science & Emerging Technologies 33:524–33. doi: 10.1016/j.ifset.2015.10.019.
  • Cho, S. Y., and C. Rhee. 2002. Sorption characteristics of soy protein films and their relation to mechanical properties. LWT - Food Science and Technology 35 (2):151–7. doi: 10.1006/fstl.2001.0829.
  • Chouhan, N. 2018. Silver nanoparticles: Synthesis, characterization and applications. In Silver Nanoparticles - Fabrication, Characterization and Applications, ed. M. Khan, 21. London, UK: InTechOpen.
  • Commissioner of Food and Drugs. 2007. Nanotechnology Task Force Report.
  • Cushen, M., J. Kerry, M. Morris, M. Cruz-Romero, and E. Cummins. 2014. Evaluation and simulation of silver and copper nanoparticle migration from polyethylene nanocomposites to food and an associated exposure assessment. Journal of Agricultural and Food Chemistry 62 (6):1403–11. doi: 10.1021/jf404038y.
  • Cushen, M., J. Kerry, M. Morris, M. Cruz-Romero, and E. Cummins. 2012. Nanotechnologies in the food industry–Recent developments, risks and regulation. Trends in Food Science and Technology 24 (1):30–46. doi: 10.1016/j.tifs.2011.10.006.
  • Dehnad, D., H. Mirzaei, Z. Emam-Djomeh, S. M. Jafari, and S. Dadashi. 2014. Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydrate Polymers 109:148–54. doi: 10.1016/j.carbpol.2014.03.063.
  • Dehnad, D., Z. Emam-Djomeh, H. Mirzaei, S. M. Jafari, and S. Dadashi. 2014. Optimization of physical and mechanical properties for chitosan-nanocellulose biocomposites. Carbohydrate Polymers 105:222–8. doi: 10.1016/j.carbpol.2014.01.094.
  • De Silva, R. T., M. Mantilaka, S. P. Ratnayake, G. A. J. Amaratunga, and K. M. N. de Silva. 2017. Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydrate Polymers 157:739–47. doi: 10.1016/j.carbpol.2016.10.038.
  • Díez-Pascual, A. M., and A. L. Diez-Vicente. 2014 . ZnO-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. ACS Applied Materials & Interfaces 6 (12):9822–34. doi: 10.1021/am502261e.
  • Duncan, T. V. 2011. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science 363 (1):1–24. doi: 10.1016/j.jcis.2011.07.017.
  • ECA Academy. 2008. EU GMP Annex 1: Manufacture of Sterile Medicinal Products - revision November 2008. https://www.gmp-compliance.org/guidemgr/files/annex01[2008].pdf.
  • Echeverría, I., P. Eisenberg, and A. N. Mauri. 2014. Nanocomposites films based on soy proteins and montmorillonite processed by casting. Journal of Membrane Science 449:15–26. doi: 10.1016/j.memsci.2013.08.006.
  • Ejaz, M., Y. A. Arfat, M. Mulla, and J. Ahmed. 2018. Zinc oxide nanorods/clove essential oil incorporated Type B gelatin composite films and its applicability for shrimp packaging. Food Packaging and Shelf Life 15:113–21. doi: 10.1016/j.fpsl.2017.12.004.
  • Esbati, A. H., and S. Irani. 2018. Effect of functionalized process and CNTs aggregation on fracture mechanism and mechanical properties of polymer nanocomposite. Mechanics of Materials 118:106–19. doi: 10.1016/j.mechmat.2018.01.001.
  • Espitia, P. J. P., N. Soares, F. F. de, R. F. Teófilo, J. S. dos Reis Coimbra, D. M. Vitor, R. A. Batista, S. O. Ferreira, N. J. de Andrade, and E. A. A. Medeiros. 2013. Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers 94 (1):199–208. doi: 10.1016/j.carbpol.2013.01.003.
  • European Commission. 2011. Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Official Journal of the European Union 12:1–89.
  • Gabbott, P. 2008. Principles and applications of thermal analysis. Oxford, UK: Blackwell.
  • Gallocchio, F., V. Cibin, G. Biancotto, A. Roccato, O. Muzzolon, L. Carmen, B. Simone, L. Manodori, A. Fabrizi, I. Patuzzi, et al. 2016. Testing nano-silver food packaging to evaluate silver migration and food spoilage bacteria on chicken meat. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 33 (6):1063–71., doi: 10.1080/19440049.2016.1179794.
  • Garavand, F., M. Rouhi, S. H. Razavi, I. Cacciotti, and R. Mohammadi. 2017. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. International Journal of Biological Macromolecules 104 (Pt A):687–707. doi: 10.1016/j.ijbiomac.2017.06.093.
  • Ghanbarzadeh, B., and A. R. Oromiehi. 2009. Thermal and mechanical behavior of laminated protein films. Journal of Food Engineering 90 (4):517–24. doi: 10.1016/j.jfoodeng.2008.07.018.
  • Golja, V., G. Dražić, M. Lorenzetti, J. Vidmar, J. Ščančar, M. Zalaznik, M. Kalin, and S. Novak. 2017. Characterisation of food contact non-stick coatings containing TiO2 nanoparticles and study of their possible release into food. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 34 (3):421–33. doi: 10.1080/19440049.2016.1269954.
  • Hablot, E., P. Bordes, E. Pollet, and L. Avérous. 2008. Thermal and thermo-mechanical degradation of poly (3-hydroxybutyrate)-based multiphase systems. Polymer Degradation and Stability 93 (2):413–21. doi: 10.1016/j.polymdegradstab.2007.11.018.
  • Han, W., Y. Yu, N. Li, and L. Wang. 2011. Application and safety assessment for nano-composite materials in food packaging. Chinese Science Bulletin 56 (12):1216–25. doi: 10.1007/s11434-010-4326-6.
  • Hanemann, T., and D. V. Szabó. 2010. Polymer-nanoparticle composites: From synthesis to modern applications. Materials 3 (6):3468–517. doi: 10.3390/ma3063468.
  • Hannon, J. C., J. P. Kerry, M. Cruz-Romero, S. Azlin-Hasim, M. Morris, and E. Cummins. 2016. Assessment of the migration potential of nanosilver from nanoparticle-coated low-density polyethylene food packaging into food simulants. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 33 (1):167–78. doi: 10.1080/19440049.2015.1114184.
  • Hoseinnejad, M., S. M. Jafari, and I. Katouzian. 2018. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical Reviews in Microbiology 44 (2):161–81. doi: 10.1080/1040841X.2017.1332001.
  • Hasheminya, S.-M., R. R. Mokarram, B. Ghanbarzadeh, H. Hamishekar, and H. S. Kafil. 2018. Physicochemical, mechanical, optical, microstructural and antimicrobial properties of novel kefiran-carboxymethyl cellulose biocomposite films as influenced by copper oxide nanoparticles (CuONPs). Food Packaging and Shelf Life 17:196–204. doi: 10.1016/j.fpsl.2018.07.003.
  • Hassannia-Kolaee, M., F. Khodaiyan, R. Pourahmad, and I. Shahabi-Ghahfarrokhi. 2016. Development of ecofriendly bionanocomposite: Whey protein isolate/pullulan films with nano-SiO2. International Journal of Biological Macromolecules 86:139–44. doi: 10.1016/j.ijbiomac.2016.01.032.
  • He, Q., Y. Zhang, X. Cai, and S. Wang. 2016 . Fabrication of gelatin-TiO2 nanocomposite film and its structural, antibacterial and physical properties. International Journal of Biological Macromolecules 84:153–60. doi: 10.1016/j.ijbiomac.2015.12.012.
  • Hermawan, D., T. K. Lai, S. Jafarzadeh, D. A. Gopakumar, M. Hasan, F. A. T. Owolabi, N. A. S. Aprilia, S. Rizal, and H. P. S. A. Khalil. 2019. Development of seaweed-based bamboo microcrystalline cellulose films intended for sustainable food packaging applications. BioResources 14:3389–410.
  • Hernandez‐Izquierdo, V. M., and J. M. Krochta. 2008 . Thermoplastic processing of proteins for film formation—A review. Journal of Food Science 73 (2):R30–9. doi: 10.1111/j.1750-3841.2007.00636.x.
  • Jafari, S. M., I. Bahrami, D. Dehnad, and S. A. Shahidi. 2018. The influence of nanocellulose coating on saffron quality during storage. Carbohydrate Polymers 181:536–42. doi: 10.1016/j.carbpol.2017.12.008.
  • Jafari, S. M., M. Khanzadi, H. Mirzaei, D. Dehnad, F. K. Chegini, and Y. Maghsoudlou. 2015. Hydrophobicity, thermal and micro-structural properties of whey protein concentrate-pullulan-beeswax films. International Journal of Biological Macromolecules 80:506–11. doi: 10.1016/j.ijbiomac.2015.07.017.
  • Jafarzadeh, S., A. K. Alias, F. Ariffin, and S. Mahmud. 2017. Characterization of semolina protein film with incorporated zinc oxide nano rod intended for food packaging. Polish Journal of Food and Nutrition Sciences 67 (3):183–90.
  • Jafarzadeh, S., A. K. Alias, F. Ariffin, and S. Mahmud. 2018. Physico-mechanical and microstructural properties of semolina flour films as influenced by different sorbitol/glycerol concentrations. International Journal of Food Properties 21 (1):983–95. doi: 10.1080/10942912.2018.1474056.
  • Jafarzadeh, S., A. K. Alias, F. Ariffin, S. Mahmud, and A. Najafi. 2016. Preparation and characterization of bionanocomposite films reinforced with nano kaolin. Journal of Food Science and Technology 53 (2):1111–9.
  • Jafarzadeh, S., A. K. Alias, F. Ariffin, S. Mahmud, A. Najafi, and M. Ahmad. 2017. Fabrication and characterization of novel semolina-based antimicrobial films derived from the combination of ZnO nanorods and nanokaolin. Journal of Food Science and Technology 54 (1):105–13.
  • Jafarzadeh, S., A. K. Alias, F. Ariffin, S. Mahmud, A. Najafi, and S. Sheibani. 2017. Characterization of a new biodegradable edible film based on semolina loaded with nano kaolin. International Food Research Journal 24 (1):304–9.
  • Jafarzadeh, S., F. Ariffin, S. Mahmud, A. K. Alias, A. Najafi, and M. Ahmad. 2017. Characterization of semolina biopolymer films enriched with zinc oxide nano rods. Italian Journal of Food Science 29 (2):195–208.
  • Jafarzadeh, S., F. Ariffin, S. Mahmud, A. K. Alias, S. F. Hosseini, and M. Ahmad. 2017. Improving the physical and protective functions of semolina films by embedding a blend nanofillers (ZnO-nr and nano-kaolin). Food Packaging and Shelf Life 12:66–75.
  • Jafarzadeh, S., J. Rhim, A. Abd Karim, F. Ariffin, and S. Mahmud. 2018. Application of antimicrobial active packaging film made of semolina flour, nano zinc oxide and nano‐kaolin to maintain the quality of low‐moisture mozzarella cheese during low‐temperature storage. Journal of the Science of Food and Agriculture 99 (6):2716–25. doi: 10.1002/jsfa.9439.
  • Jafarzadeh, S., S. M. Jafari, A. Salehabadi, A. M. Nafchi, U. S. Uthaya, and H. A. Khalil. 2020. Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends in Food Science and Technology 100:262–77. doi: 10.1016/j.tifs.2020.04.017.
  • Jebel, F. S., and H. Almasi. 2016. Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydrate Polymers 149:8–19. doi: 10.1016/j.carbpol.2016.04.089.
  • Joz Majidi, H., A. Babaei, Z. Arab Bafrani, D. Shahrampour, E. Zabihi, and S. M. Jafari. 2019. Investigating the best strategy to diminish the toxicity and enhance the antibacterial activity of graphene oxide by chitosan addition. Carbohydrate Polymers 225:115220. doi: 10.1016/j.carbpol.2019.115220.
  • Kanmani, P., and J.-W. Rhim. 2014a. Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloids 35:644–52. doi: 10.1016/j.foodhyd.2013.08.011.
  • Kanmani, P., and J.-W. Rhim. 2014b. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chemistry 148:162–9. doi: 10.1016/j.foodchem.2013.10.047.
  • Khalaj, M.-J., H. Ahmadi, R. Lesankhosh, and G. Khalaj. 2016. Study of physical and mechanical properties of polypropylene nanocomposites for food packaging application: Nano-clay modified with iron nanoparticles. Trends in Food Science and Technology 51:41–8. doi: 10.1016/j.tifs.2016.03.007.
  • Khan, A., R. A. Khan, S. Salmieri, C. Le Tien, B. Riedl, J. Bouchard, G. Chauve, V. Tan, M. R. Kamal, and M. Lacroix. 2012. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers 90 (4):1601–8. doi: 10.1016/j.carbpol.2012.07.037.
  • Khanzadi, M., S. M. Jafari, H. Mirzaei, F. K. Chegini, Y. Maghsoudlou, and D. Dehnad. 2015. Physical and mechanical properties in biodegradable films of whey protein concentrate-pullulan by application of beeswax. Carbohydrate Polymers 118:24–9. doi: 10.1016/j.carbpol.2014.11.015.
  • Kumar, S., J. C. Boro, D. Ray, A. Mukherjee, and J. Dutta. 2019. Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon 5 (6):e01867. doi: 10.1016/j.heliyon.2019.e01867.
  • Lee, J. H., D. Jeong, and P. Kanmani. 2019. Study on physical and mechanical properties of the biopolymer/silver based active nanocomposite films with antimicrobial activity. Carbohydrate polymers 224:115159. doi: 10.1016/j.carbpol.2019.115159.
  • Li, K., S. Jin, X. Liu, H. Chen, J. He, and J. Li. 2017. Preparation and characterization of chitosan/soy protein isolate nanocomposite film reinforced by Cu nanoclusters. Polymers (Basel) 9 (12):247. doi: 10.3390/polym9070247.
  • Liu, F., C.-Y. Hu, Q. Zhao, Y.-J. Shi, and H.-N. Zhong. 2016. Migration of copper from nanocopper/LDPE composite films. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 33 (11):1741–9. doi: 10.1080/19440049.2016.1237779.
  • Liu, X., X. Chen, J. Ren, M. Chang, B. He, and C. Zhang. 2019. Effects of nano-ZnO and nano-SiO2 particles on properties of PVA/xylan composite films. International Journal of Biological Macromolecules 132:978–86. doi: 10.1016/j.ijbiomac.2019.03.088.
  • M, H., E. W. N. Chong, S. Jafarzadeh, M. T. Paridah, D. Gopakumar, H. A. Tajarudin, S. Thomas, and H. P. S. Abdul Khalil. 2019. Enhancement in the physico-mechanical functions of seaweed biopolymer film via embedding fillers for plasticulture application—A comparison with conventional biodegradable mulch film. Polymers (Basel) 11 (2):210. doi: 10.3390/polym11020210.
  • Maisanaba, S., A. I. Prieto, S. Pichardo, M. Jordá-Beneyto, S. Aucejo, and A. Jos. 2015. Cytotoxicity and mutagenicity assessment of organomodified clays potentially used in food packaging. Toxicology In Vitro: An International Journal Published in Association with BIBRA 29 (6):1222–30. doi: 10.1016/j.tiv.2015.03.010.
  • Marvizadeh, M. M., N. Oladzadabbasabadi, A. M. Nafchi, and M. Jokar. 2017. Preparation and characterization of bionanocomposite film based on tapioca starch/bovine gelatin/nanorod zinc oxide. International Journal of Biological Macromolecules 99:1–7. doi: 10.1016/j.ijbiomac.2017.02.067.
  • Nafchi, A. M., A. K. Alias, S. Mahmud, and M. Robal. 2012. Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. Journal of food engineering 113 (4):511–19.
  • Nafchi, A. M., M. Moradpour, M. Saeidi, and A. K. Alias. 2014. Effects of nanorod-rich ZnO on rheological, sorption isotherm, and physicochemical properties of bovine gelatin films. LWT - Food Science and Technology 58 (1):142–9. doi: 10.1016/j.lwt.2014.03.007.
  • Nafchi, A. M., R. Nassiri, S. Sheibani, F. Ariffin, and A. A. Karim. 2013. Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydrate Polymers 96 (1):233–9. doi: 10.1016/j.carbpol.2013.03.055.
  • Nassiri, R. 2018. Antimicrobial and barrier properties of bovine gelatin films reinforced by nano TiO2. Journal of Chemical Health Risks 3 (3):21–8.
  • Noori, F. T. M., and N. A. Ali. 2014. Study the mechanical and thermal properties of biodegradable polylactic acid/poly ethylene glycol nanocomposites. International Journal of Application or Innovation in Engineering and Management 3 (1):459–64.
  • Oleyaei, S. A., Y. Zahedi, B. Ghanbarzadeh, and A. A. Moayedi. 2016. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. International Journal of Biological Macromolecules 89:256–64. doi: 10.1016/j.ijbiomac.2016.04.078.
  • Olivas, G. I., and G. V. Barbosa-Cánovas. 2005. Edible coatings for fresh-cut fruits. Critical Reviews in Food Science and Nutrition 45 (7-8):657–70. doi: 10.1080/10408690490911837.
  • Oves, M., M. S. Khan, A. Zaidi, A. S. Ahmed, F. Ahmed, E. Ahmad, A. Sherwani, M. Owais, and A. Azam. 2013. Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One 8 (3):e59140. doi: 10.1371/journal.pone.0059140.
  • Pagno, C. H., T. M. H. Costa, E. W. de Menezes, E. V. Benvenutti, P. F. Hertz, C. R. Matte, J. V. Tosati, A. R. Monteiro, A. O. Rios, and S. H. Flôres. 2015. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chemistry 173:755–62. doi: 10.1016/j.foodchem.2014.10.068.
  • Pilevar, Z., A. Bahrami, S. Beikzadeh, H. Hosseini, and S. M. Jafari. 2019. Migration of styrene monomer from polystyrene packaging materials into foods: Characterization and safety evaluation. Trends in Food Science & Technology 91:248–61. doi: 10.1016/j.tifs.2019.07.020.
  • Raei, M., and S. Jafari. 2013. Influence of modified atmospheric conditions and different packaging materials on pistachio (Pistacia vera L.) oil quality. Latin American Applied Research 43:43–6.
  • Raei, M., and S. M. Jafari. 2011. Influence of different packaging materials and storage conditions on the quality attributes of pistachio (Pistacia vera L.) CV.Ohady. Annual Review of Food Science and Technology 12:179–85.
  • Rahme, K., and J. D. Holmes. 2015. Gold nanoparticles: synthesis, characterization, and bioconjugation. Boca Raton, FL: CRC Press.
  • Rane, L. R., N. R. Savadekar, P. G. Kadam, and S. T. Mhaske. 2014. Preparation and characterization of kcarrageenan/nanosilica biocomposite film. Journal of Materials. doi: 10.1155/2014/736271.
  • Ray, S. S., and M. Okamoto. 2003. Polymer/layered silicate nanocomposites: A review from preparation to processing. Progress in Polymer Science 28 (11):1539–641. doi: 10.1016/j.progpolymsci.2003.08.002.
  • Reddy, J. P., A. V. Rajulu, J.-W. Rhim, and J. Seo. 2018. Mechanical, thermal, and water vapor barrier properties of regenerated cellulose/nano-SiO 2 composite films. Cellulose 25 (12):7153–65. doi: 10.1007/s10570-018-2059-x.
  • Rhim, J.-W. 2011. Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydrate Polymers 86 (2):691–9. doi: 10.1016/j.carbpol.2011.05.010.
  • Rhim, J.-W., and L.-F. Wang. 2014. Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Applied Clay Science 97-98:174–81. doi: 10.1016/j.clay.2014.05.025.
  • Rhim, J. W., L. F. Wang, and S. I. Hong. 2013. Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids 33 (2):327–35. doi: 10.1016/j.foodhyd.2013.04.002.
  • Rosales, A., A. Maury-Ramírez, R. Gutiérrez, C. Guzmán, and K. Esquivel. 2018. SiO2@ TiO2 coating: Synthesis, physical characterization and photocatalytic evaluation. Coatings 8 (4):120. doi: 10.3390/coatings8040120.
  • Rouhi, J., S. Mahmud, N. Naderi, C. H. R. Ooi, and M. R. Mahmood. 2013. Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Research Letters 8 (1):364. doi: 10.1186/1556-276X-8-364.
  • Sadegh-Hassani, F., and A. M. Nafchi. 2014. Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. International Journal of Biological Macromolecules 67:458–62. doi: 10.1016/j.ijbiomac.2014.04.009.
  • Salarbashi, D., S. Tajik, S. Shojaee-Aliabadi, M. Ghasemlou, H. Moayyed, R. Khaksar, and M. S. Noghabi. 2014. Development of new active packaging film made from a soluble soybean polysaccharide incorporated Zataria multiflora Boiss and Mentha pulegium essential oils. Food Chemistry 146:614–22. doi: 10.1016/j.foodchem.2013.09.014.
  • Salehabadi, A., M. Bakar, and N. Bakar. 2014. Effect of organo-modified nanoclay on the thermal and bulk structural properties of poly(3-hydroxybutyrate)-epoxidized natural rubber blends: Formation of multi-components biobased nanohybrids. Materials (Basel, Switzerland) 7 (6):4508–23. doi: 10.3390/ma7064508.
  • Shaili, T., M. N. Abdorreza, and N. Fariborz. 2015. Functional, thermal, and antimicrobial properties of soluble soybean polysaccharide biocomposites reinforced by nano TiO2. Carbohydrate Polymers 134:726–31. doi: 10.1016/j.carbpol.2015.08.073.
  • Shankar, S., and J.-W. Rhim. 2017. Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocolloids 71:76–84. doi: 10.1016/j.foodhyd.2017.05.002.
  • Shankar, S., X. Teng, and J. W. Rhim. 2014. Effects of concentration of ZnO nanoparticles on mechanical, optical, thermal, and antimicrobial properties of gelatin/ZnO nanocomposite films. Korean Journal of Packaging Science and Technology 20 (2):41–49.
  • Shankar, S., X. Teng, G. Li, and J.-W. Rhim. 2015. Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids 45:264–71. doi: 10.1016/j.foodhyd.2014.12.001.
  • Shankar, S., L. F. Wang, and J. W. Rhim. 2017. Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydrate polymers 169:264–71.
  • Sharma, R., S. M. Jafari, and S. Sharma. 2020. Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control 112:107086. doi: 10.1016/j.foodcont.2020.107086.
  • Siddiqi, K. S., A. Ur Rahman, and A. Husen. 2018. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters 13:141.
  • Sun, L., C. Zhang, and P. Li. 2012. Characterization, antibiofilm, and mechanism of action of novel PEG-stabilized lipid nanoparticles loaded with terpinen-4-ol. Journal of Agricultural and Food Chemistry 60 (24):6150–6. doi: 10.1021/jf3010405.
  • Tabatabaei, R. H., S. M. Jafari, H. Mirzaei, A. Mohammadi Nafchi, and D. Dehnad. 2018. Preparation and characterization of nano-SiO2 reinforced gelatin-k-carrageenan biocomposites. International Journal of Biological Macromolecules 111:1091–9. doi: 10.1016/j.ijbiomac.2018.01.116.
  • Tajik, S., Y. Maghsoudlou, F. Khodaiyan, S. M. Jafari, M. Ghasemlou, and M. Aalami. 2013. Soluble soybean polysaccharide: A new carbohydrate to make a biodegradable film for sustainable green packaging. Carbohydrate Polymers 97 (2):817–24. doi: 10.1016/j.carbpol.2013.05.037.
  • Thirumurugan, A., S. Ramachandran, and A. Shiamala Gowri. 2013. Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria-an approach for food packaging material preparation. International Food Research Journal 20 (4):1909–12.
  • Türe, H., M. Gällstedt, E. Johansson, and M. S. Hedenqvist. 2013. Wheat-gluten/montmorillonite clay multilayer-coated paperboards with high barrier properties. Industrial Crops and Products 51:1–6. doi: 10.1016/j.indcrop.2013.08.054.
  • U.S. Department of Health and Human Services. 2014. Guidance for Industry. Washington, DC: HHS.
  • Vahedikia, N., F. Garavand, B. Tajeddin, I. Cacciotti, S. M. Jafari, T. Omidi, and Z. Zahedi. 2019. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids and Surfaces. B, Biointerfaces 177:25–32. doi: 10.1016/j.colsurfb.2019.01.045.
  • Vieira, M. G. A., M. A. da Silva, L. O. dos Santos, and M. M. Beppu. 2011. Natural-based plasticizers and biopolymer films: A review. European Polymer Journal 47 (3):254–63. doi: 10.1016/j.eurpolymj.2010.12.011.
  • Wahyudi, S., S. Soepriyanto, and M. Z. Mubarok. 2018. Synthesis and applications of copper nanopowder–A review. In IOP Conference Series: Materials Science and Engineering, 12014. Bristol, UK: IOP Publishing. doi: 10.1088/1757-899X/395/1/012014.
  • Wihodo, M., and C. I. Moraru. 2013. Physical and chemical methods used to enhance the structure and mechanical properties of protein films: A review. Journal of Food Engineering 114 (3):292–302. doi: 10.1016/j.jfoodeng.2012.08.021.
  • Yoksan, R., and S. Chirachanchai. 2010. Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering: C 30 (6):891–7. doi: 10.1016/j.msec.2010.04.004.
  • Yun, Y.-H., Y.-N. Youn, S.-D. Yoon, and J.-U. Lee. 2012. Preparation and physical properties of starch-based nanocomposite films with the addition of titanium oxide nanoparticles addition of titanium oxide nanoparticles. Journal of Ceramic Processing Research 13 (1):59–64.
  • Zare, Y., K. Y. Rhee, and S.-J. Park. 2017. Predictions of micromechanics models for interfacial/interphase parameters in polymer/metal nanocomposites. International Journal of Adhesion and Adhesives 79:111–6. doi: 10.1016/j.ijadhadh.2017.09.015.
  • Zheng, Y., J. Yang, W. Zheng, X. Wang, C. Xiang, L. Tang, W. Zhang, S. Chen, and H. Wang. 2013. Synthesis of flexible magnetic nanohybrid based on bacterial cellulose under ultrasonic irradiation. Materials Science & Engineering. C, Materials for Biological Applications 33 (4):2407–12. doi: 10.1016/j.msec.2013.02.007.
  • Zolfi, M., F. Khodaiyan, M. Mousavi, and M. Hashemi. 2014 . The improvement of characteristics of biodegradable films made from kefiran-whey protein by nanoparticle incorporation. Carbohydrate Polymers 109:118–25. doi: 10.1016/j.carbpol.2014.03.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.