1,021
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in β-galactosidase and fructosyltransferase immobilization technology

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdellah, H. A., T. M. A. Baker, L. A. Shekib, and S. N. El-Iraqi. 1992. Characteristics of invertase immobilized on three different types of supports. Food Chemistry 43 (5):369–75. doi: 10.1016/0308-8146(92)90309-P.
  • Adlercreutz, P. 1991 . On the importance of the support material for enzymatic synthesis in organic media. Support effects at controlled water activity. European Journal of Biochemistry 199 (3):609–14. doi: 10.1111/j.1432-1033.1991.tb16161.x.
  • Ademakinwa, A., Z. Ayinla, O. Omitogun, and F. Agboola. 2018. Preparation, characterization and optimization of cross-linked fructosyltransferase aggregates for the production of prebiotic fructooligosaccharides. BioTechnologia 99 (4):417–34. doi: 10.5114/bta.2018.79972.
  • Ahmad Mahmod, M. E. 2016. Immobilization of Bacillus subtilis glutaminase on different supports. Journal of Nutritional Health & Food Engineering 5 (4):668–70. doi: 10.15406/jnhfe.2016.05.00179.
  • Aehle, W. 2007. Enzymes in industry: Production and applications. 3rd ed. Weinheim, Germany: Wiley-VCH. doi: 10.1002/9783527617098.
  • Albayrak, N., and S. T. Yang. 2002 . Immobilization of beta-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose. Biotechnology Progress 18 (2):240–51. doi: 10.1021/bp010167b.
  • Alberto, F., C. Bignon, G. Sulzenbacher, B. Henrissat, and M. Czjzek. 2004 . The three-dimensional structure of invertase (beta-fructosidase) from Thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases. The Journal of Biological Chemistry 279 (18):18903–10. doi: 10.1074/jbc.M313911200.
  • Algieri, C., L. Donato, and L. Giorno. 2017. Tyrosinase immobilized on a hydrophobic membrane. Biotechnology and Applied Biochemistry 64 (1):92–9. doi: 10.1002/bab.1462.
  • Alvarado-Huallanco, M. B., and F. Maugeri Filho. 2011. Kinetic studies and modelling of the production of fructooligosaccharides by fructosyltransferase from Rhodotorula Sp. Catalysis Science & Technology 1 (6):1043–50. doi: 10.1039/c0cy00059k.
  • Alvaro-Benito, M., M. de Abreu, F. Portillo, J. Sanz-Aparicio, and M. Fernandez-Lobato. 2010 . New insights into the fructosyltransferase activity of Schwanniomyces occidentalis ß-fructofuranosidase, emerging from nonconventional codon usage and directed mutation. Applied and Environmental Microbiology 76 (22):7491–9. doi: 10.1128/AEM.01614-10.
  • Ansari, S. A., and Q. Husain. 2012. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology Advances 30 (3):512–23. doi: 10.1016/j.biotechadv.2011.09.005.
  • Asli, U. A., I. Nwaha, H. Hamid, Z. A. Zakaria, A. N. Sadikin, and M. J. Kamaruddin. 2016. A kinetic study of enzymatic hydrolysis of oil palm biomass for fermentable sugar using polyethylene glycol (PEG) immobilized cellulase. Jurnal Teknologi 78 (8–3):51–7. doi: 10.11113/jt.v78.9565.
  • Ateş, S., and Ü. Mehmetoğlu. 1997. A new method for immobilization of β-galactosidase and its utilization in a plug flow reactor. Process Biochemistry 32 (5):433–6. doi: 10.1016/S0032-9592(96)00101-X.
  • Awang, R., M. R. Ghazuli, and M. Basri. 2007. Immobilization of lipase from Candida rugosa on palm-based polyurethane foam as a support material. American Journal of Biochemistry and Biotechnology 3 (3):163–6. doi: 10.3844/ajbbsp.2007.163.166.
  • Bahulekar, R. V., S. Ponrathnam, B. S. Uphade, N. R. Ayyangar, K. K. Kumar, and J. G. Shewale. 1991. Immobilization of penicillin G acylase onto alumina: Effect of hydrophilicity. Biotechnology Techniques 5 (5):401–4. doi: 10.1007/BF00185023.
  • Bai, X., H. Gu, W. Chen, H. Shi, B. Yang, X. Huang, and Q. Zhang. 2014. Immobilized laccase on activated poly(vinyl alcohol) microspheres for enzyme thermistor application. Applied Biochemistry and Biotechnology 173 (5):1097–107. doi: 10.1007/s12010-014-0913-3.
  • Barbosa, O., C. Ortiz, Á. Berenguer-Murcia, R. Torres, R. C. Rodrigues, and R. Fernandez-Lafuente. 2014. Glutaraldehyde in bio-catalysts design: A useful crosslinker and a versatile tool in enzyme immobilization. RSC Advances 4 (4):1583–600. doi: 10.1039/C3RA45991H.
  • Basso, A., and S. Serban. 2019. Industrial applications of immobilized enzymes—A review. Molecular Catalysis 479 (2019):110607. doi: 10.1016/j.mcat.2019.110607.
  • Blandino, A., M. Macı́as, and D. Cantero. 2001. Immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochemistry 36 (7):601–6. doi: 10.1016/S0032-9592(00)00240-5.
  • Behrens, G. A., A. Hummel, S. K. Padhi, S. Schätzle, and U. T. Bornscheuer. 2011. Discovery and protein engineering of biocatalysts for organic synthesis. Advanced Synthesis & Catalysis 353 (13):2191–215. doi: 10.1002/adsc.201100446.
  • Bernal, C., M. Marciello, M. Mesa, L. Sierra, G. Fernandez-Lorente, C. Mateo, and J. M. Guisan. 2013. Immobilisation and stabilisation of β-galactosidase from Kluyveromyces lactis using a glyoxyl support. International Dairy Journal 28 (2):76–82. doi: 10.1016/j.idairyj.2012.08.009.
  • Botelho-Cunha, V., M. Mateus, J. Petrus, and M. N. de Pinho. 2010. Tailoring the enzymatic synthesis and nanofiltration fractionation of galacto-oligosaccharides. Biochemical Engineering Journal 50 (1-2):29–36. doi: 10.1016/j.bej.2010.03.001.
  • Boudrant, J., J. Woodley, and R. Fernandez-Lafuente. 2020. Parameters necessary to define an immobilized enzyme preparation. Process Biochemistry 90:66–80. doi: 10.1016/j.procbio.2019.11.026.
  • Brás, N. F., P. A. Fernandes, and M. J. Ramos. 2010 . QM/MM studies on the β-galactosidase catalytic mechanism: Hydrolysis and transglycosylation reactions. Journal of Chemical Theory and Computation 6 (2):421–33. doi: 10.1021/ct900530f.
  • Brás, N. F., S. A. Moura-Tamames, P. A. Fernandes, and M. J. Ramos. 2008. Mechanistic studies on the formation of glycosidase-substrate and glycosidase-inhibitor covalent intermediates. Journal of Computational Chemistry 29 (15):2565–74. doi: 10.1002/jcc.21013.
  • Burghardt, J. P., M. Baas, D. G. Gerlach, and P. Czermak. 2019. Two-step production of neofructo-oligosaccharides using immobilized heterologous Aspergillus terreus 1F-fructosyltransferase expressed in Kluyveromyces lactis and native Xanthophyllomyces dendrorhous G6-fructosyltransferase. Catalysts 9 (8):673. doi: 10.3390/catal9080673.
  • Cabral, B. V., L. D. Santos, L. N. S. Santana Falleiros, T. S. Carmo, F. F. Freitas, S. L. Cardoso, M. M. Resende, and E. J. Ribeiro. 2017. Sucrose hydrolysis by invertase immobilized on Duolite A-568 employing a packed-bed reactor. Chemical Engineering Communications 204 (9):1007–19. doi: 10.1080/00986445.2017.1336089.
  • Calabrò, V. 2013. Engineering aspects of membrane bioreactors. In Handbook of Membrane Reactors, ed. A. Basile, vol. 2: Reactor Types and Industrial Applications, 3–53, series: Woodhead Publishing Series in Energy. Oxford, UK: Woodhead. doi: 10.1533/9780857097347.1.3.
  • Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Research 37 (database issue):D233–8. doi: 10.1093/nar/gkn663.
  • Cao, L. 2005. Carrier‐bound Immobilized enzymes: Principles, applications and design. Weinheim, Germany: Wiley-VCH. doi: 10.1002/3527607668.
  • Carević, M., M. Vukašinović-Sekulić, M. Ćorović, H. Rogniaux, D. Ropartz, D. Veličković, and D. Bezbradica. 2018. Evaluation of β-galactosidase from Lactobacillus acidophilus as biocatalyst for galacto-oligosaccharides synthesis: Product structural characterization and enzyme immobilization. Journal of Bioscience and Bioengineering 126 (6):697–704. doi: 10.1016/j.jbiosc.2018.06.003.
  • Castro, C. C., C. Nobre, M.-E. Duprez, G. D. Weireld, and A.-L. Hantson. 2017. Screening and selection of potential carriers to immobilize Aureobasidium pullulans cells for fructo-oligosaccharides production. Biochemical Engineering Journal 118:82–90. doi: 10.1016/j.bej.2016.11.011.
  • Charoenwongpaiboon, T., R. Pichyangkura, R. A. Field, and M. H. Prousoontorn. 2019. Preparation of Cross-Linked Enzyme Aggregates (CLEAs) of an inulosucrase mutant for the enzymatic synthesis of inulin-type fructooligosaccharides. Catalysts 9 (8):641. doi: 10.3390/catal9080641.
  • Chen, M., G. Zeng, P. Xu, C. Lai, and L. Tang. 2017. How do enzymes ‘meet’ nanoparticles and nanomaterials? Trends in Biochemical Sciences 42 (11):914–30. doi: 10.1016/j.tibs.2017.08.008.
  • Chen, S.-C., D.-C. Sheu, and K.-J. Duan. 2014. Production of fructooligosaccharides using β-fructofuranosidase immobilized onto chitosan-coated magnetic nanoparticles. Journal of the Taiwan Institute of Chemical Engineers 45 (4):1105–10. doi: 10.1016/j.jtice.2013.10.003.
  • Chen, W., H. Chen, Y. Xia, J. Yang, J. Zhao, F. Tian, H. P. Zhang, and H. Zhang. 2009 . Immobilization of recombinant thermostable beta-galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk. Journal of Dairy Science 92 (2):491–8. doi: 10.3168/jds.2008-1618.
  • Cheng, C.-Y., K.-J. Duan, D.-C. Sheu, C.-T. Lin, and S.-Y. Li. 1996. Production of fructooligosaccharides by immobilized mycelium of Aspergillus japonicus. Journal of Chemical Technology & Biotechnology 66 (2):135–8. doi: 10.1002/(SICI)1097-4660(199606)66:2 < 135::AID-JCTB479 > 3.0.CO;2-S.
  • Chiang, C. J., W. C. Lee, D. C. Sheu, and K. J. Duan. 1997 . Immobilization of beta-fructofuranosidases from Aspergillus on methacrylamide-based polymeric beads for production of fructooligosaccharides. Biotechnology Progress 13 (5):577–82. doi: 10.1021/bp970067z.
  • Chuankhayan, P., C.-Y. Hsieh, Y.-C. Huang, Y.-Y. Hsieh, H.-H. Guan, Y.-C. Hsieh, Y.-C. Tien, C.-D. Chen, C.-M. Chiang, and C.-J. Chen. 2010. Crystal structures of Aspergillus japonicus fructosyltransferase complex with donor/acceptor substrates reveal complete subsites in the active site for catalysis. The Journal of Biological Chemistry 285 (30):23251–64. doi: 10.1074/jbc.M110.113027.
  • Cipolatti, E. P., A. Valéri, R. O. Henriques, D. E. Moritz, J. L. Ninow, D. M. G. Freire, E. A. Manoel, R. Fernandez-Lafuente, and D. de Oliveira. 2016. Nanomaterials for biocatalyst immobilization – state of the art and future trends. RSC Advances 6 (106):104675–92. doi: 10.1039/C6RA22047A.
  • Cornish-Bowden, A. 2015. One hundred years of Michaelis–Menten kinetics. Perspectives in Science 4:3–9. doi: 10.1016/j.pisc.2014.12.002.
  • Coutinho, T. C., M. J. Rojas, P. W. Tardioli, E. C. Paris, and C. S. Farinas. 2018. Nanoimmobilization of β-glucosidase onto hydroxyapatite. International Journal of Biological Macromolecules 119:1042–51. doi: 10.1016/j.ijbiomac.2018.08.042.
  • D’Annibale, A., S. R. Stazi, V. Vinciguerra, E. di Mattia, and G. G. Sermanni. 1999. Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment. Process Biochemistry 34 (6-7):697–706. doi: 10.1016/S0032-9592(98)00144-7.
  • Dutta, S., A. Bhattacharyya, P. De, P. Ray, and S. Basu. 2009. Removal of mercury from its aqueous solution using charcoal-immobilized papain (CIP). Journal of Hazardous Materials 172 (2-3):888–96. doi: 10.1016/j.jhazmat.2009.07.085.
  • Datta, S., L. R. Christena, and Y. R. S. Rajaram. 2013. Enzyme immobilization: An overview on techniques and support materials. 3 Biotech 3 (1):1–9. doi: 10.1007/s13205-012-0071-7.
  • Davids, T., M. Schmidt, D. Böttcher, and U. T. Bornscheuer. 2013. Strategies for the discovery and engineering of enzymes for biocatalysis. Current Opinion in Chemical Biology 17 (2):215–20. doi: 10.1016/j.cbpa.2013.02.022.
  • Davies, G., and B. Henrissat. 1995. Structures and mechanisms of glycosyl hydrolases. Structure (London, England: 1993) 3 (9):853–9. doi: 10.1016/S0969-2126(01)00220-9.
  • Davies, G. J., K. S. Wilson, and B. Henrissat. 1997. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochemical Journal 321 (2):557–9. doi: 10.1042/bj3210557.
  • de Albuquerque, T., Gomes, S. A. Portal D’almeida, R. Fernandez-Lafuente, Rocha Barros, L. Gonçalves, and M. Ponte Rocha. 2018. Immobilization of β-galactosidase in glutaraldehyde-chitosan and its application to the synthesis of lactulose using cheese whey as feedstock. Process Biochemistry 73:65–73. doi: 10.1016/j.procbio.2018.08.010.
  • de Oliveira, R., M. da Silva, S. da Silva, A. Vaz de Araújo, J. Cavalcanti, A. Converti, and T. Souza Porto. 2020 . Fructo-oligosaccharides production by an Aspergillus aculeatus commercial enzyme preparation with fructosyltransferase activity covalently immobilized on Fe3O4-chitosan-magnetic nanoparticles. International Journal of Biological Macromolecules 150:922–9. doi: 10.1016/j.ijbiomac.2020.02.152.
  • Detofol, M. R., E. Aguiar-Oliveira, C. E. Bustamante-Vargas, A. B. de, J. Soares, M. B. A. Soares, and F. Maugeri. 2015. Modeling and simulation of fructooligosaccharides synthesis in a batch basket reactor. Journal of Biotechnology 210:44–51. doi: 10.1016/j.jbiotec.2015.06.410.
  • DiCosimo, R., J. McAuliffe, A. J. Poulose, and G. Bohlmann. 2013. Industrial use of immobilized enzymes. Chemical Society Reviews 42 (15):6437–74. doi: 10.1039/c3cs35506c.
  • Díez-Municio, M., M. Herrero, A. Olano, and F. J. Moreno. 2014. Synthesis of novel bioactive lactose-derived oligosaccharides by microbial glycoside hydrolases. Microbial Biotechnology 7 (4):315–31. doi: 10.1111/1751-7915.12124.
  • Duan, K. J., J. S. Chen, and D. C. Sheu. 1994. Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose. Enzyme and Microbial Technology 16 (4):334–9. doi: 10.1016/0141-0229(94)90176-7.
  • Dwevedi, A. 2016. Enzyme Immobilization: Advances in Industry. Agriculture, Medicine, and the Environment. Cham, Switzerland: Springer International. doi: 10.1007/978-3-319-41418-8.
  • Eldin, M. S. M., E. Hassan, and M. R. El-Aassar. 2005. β-galactosidase covalent immobilization on the surface of alginate beads and its application in lactose hydrolysis. Deutsche Lebensmittel-Rundschau 101:309–14.
  • Eskandarloo, H., and A. Abbaspourrad. 2018. Production of galacto-oligosaccharides from whey permeate using β-galactosidase immobilized on functionalized glass beads. Food Chemistry 251:115–24. doi: 10.1016/j.foodchem.2018.01.068.
  • Fai, A. E. C., H. Y. Kawaguti, I. Thomazelli, R. Santos, and G. M. Pastose. 2017. Immobilization of fungi β-galactosidase on celite to produce galactooligosaccharides during lactose hydrolysis. International Food Research Journal 24 (1):353–8. http://agris.upm.edu.my:8080/dspace/handle/0/14822.
  • Fang, Y., X.-J. Huang, P.-C. Chen, and Z.-K. Xu. 2011. Polymer materials for enzyme immobilization and their application in bioreactors. BMB Reports 44 (2):87–95. doi: 10.5483/BMBRep.2011.44.2.87.
  • Fraas, R., and M. Franzreb. 2017. Reversible covalent enzyme immobilization methods for reuse of carriers. Biocatalysis and Biotransformation 35 (5):337–48. doi: 10.1080/10242422.2017.1344229.
  • Fernandez-Arrojo, L., B. Rodriguez-Colinas, P. Gutierrez-Alonso, M. Fernandez-Lobato, M. Alcalde, A. O. Ballesteros, and F. J. Plou. 2013. Dried Alginate-Entrapped Enzymes (DALGEEs) and their application to the production of fructooligosaccharides. Process Biochemistry 48 (4):677–82. doi: 10.1016/j.procbio.2013.02.015.
  • Finocchiaro, T., T. Richardson, and N. F. Olson. 1980. Lactase immobilized on alumina. Journal of Dairy Science 63 (2):215–22. doi: 10.3168/jds.S0022-0302(80)82916-X.
  • Franssen, M. C. R., P. Steunenberg, E. L. Scott, H. Zuilhof, and J. P. M. Sanders. 2013. Immobilised enzymes in biorenewables production. Chemical Society Reviews 42 (15):6491–533. doi: 10.1039/c3cs00004d.
  • Gabrielczyk, J., T. Duensing, S. Buchholz, A. Schwinges, and H. Jördening. 2018. A Comparative study on immobilization of fructosyltransferase in biodegradable polymers by electrospinning. Applied Biochemistry and Biotechnology 185 (3):847–62. doi: 10.1007/s12010-018-2694-6.
  • Ganaie, M. A., L. K. Pathak, and U. S. Gupta. 2011. Production of fructoligosaccharides by Aureobasidium pullulans using immoblization technique. Journal of Food Technology 9 (3):91–4. doi: 10.3923/jftech.2011.91.94.
  • Gaur, R., H. Pant, R. Jain, and S. K. Khare. 2006. Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase. Food Chemistry 97 (3):426–30. doi: 10.1016/j.foodchem.2005.05.020.
  • Ghazi, I., A. G. De Segura, L. Fernández-Arrojo, M. Alcalde, M. Yates, M. L. Rojas-Cervantes, F. J. Plou, and A. Ballesteros. 2005. Immobilisation of fructosyltransferase from Aspergillus aculeatus on epoxy-activated sepabeads EC for the synthesis of fructo-oligosaccharides. Journal of Molecular Catalysis B: Enzymatic 35 (1-3):19–27. doi: 10.1016/j.molcatb.2005.04.013.
  • Ghollasi, M. 2018. Electrospun polyethersulfone nanofibers: A novel matrix for alpha-amylase immobilization. Journal of Applied Biotechnology Reports 5 (1):19–25. doi: 10.29252/JABR.01.01.04.
  • Gibson, G. R., R. Hutkins, M. E. Sanders, S. L. Prescott, R. A. Reimer, S. J. Salminen, K. Scott, C. Stanton, K. S. Swanson, P. D. Cani, et al. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews. Gastroenterology & Hepatology 14 (8):491–502. doi: 10.1038/nrgastro.2017.75.
  • Girelli, A. M., L. Salvagni, and A. M. Tarola. 2012. Use of lipase immobilized on celluse support for cleaning aged oil layers. Journal of the Brazilian Chemical Society 23:585–92. doi: 10.1590/S0103-50532012000400002.
  • Gómez, J. M., M. D. Romero, G. Hodaifa, and E. de la Parra. 2009. Adsorption of trypsin on commercial silica gel. Engineering in Life Sciences 9 (4):336–41. doi: 10.1002/elsc.200900018.
  • Gonçalves, M. C. P., T. G. Kieckbusch, R. F. Perna, J. T. Fujimoto, S. A. V. Morales, and J. P. Romanelli. 2019. Trends on enzyme immobilization researches based on bibliometric analysis. Process Biochemistry 76:95–110. doi: 10.1016/j.procbio.2018.09.016.
  • González-Cataño, F., L. Tovar-Castro, E. Castaño-Tostado, C. Regalado-Gonzalez, B. García-Almendarez, A. Cardador-Martínez, and S. Amaya-Llano. 2017. Improvement of covalent immobilization procedure of β-galactosidase from Kluyveromyces lactis for galactooligosaccharides production: Modeling and kinetic study. Biotechnology Progress 33 (6):1568–78. doi: 10.1002/btpr.2509.
  • González-Sáiz, J. M., and C. Pizarro. 2001. Polyacrylamide gels as support for enzyme immobilization by entrapment. Effect of polyelectrolyte carrier, pH and temperature on enzyme action and kinetics parameters. European Polymer Journal 37 (3):435–44. doi: 10.1016/S0014-3057(00)00151-8.
  • Guce, A. I., N. E. Clark, E. N. Salgado, D. R. Ivanen, A. A. Kulminskaya, H. Brumer, and S. C. Garman. 2010 . Catalytic mechanism of human alpha-galactosidase. The Journal of Biological Chemistry 285 (6):3625–32. doi: 10.1074/jbc.M109.060145.
  • Guerrero, C., F. Valdivia, C. Ubilla, N. Ramírez, M. Gómez, C. Aburto, C. Vera, and A. Illanes. 2019. Continuous enzymatic synthesis of lactulose in packed-bed reactor with immobilized Aspergillus oryzae β-galactosidase. Bioresource Technology 278:296–302. doi: 10.1016/j.biortech.2018.12.018.
  • Guerrero, C., C. Aburto, S. Suárez, C. Vera, and A. Illanes. 2018. Effect of the type of immobilization of β-galactosidase on the yield and selectivity of synthesis of transgalactosylated oligosaccharides. Biocatalysis and Agricultural Biotechnology 16:353–63. doi: 10.1016/j.bcab.2018.08.021.
  • Guerrero, C., C. Vera, E. Araya, R. Conejeros, and A. Illanes. 2015. Repeated-batch operation for the synthesis of lactulose with β-galactosidase immobilized by aggregation and crosslinking. Bioresource Technology 190:122–31. doi: 10.1016/j.biortech.2015.04.039.
  • Guerrero, C., C. Vera, N. Serna, and A. Illanes. 2017. Immobilization of Aspergillus oryzae β-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose. Bioresource Technology 232:53–63. doi: 10.1016/j.biortech.2017.02.003.
  • Guio, F., L. D. Rugeles, S. E. Rojas, M. P. Palomino, M. C. Camargo, and O. F. Sánchez. 2012. Kinetic modeling of fructooligosaccharide production using Aspergillus oryzae N74. Applied Biochemistry and Biotechnology 167 (1):142–63. doi: 10.1007/s12010-012-9629-4.
  • Guisán, J. M., A. Bastida, C. Cuesta, R. Fernandez-Lufuente, and C. M. Rosell. 1991 . Immobilization-stabilization of alpha-chymotrypsin by covalent attachment to aldehyde-agarose gels. Biotechnology and Bioengineering 38 (10):1144–52. doi: 10.1002/bit.260381005.
  • Güleç, H. A. 2013. Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: Effect of surface characteristics. Colloids and Surfaces. B, Biointerfaces 104:83–90. doi: 10.1016/j.colsurfb.2012.11.039.
  • Guo, K. 2019. Immobilization methods of enzymes: Part I. In Approaches to enhance industrial production of fungal cellulases. Fungal Biology, eds. M. Srivastava, N. Srivastava, P. Ramteke, and P. K. Mishra, 127–36. Cham, Switzerland: Springer. doi: 10.1007/978-3-030-14726-6_8.
  • Guzik, U., K. Hupert-Kocurek, and D. Wojcieszyńska. 2014. Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules (Basel, Switzerland) 19 (7):8995–9018. doi: 10.3390/molecules19078995.
  • Hayashi, S., J. Kinoshita, M. Nonoguchi, Y. Takasaki, and K. Imada. 1991. Continous production of 1-kestose by β-fructofuranosidase immobilized on Shirasu porous glass. Biotechnology Letters 13 (6):395–8. doi: 10.1007/BF01030989.
  • Hayashi, S., S. Sasao, Y. Takasaki, and K. Imada. 1994. Immobilization of β-fructofuranosidase from Aureobasidium on DEAE-cellulose. Journal of Industrial Microbiology 13 (2):103–5. doi: 10.1007/BF01584106.
  • Henrissat, B., I. Callebaut, S. Fabrega, P. Lehn, J. P. Mornon, and G. Davies. 1995. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proceedings of the National Academy of Sciences of the United States of America 92 (15):7090–4. doi: 10.1073/pnas.92.15.7090.
  • Hettiarachchy, N. S., D. J. Feliz, J. S. Edwards, and R. Horax. 2018. The use of immobilized enzymes to improve functionality. In Proteins in food processing, ed. R. Y. Yada, 2nd ed., 569–97. Woodhead Publishing Series in Food Science, Technology and Nutrition. Duxford, UK: Woodhead. doi: 10.1016/B978-0-08-100722-8.00022-X.
  • Homaei, A. A., R. Sariri, F. Vianello, and R. Stevanato. 2013. Enzyme immobilization: An update. Journal of Chemical Biology 6 (4):185–205. doi: 10.1007/s12154-013-0102-9.
  • Hu, M. C., E. R. Haering, and C. J. Geankoplis. 1985. Diffusion and adsorption phenomena in an immobilized enzyme reactor using adsorbed polymer for attachment of the enzyme in porous alumina particles. Chemical Engineering Science 40 (12):2241–8. doi: 10.1016/0009-2509(85)85126-5.
  • Huang, X. J., P. C. Chen, F. Huang, Y. Ou, M. R. Chen, and Z. K. Xu. 2011. Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. Journal of Molecular Catalysis B: Enzymatic 70 (3-4):95–100. doi: 10.1016/j.molcatb.2011.02.010.
  • Hrmova, M., and G. B. Fincher. 2007 . Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues. Carbohydrate Research 342 (12–13):1613–23. doi: 10.1016/j.carres.2007.05.013.
  • Husain, Q. 2010. β Beta galactosidases and their potential applications: a review. Critical Reviews in Biotechnology 30 (1):41–62. doi: 10.3109/07388550903330497.
  • Illanes, A. 2008. Introduction. In Enzyme biocatalysis: Principles and applications, ed. A. Illanes. Dordrecht, the Netherlands: Springer. doi: 10.1007/978-1-4020-8361-7.
  • Illanes, A., L. Wilson, and C. Vera. 2014. Problem solving in enzyme biocatalysis. Chichester, UK: John Wiley & Sons.
  • Irague, R., L. Tarquis, I. André, C. Moulis, S. Morel, P. Monsan, G. Potocki-Véronèse, and M. Remaud-Siméon. 2013. Combinatorial engineering of dextransucrase specificity. PLoS One 8 (10):e77837. doi: 10.1371/journal.pone.0077837.
  • Isobe, N., D. S. Lee, Y. J. Kwon, S. Kimura, S. Kuga, M. Wada, and U. J. Kim. 2011. Immobilization of protein on cellulose hydrogel. Cellulose 18 (5):1251–6. doi: 10.1007/s10570-011-9561-8.
  • Jaiswal, N., O. Prakash, M. Talat, S. H. Hasan, and R. K. Pandey. 2012. α-Amylase immobilization on gelatin: Optimization of process variables. Journal of Genetic Engineering and Biotechnology 10 (1):161–7. doi: 10.1016/j.jgeb.2012.03.003.
  • Jang, K. H., K. B. Song, J. S. Kim, C. H. Kim, B. H. Chung, and S. K. Rhee. 2000. Production of levan using recombinant levansucrase immobilized on hydroxyapatite. Bioprocess Engineering 23 (1):89–93. doi: 10.1007/s004499900153.
  • Jesionowski, T., J. Zdarta, and B. Krajewska. 2014. Enzyme immobilization by adsorption: A review. Adsorption 20 (5–6):801–21. doi: 10.1007/s10450-014-9623-y.
  • Jitonnom, J., J. R. Ketudat-Cairns, and S. Hannongbua. 2018 . QM/MM modeling of the hydrolysis and transfructosylation reactions of fructosyltransferase from Aspergillus japonicas, an enzyme that produces prebiotic fructooligosaccharide. Journal of Molecular Graphics & Modelling 79:175–84. doi: 10.1016/j.jmgm.2017.11.010.
  • Jovanovic-Malinovska, R., P. Fernandes, E. Winkelhausen, and L. Fonseca. 2012. Galacto-oligosaccharides synthesis from lactose and whey by β-galactosidase immobilized in PVA. Applied Biochemistry and Biotechnology 168 (5):1197–211. doi: 10.1007/s12010-012-9850-1.
  • Juers, D. H., T. D. Heightman, A. Vasella, J. D. McCarter, L. Mackenzie, S. G. Withers, and B. W. Matthews. 2001 . A structural view of the action of Escherichia coli (lacZ) beta-galactosidase. Biochemistry 40 (49):14781–94. doi: 10.1021/bi011727i.
  • Junko Tomotani, E., and M. Vitolo. 2006. Method for immobilizing invertase by adsorption on Dowex® anionic exchange resin. Revista Brasileira de Ciencias Farmaceuticas/Brazilian Journal of Pharmaceutical Sciences 42:245–9. doi: 10.1590/S1516-93322006000200009.
  • Jung, K. H., J. W. Yun, K. R. Kang, J. Y. Lim, and J. H. Lee. 1989. Mathematical model for enzymatic production of fructo-oligosaccharides from sucrose. Enzyme and Microbial Technology 11 (8):491–4. doi: 10.1016/0141-0229(89)90029-X.
  • Kaja, B. S., S. Lumor, S. Besong, B. Taylor, and G. Ozbay. 2018. Investigating enzyme activity of immobilized Candida rugosa lipase. Journal of Food Quality 2018:1–9. doi: 10.1155/2018/1618085.
  • Karboune, S., L. Amourache, H. Nellaiah, C. Morisseau, and J. Baratti. 2001. Immobilization of the epoxide hydrolase from Aspergillus niger. Biotechnology Letters 23 (19):1633–9. doi: 10.1016/j.molcatb.2004.11.001.
  • Karimi, M., I. Chaudhury, C. Jianjun, M. Safari, R. Sadeghi, M. Habibi-Rezaei, and J. Kokini. 2014. Immobilization of endo-inulinase on non-porous amino functionalized silica nanoparticles. Journal of Molecular Catalysis B: Enzymatic 104:48–55. doi: 10.1016/j.molcatb.2014.01.025.
  • Kayhan, N., V. Eyupoglu, and S. Adem. 2016. The immobilization of lipase on PVDF-co-HFP membrane. AIP Conference Proceedings. 1726:020108. doi: 10.1063/1.4945934.
  • Keerti, Gupta, A., Kumar, V. A. Dubey, and A. K. Verma. 2014. Kinetic characterization and effect of immobilized thermostable β-glucosidase in alginate gel beads on sugarcane juice. ISRN Biochemistry 2014:178498. doi: 10.1155/2014/178498.
  • Khan, M. R., and H. Bokhari. 2013. Immobilization of the protease of Carica papaya on activated charcoal. Asian Journal of Chemistry 25 (13):7186–8. doi: 10.14233/ajchem.2013.14505.
  • Khandekar, D. C., T. Palai, A. Agarwal, and P. K. Bhattacharya. 2014. Kinetics of sucrose conversion to fructo-oligosaccharides using enzyme (invertase) under free condition. Bioprocess and Biosystems Engineering 37 (12):2529–37. doi: 10.1007/s00449-014-1230-5.
  • Kheirolomoom, A., F. Khorasheh, and H. Fazelinia. 2002. Influence of external mass transfer limitation on apparent kinetic parameters of penicillin G acylase immobilized on nonporous ultrafine silica particles. Journal of Bioscience and Bioengineering 93 (2):125–9. doi: 10.1263/jbb.93.125.
  • Klein, M. P., L. P. Fallavena, J. da, N. Schöffer, M. A. Z. Ayub, R. C. Rodrigues, J. L. Ninow, and P. F. Hertz. 2013. High stability of immobilized β-D-galactosidase for lactose hydrolysis and galactooligosaccharides synthesis. Carbohydrate Polymers 95 (1):465–70. doi: 10.1016/j.carbpol.2013.02.044.
  • Klein, M. P., M. R. Nunes, R. C. Rodrigues, E. V. Benvenutti, T. M. H. Costa, P. F. Hertz, and J. L. Ninow. 2012. Effect of the support size on the properties of β-galactosidase immobilized on chitosan: Advantages and disadvantages of macro and nanoparticles. Biomacromolecules 13 (8):2456–64. doi: 10.1021/bm3006984.
  • Kochane, T., S. Budriene, S. Miasojedovas, N. Ryskevic, A. Straksys, S. Maciulyte, and A. Ramanaviciene. 2017. Polyurethane-gold and polyurethane-silver nanoparticles conjugates for efficient immobilization of maltogenase. Colloids and Surfaces A: Physicochemical and Engineering Aspects 532:436–43. doi: 10.1016/j.colsurfa.2017.04.041.
  • Kumar, C. G., S. Sripada, and Y. Poornachandra. 2018. Status and future prospects of fructooligosaccharides as nutraceuticals. In Role of materials science in food bioengineering, ed. A. M. Grumezescu and A. M. Holban, 451–503. Amsterdam, the Netherlands: Elsevier. doi: 10.1016/B978-0-12-811448-3.00014-0.
  • Kumar, P. S., K. K. Pulicherla, M. Ghosh, A. Kumar, and K. R. S. S. Rao. 2011. Structural prediction and comparative docking studies of psychrophilic β- galactosidase with lactose, ONPG and PNPG against its counter parts of mesophilic and thermophilic enzymes. Bioinformation 6 (8):311–4. doi: 10.6026/97320630006311.
  • Kumar, R., B. Henrissat, and P. M. Coutinho. 2019 . Intrinsic dynamic behavior of enzyme:substrate complexes govern the catalytic action of β-galactosidases across clan GH-A. Scientific Reports 9 (1):10346. doi: 10.1038/s41598-019-46589-8.
  • L’Hocine, L., Z. Wang, B. Jiang, and S. Xu. 2000. Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. Journal of Biotechnology 81 (1):73–84. doi: 10.1016/S0168-1656(00)00277-7.
  • Lafraya, Á., J. Sanz-Aparicio, J. Polaina, and J. Marín-Navarro. 2011. Fructo-oligosaccharide synthesis by mutant versions of Saccharomyces cerevisiae invertase. Applied and Environmental Microbiology 77 (17):6148–57. doi: 10.1128/AEM.05032-11.
  • Lee, D. H., C. H. Park, J. M. Yeo, and S. W. Kim. 2006. Lipase immobilization on silica gel using a cross-linking method. Journal of Industrial and Engineering Chemistry 12:777–82.
  • Lee, P., and H. E. Swaisgood. 1997. Characterization of a chemically conjugated lipase bioreactor. Journal of Agricultural and Food Chemistry 45 (8):3350–6. doi: 10.1021/jf970167k.
  • Li, Z., M. Xiao, L. Lu, and Y. Li. 2008. Production of non-monosaccharide and high-purity galactooligosaccharides by immobilized enzyme catalysis and fermentation with immobilized yeast cells. Process Biochemistry 43 (8):896–9. doi: 10.1016/j.procbio.2008.04.016.
  • Lima, A. F., K. F. Cavalcante, M. de, F. M. de Freitas, T. H. S. Rodrigues, M. V. P. Rocha, and L. R. B. Gonçalves. 2013. Comparative biochemical characterization of soluble and chitosan immobilized β-galactosidase from Kluyveromyces lactis NRRL Y1564. Process Biochemistry 48 (3):443–52. doi: 10.1016/j.procbio.2013.02.002.
  • Lorenzoni, A. S. G., L. F. Aydos, M. P. Klein, M. A. Z. Ayub, R. C. Rodrigues, and P. F. Hertz. 2015. Continuous production of fructooligosaccharides and invert sugar by chitosan immobilized enzymes: Comparison between in fluidized and packed bed reactors. Journal of Molecular Catalysis B: Enzymatic 111:51–5. doi: 10.1016/j.molcatb.2014.11.002.
  • Lorenzoni, A. S. G., L. F. Aydos, M. P. Klein, R. C. Rodrigues, and P. F. Hertz. 2014. Fructooligosaccharides synthesis by highly stable immobilized β-fructofuranosidase from Aspergillus aculeatus. Carbohydrate Polymers 103:193–7. doi: 10.1016/j.carbpol.2013.12.038.
  • Mahoney, R. R. 1998. Galactosyl-oligosaccharide formation during lactose hydrolysis: A review. Food Chemistry 63 (2):147–54. doi: 10.1016/S0308-8146(98)00020-X.
  • Maksimainen, M. M., A. Lampio, M. Mertanen, O. Turunen, and J. Rouvinen. 2013. The crystal structure of acidic β-galactosidase from Aspergillus oryzae. International Journal of Biological Macromolecules 60:109–15. doi: 10.1016/j.ijbiomac.2013.05.003.
  • Manohar, C. M., and M. Doble. 2016. Papain immobilized polyurethane as an ureteral stent material. Journal of Biomedical Materials Research. Part B, Applied Biomaterials 104 (4):723–31. doi: 10.1002/jbm.b.33627.
  • Martínez-Fleites, C., M. Ortíz-Lombardía, T. Pons, N. Tarbouriech, E. J. Taylor, J. G. Arrieta, L. Hernández, and G. J. Davies. 2005. Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. The Biochemical Journal 390 (Pt 1):19–27. doi: 10.1042/BJ20050324.
  • Martins, G. N., M. M. Ureta, E. E. Tymczyszyn, P. C. Castilho, and A. Gómez-Zavaglia. 2019. Technological aspects of the production of fructo and galacto-oligosaccharides. Enzymatic synthesis and hydrolysis. Frontiers in Nutrition 6:78. doi: 10.3389/fnut.2019.00078.
  • Marzadori, C., S. Miletti, C. Gessa, and S. Ciurli. 1998. Immobilization of jack bean urease on hydroxyapatite: Urease immobilization in alkaline soils. Soil Biology and Biochemistry 30 (12):1485–90. doi: 10.1016/S0038-0717(98)00051-0.
  • Matella, N. J., K. D. Dolan, and Y. S. Lee. 2006. Comparison of galactooligosaccharide production in free-enzyme ultrafiltration and in immobilized-enzyme systems. Journal of Food Science 71 (7):C363–8. doi: 10.1111/j.1750-3841.2006.00086.x.
  • Mateo, C., J. M. Bolivar, C. A. Godoy, J. Rocha-Martin, B. C. Pessela, J. A. Curiel, R. Muñoz, J. M. Guisan, and G. Fernández-Lorente. 2010 . Improvement of enzyme properties with a two-step immobilizaton process on novel heterofunctional supports. Biomacromolecules 11 (11):3112–7. doi: 10.1021/bm100916r.
  • Melchers, F., and W. Messer. 1973. The mechanism of activation of mutant β-galactosidase by specific antibodies. European Journal of Biochemistry 35:380–85. doi: 10.1111/j.1432-1033.1973.tb02850.x
  • Meng, G., and K. Fütterer. 2003. Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nature Structural Biology 10 (11):935–41. doi: 10.1038/nsb974.
  • Moehlenbrock, M. J., and S. D. Minteer. 2017. Introduction to the field of enzyme immobilization and stabilization. In Enzyme stabilization and immobilization: Methods and protocols, ed. S. D. Minteer, 2nd ed., 1–8. New York, NY: Humana Press. doi: 10.1007/978-1-60761-895-9.
  • Mohamad, N. R., N. H. C. Marzuki, N. A. Buang, F. Huyop, and R. A. Wahab. 2015. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology, Biotechnological Equipment 29 (2):205–20. doi: 10.1080/13102818.2015.1008192.
  • Moser, M., and R. Wouters. 2014. Nutritional and technological benefits of inulin-type oligosaccharides. In Food oligosaccharides: Production, analysis and bioactivity, ed. F. J. Moreno and M. L. Sanz, 457–69. Chichester, UK: John Wiley & Sons. doi: 10.1002/9781118817360.ch24.
  • Mouelhi, R., F. Abidi, and M. N. Marzouki. 2016. An improved method for the production of fructooligosaccharides by immobilized β-fructofuranosidase from Sclerotinia sclerotiorum. Biotechnology and Applied Biochemistry 63 (2):281–91. doi: 10.1002/bab.1360.
  • Munjal, N., and S. Sawhney. 2002. Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels. Enzyme and Microbial Technology 30 (5):613–9. doi: 10.1016/S0141-0229(02)00019-4.
  • Mussatto, S. I., C. N. Aguilar, L. R. Rodrigues, and J. A. Teixeira. 2009. Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydrate Research 344 (6):795–800. doi: 10.1016/j.carres.2009.01.025.
  • Mussatto, S. I., L. R. Rodrigues, and J. A. Teixeira. 2009 . beta-Fructofuranosidase production by repeated batch fermentation with immobilized Aspergillus japonicus. Journal of Industrial Microbiology & Biotechnology 36 (7):923–8. doi: 10.1007/s10295-009-0570-7.
  • Mussatto, S. I., M. B. Prata, L. R. Rodrigues, and J. A. Teixeira. 2012. Production of fructooligosaccharides and β-fructofuranosidase by batch and repeated batch fermentation with immobilized cells of Penicillium expansum. European Food Research and Technology 235 (1):13–22. doi: 10.1007/s00217-012-1728-5.
  • Nakagawa, K., and Y. Goto. 2015. Preparation of α-amylase-immobilized freeze-dried poly(vinyl alcohol) foam and its application to microfluidic enzymatic reactor. Chemical Engineering and Processing: Process Intensification 91:35–42. doi: 10.1016/j.cep.2015.03.010.
  • Nam, N. X., H. T. T. Nghia, L. T. T. Vy, H. N. Oanh, and P. P. Hien. 2017. Immobilization of invertase on chitosan and its application to honey treatment. AIP Conference Proceedings, 1878:020005. doi: 10.1063/1.5000173.
  • Nath, A., S. Mondal, S. Chakraborty, C. Bhattacharjee, and R. Chowdhury. 2014. Production, purification, characterization, immobilization, and application of β-galactosidase: A review. Asia-Pacific Journal of Chemical Engineering 9 (3):330–48. doi: 10.1002/apj.1801.
  • Nelson, J. M., and E. G. Griffin. 1916. Adsorption of invertase. Journal of the American Chemical Society 38 (5):1109–15. doi: 10.1021/ja02262a018.
  • Neri, D. F. M., V. M. Balcão, F. O. Q. Dourado, J. M. B. Oliveira, L. B. Carvalho, Jr., and J. A. Teixeira. 2011. Immobilized β-galactosidase onto magnetic particles coated with polyaniline: Support characterization and galactooligosaccharides production. Journal of Molecular Catalysis B: Enzymatic 70 (1–2):74–80. doi: 10.1016/j.molcatb.2011.02.007.
  • Nguyen, H. H., S. H. Lee, U. J. Lee, C. D. Fermin, and M. Kim. 2019. Immobilized enzymes in biosensor applications. Materials 12 (1):121–34. doi: 10.3390/ma12010121.
  • Nguyen, V. D., G. Styevkó, E. Madaras, G. Haktanirlar, A. Tran, E. Bujna, M. S. Dam, and Q. D. Nguyen. 2019. Immobilization of β-galactosidase on chitosan-coated magnetic nanoparticles and its application for synthesis of lactulose-based galactooligosaccharides. Process Biochemistry 84:30–8. doi: 10.1016/j.procbio.2019.05.021.
  • Nisha, S., A. Karthick, and N. Gobi. 2012. A review on methods, application and properties of immobilized enzyme. Chemical Science Review and Letters 1 (3):148–55.
  • Nishizawa, K., M. Nakajima, and H. Nabetani. 2000. A forced-flow membrane reactor for transfructosylation using ceramic membrane. Biotechnology and Bioengineering 68 (1):92–7. doi: 10.1002/(SICI)1097-0290(20000405)68:1 < 92::AID-BIT11 > 3.0.CO;2-1.
  • Onderková, Z., J. Bryjak, and M. Polakovič. 2007. Properties of fructosyltransferase from Aureobasidium pullulans immobilized on an acrylic carrier. Chemical Papers 61 (5):359–63. doi: 10.2478/s11696-007-0048-x.
  • Ozimek, L. K., S. Kralj, M. J. E. C. van der Maarel, and L. Dijkhuizen. 2006. The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiology (Reading, England) 152 (Pt 4):1187–96. doi: 10.1099/mic.0.28484-0.
  • Palai, T., and P. K. Bhattacharya. 2013. Kinetics of lactose conversion to galacto-oligosaccharides by β-galactosidase immobilized on PVDF membrane. Journal of Bioscience and Bioengineering 115 (6):668–73. doi: 10.1016/j.jbiosc.2012.12.014.
  • Palai, T., A. K. Singh, and P. K. Bhattacharya. 2014. Enzyme, β-galactosidase immobilized on membrane surface for galacto-oligosaccharides formation from lactose: Kinetic study with feed flow under recirculation loop. Biochemical Engineering Journal 88:68–76. doi: 10.1016/j.bej.2014.03.017.
  • Pan, C., B. Hu, W. Li, Y. Sun, H. Ye, and X. Zeng. 2009. Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4-chitosan nanoparticles. Journal of Molecular Catalysis B: Enzymatic 61 (3–4):208–15. doi: 10.1016/j.molcatb.2009.07.003.
  • Panesar, P. S., S. Kumari, and R. Panesar. 2010. Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Research 2010:473137. doi: 10.4061/2010/473137.
  • Panesar, P. S., R. Panesar, R. S. Singh, J. F. Kennedy, and H. Kumar. 2006. Microbial production, immobilization and applications of β-D-galactosidase. Journal of Chemical Technology & Biotechnology 81 (4):530–43. doi: 10.1002/jctb.1453.
  • Platková, Z., M. Polakovič, V. Štefuca, M. Vandáková, and M. Antošová. 2006. Selection of carrier for immobilization of fructosyltransferase from Aureobasidium pullulans. Chemical Papers 60 (6):469–72. doi: 10.2478/s11696-006-0085-x.
  • Prakash, O., and N. Jaiswal. 2011. Immobilization of a thermostable-amylase on agarose and agar matrices and its application in starch stain removal. World Applied Sciences Journal 13:572–7.
  • Pugnière, M., C. San Juan, M. A. Coletti-Previero, and A. Previero. 1988 . Immobilization of enzymes on alumina by means of pyridoxal 5′-phosphate. Bioscience Reports 8 (3):263–9. doi: 10.1007/BF01115043.
  • Purich, D. L. 2001. Enzyme catalysis: A new definition accounting for noncovalent substrate- and product-like states. Trends in Biochemical Sciences 26 (7):417–21. doi: 10.1016/S0968-0004(01)01880-1.
  • Qhobosheane, M., S. Santra, P. Zhang, and W. Tan. 2001. Biochemically functionalized silica nanoparticles. The Analyst 126 (8):1274–8. doi: 10.1039/b101489g.
  • Rani, A. S., M. L. M. Das, and S. Satyanarayana. 2000. Preparation and characterization of amyloglucosidase adsorbed on activated charcoal. Journal of Molecular Catalysis B: Enzymatic 10 (5):471–6. doi: 10.1016/S1381-1177(99)00116-2.
  • Richmond, M. L., J. I. Gray, and C. M. Stine. 1981. Beta-galactosidase: Review of recent research related to technological application, nutritional concerns, and immobilization. Journal of Dairy Science 64 (9):1759–71. doi: 10.3168/jds.S0022-0302(81)82764-6.
  • Rodrigues, R. C., C. Ortiz, Á. Berenguer-Murcia, R. Torres, and R. Fernández-Lafuente. 2013. Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews 42 (15):6290–307. doi: 10.1039/C2CS35231A.
  • Royer, G. P., and G. M. Green. 1971. Immobilized Pronase. Biochemical and Biophysical Research Communications 44 (2):426–32. doi: 10.1016/0006-291X(71)90618-8.
  • Sangeetha, P. T., M. N. Ramesh, and S. G. Prapulla. 2005. Recent trends in the microbial production, analysis and application of Fructooligosaccharides. Trends in Food Science & Technology 16 (10):442–57. doi: 10.1016/j.tifs.2005.05.003.
  • Sass, A., and H. Jördening. 2020. Immobilization of β-galactosidase from Aspergillus oryzae on electrospun gelatin nanofiber mats for the production of galactooligosaccharides. Applied Biochemistry and Biotechnology doi: 10.1007/s12010-020-03252-7..
  • Satar, R., and S. A. Ansari. 2017. Functionalized agarose as an effective and novel matrix for immobilizing Cicer arietinum β-galactosidase and its application in lactose hydrolysis. Brazilian Journal of Chemical Engineering 34 (2):451–7. doi: 10.1590/0104-6632.20170342s20160107.
  • Schäfer, T., T. W. Borchert, V. S. Nielsen, P. Skagerlind, K. Gibson, K. Wenger, F. Hatzack, L. D. Nilsson, S. Salmon, and S. Pederson. 2007. Industrial enzymes. In White biotechnology, ed. R. Ulber, D. Sell, and T. Scheper, 59–131. Advances in Biochemical Engineering/Biotechnology, 105. Berlin, Heidelberg, New York: Springer. doi: 10.1007/10_2006_039.
  • Sen, P., C. Bhattacharjee, and P. Bhattacharya. 2016. Experimental studies and two-dimensional modelling of a packed bed bioreactor used for production of galacto-oligosaccharides (GOS) from milk whey. Bioprocess and Biosystems Engineering 39 (3):361–80. doi: 10.1007/s00449-015-1516-2.
  • Sheldon, R. A. 2007. Enzyme immobilization: The quest for optimum performance. Advanced Synthesis & Catalysis 349 (8–9):1289–307. doi: 10.1002/adsc.200700082.
  • Sheldon, R. A., R. Schoevaart, and L. M. van Langen. 2006. Cross-linked enzyme aggregates. In Immobilization of enzymes and cells, ed. J. M. Guisan, 2nd ed., 31–45. Methods in Biotechnology, 22. Totowa, NJ: Humana Press. doi: 10.1007/978-1-59745-053-9_3.
  • Shi, L. E., Y. Yi, Z. X. Tang, W. Y. Xiong, J. F. Mei, and G. Q. Ying. 2010. Nuclease p1 immobilized on deae cellulose. Brazilian Journal of Chemical Engineering 27 (1):31–9. doi: 10.1590/S0104-66322010000100003.
  • Shinde, P., M. Musameh, Y. Gao, A. J. Robinson, and I. Kyratzis. 2018. Immobilization and stabilization of alcohol dehydrogenase on polyvinyl alcohol fibre. Biotechnology Reports (Amsterdam, Netherlands) 19:e00260doi: 10.1016/j.btre.2018.e00260.
  • Silva, M. F., D. Rigo, V. Mossi, R. M. Dallago, P. Henrick, G. D. O. Kuhn, C. D. Rosa, D. Oliveira, J. V. Oliveira, and H. Treichel. 2013. Evaluation of enzymatic activity of commercial inulinase from Aspergillus niger immobilized in polyurethane foam. Food and Bioproducts Processing 91 (1):54–9. doi: 10.1016/j.fbp.2012.08.003.
  • Silva, C., M. Martins, S. Jing, J. Fu, and A. Cavaco-Paulo. 2018. Practical insights on enzyme stabilization. Critical Reviews in Biotechnology 38 (3):335–50. doi: 10.1080/07388551.2017.1355294.
  • Sirisha, V. L., A. Jain, and A. Jain. 2016. Enzyme immobilization: An overview on methods, support material, and applications of immobilized enzymes. In Marine enzymes biotechnology: Production and industrial applications, Part II - Marine organisms production of enzymes, ed. S.-K. Kim and F. Toldrá, 179–211. Advances in Food and Nutrition Research, 79. New York, NY: Elsevier. doi: 10.1016/bs.afnr.2016.07.004.
  • Song, Y. S., J. H. Lee, S. W. Kang, and S. W. Kim. 2010. Performance of β-galactosidase pretreated with lactose to prevent activity loss during the enzyme immobilisation process. Food Chemistry 123 (1):1–5. doi: 10.1016/j.foodchem.2010.04.043.
  • Song, Y. S., H. U. Lee, C. Park, and S. W. Kim. 2013. Batch and continuous synthesis of lactulose from whey lactose by immobilized β-galactosidase. Food Chemistry 136 (2):689–94. doi: 10.1016/j.foodchem.2012.08.074.
  • Sóti, P. L., D. Weiser, T. Vigh, Z. K. Nagy, L. Poppe, and G. Marosi. 2016. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases. Bioprocess and Biosystems Engineering 39 (3):449–59. doi: 10.1007/s00449-015-1528-y.
  • Souza, C. J. F., E. E. Garcia-Rojas, and C. S. Favaro-Trindade. 2018. Lactase (β-galactosidase) immobilization by complex formation: Impact of biopolymers on enzyme activity. Food Hydrocolloids 83:88–96. doi: 10.1016/j.foodhyd.2018.04.044.
  • Souza, C. J. F., E. E. Garcia-Rojas, C. S. F. Souza, L. C. Vriesmann, J. Vicente, M. G. de Carvalho, C. L. O. Petkowicz, and C. S. Favaro-Trindade. 2019. Immobilization of β-galactosidase by complexation: Effect of interaction on the properties of the enzyme. International Journal of Biological Macromolecules 122:594–602. doi: 10.1016/j.ijbiomac.2018.11.007.
  • Srivastava, P. K., Kayastha, and A. M. Srinivasan. 2001. Characterization of gelatin-immobilized pigeonpea urease and preparation of a new urea biosensor. Biotechnology and Applied Biochemistry 34:55–62. doi: 10.1042/ba20010016.
  • St John, F. J., J. M. González, and E. Pozharski. 2010. Consolidation of glycosyl hydrolase family 30: A dual domain 4/7 hydrolase family consisting of two structurally distinct groups. FEBS Letters 584 (21):4435–41. doi: 10.1016/j.febslet.2010.09.051.
  • Sungur, S., and U. Akbulut. 1994. Immobilisation of β-galactosidase onto gelatin by glutaraldehyde and chromium(III) acetate. Journal of Chemical Technology and Biotechnology 59 (3):303–6. doi: 10.1002/jctb.280590314.
  • Surin, S., P. Seesuriyac, P. Thakeow, and Y. Phimolsiri. 2012. Optimization of enzymatic production of fructooligosaccharides from longan syrup. Journal of Applied Sciences 12 (11):1118–23. doi: 10.3923/jas.2012.1118.1123.
  • Tanriseven, A., and Y. Aslan. 2005. Immobilization of Pectinex Ultra SP-L to produce fructooligosaccharides. Enzyme and Microbial Technology 36 (4):550–4. doi: 10.1016/j.enzmictec.2004.12.001.
  • Tanriseven, A., and Ş. Doğan. 2001. Immobilization of invertase within calcium alginate gel capsules. Process Biochemistry 36 (11):1081–3. doi: 10.1016/S0032-9592(01)00146-7.
  • Tanriseven, A., and Ş. Doğan. 2002. A novel method for the immobilization of β-galactosidase. Process Biochemistry 38 (1):27–30. doi: 10.1016/S0032-9592(02)00049-3.
  • Thongpoo, P., L. S. McKee, A. C. Araújo, P. T. Kongsaeree, and H. Brumer. 2013 . Identification of the acid/base catalyst of a glycoside hydrolase family 3 (GH3) beta-glucosidase from Aspergillus niger ASKU28. Biochimica et Biophysica Acta 1830 (3):2739–49. doi: 10.1016/j.bbagen.2012.11.014.
  • Tran, D. N., and K. J. Balkus, Jr. 2012. Enzyme immobilization via electrospinning. Topics in Catalysis 55 (16-18):1057–69. doi: 10.1007/s11244-012-9901-4.
  • Urrutia, P., C. Bernal, L. Wilson, and A. Illanes. 2018 . Use of chitosan heterofunctionality for enzyme immobilization: β-galactosidase immobilization for galacto-oligosaccharide synthesis. International Journal of Biological Macromolecules 116:182–93. doi: 10.1016/j.ijbiomac.2018.04.112.
  • Urrutia, P., C. Mateo, J. M. Guisan, L. Wilson, and A. Illanes. 2013. Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galacto-oligosaccharides under repeated-batch operation. Biochemical Engineering Journal 77:41–8. doi: 10.1016/j.bej.2013.04.015.
  • Vega, R., and M. E. Zuniga-Hansen. 2014. A new mechanism and kinetic model for the enzymatic synthesis of short-chain fructooligosaccharides from sucrose. Biochemical Engineering Journal 82:158–65. doi: 10.1016/j.bej.2013.11.012.
  • Verma, M., C. Barrow, J. Kennedy, and M. Puri. 2012. Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: Characterization and lactose hydrolysis. International Journal of Biological Macromolecules 50 (2):432–7. doi: 10.1016/j.ijbiomac.2011.12.029.
  • Verma, M., M. Puri, and C. Barrow. 2016. Recent trends in nanomaterials immobilised enzymes for biofuel production. Critical Reviews in Biotechnology 36 (1):108–19. doi: 10.3109/07388551.2014.928811.
  • Verma, M., Dhanya, B. Sukriti, V. Ranid, M. Thakur, J. Jeslinf, and R. Kushwahag. 2020. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. International Journal of Biological Macromolecules 154:390–412. doi: 10.1016/j.ijbiomac.2020.03.105.
  • Verma, M., S. Kumar, A. Das, J. Randhawa, and M. Chamundeeswari. 2020. Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environmental Chemistry Letters 18 (2):315–23. doi: 10.1007/s10311-019-00942-5.
  • Voss, R., M. A. Brook, J. Thompson, Y. Chen, R. H. Pelton, and J. D. Brennan. 2007. Non-destructive horseradish peroxidase immobilization in porous silica nanoparticles. Journal of Materials Chemistry 17 (46):4854–63. doi: 10.1039/b709847b.
  • Vukić, V., D. Hrnjez, S. Milanović, M. Iličić, K. Kanurić, and E. Petri. 2015. Comparative molecular modeling and docking analysis of β-galactosidase enzymes from commercially important starter cultures used in the dairy industry. Food Biotechnology 29 (3):248–62. doi: 10.1080/08905436.2015.1059766.
  • Wang, M., X. Hua, R. Yang, and Q. Shen. 2016. Immobilization of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus on commercial resin Duolite A568. Food Bioscience 14:47–53. doi: 10.1016/j.fbio.2016.03.001.
  • Wang, Z.-G., L.-S. Wan, Z.-M. Liu, X.-J. Huang, and Z.-K. Xu. 2009. Enzyme immobilization on electrospun polymer nanofibers: An overview. Journal of Molecular Catalysis B: Enzymatic 56 (4):189–95. doi: 10.1016/j.molcatb.2008.05.005.
  • Warmerdam, A., E. Benjamins, T. F. de Leeuw, T. A. Broekhuis, R. M. Boom, and A. E. M. Janssen. 2014. Galacto-oligosaccharide production with immobilized β-galactosidase in a packed-bed reactor vs free β-galactosidase in a batch reactor. Food and Bioproducts Processing 92 (4):383–92. doi: 10.1016/j.fbp.2013.08.014.
  • Weetall, H. H. 1969. Trypsin and papain covalently coupled to porous glass: Preparation and characterization. Science (New York, N.Y.) 166 (3905):615–7. doi: 10.1126/science.166.3905.615.
  • Weetall, H. H. 1976. Covalent coupling methods for inorganic support materials. In Immobilized enzymes, ed. K. Mosbach, 134–48. Methods of Enzymology, 44. New York, NY: Academic Press. doi: 10.1016/S0076-6879(76)44012-0.
  • Withers, S. 2001. Mechanisms of glycosyl transferases and hydrolases. Carbohydrate Polymers 44 (4):325–37. doi: 10.1016/S0144-8617(00)00249-6.
  • Wong, M. K. L., J. R. Krycer, J. G. Burchfield, D. E. James, and Z. Kuncic. 2015. A generalised enzyme kinetic model for predicting the behaviour of complex biochemical systems. FEBS Open Bio 5 (1):226–39. doi: 10.1016/j.fob.2015.03.002.
  • Woychik, J. H., and M. V. Wondolowski. 1972. Covalent bonding of fungal β-galactosidase to glass. Biochimica et Biophysica Acta (Bba) - Enzymology 289 (2):347–51. doi: 10.1016/0005-2744(72)90085-X.
  • Woychik, J. H., and M. V. Wondolowski. 1973. Lactose hydrolysis in milk and milk products by bound fungal beta-galactosidase. Journal of Milk and Food Technology 36 (1):31–3. doi: 10.4315/0022-2747-36.1.31.
  • Yabuki, S., Y. Hirata, Y. Sato, and S. Iijima. 2012. Preparation of a cellulose-based enzyme membrane using ionic liquid to lengthen the duration of enzyme stability. Analytical Sciences 28 (4):373–8. doi: 10.2116/analsci.28.373.
  • Yang, S.-T., J. L. Marchio, and J.-W. Yen. 1994 . A dynamic light scattering study of beta-galactosidase: environmental effects on protein conformation and enzyme activity. Biotechnology Progress 10 (5):525–31. doi: 10.1021/bp00029a011.
  • Yewale, T., R. S. Singhal, and A. A. Vaidya. 2013. Immobilization of inulinase from Aspergillus niger NCIM 945 on chitosan and its application in continuous inulin hydrolysis. Biocatalysis and Agricultural Biotechnology 2 (2):96–101. doi: 10.1016/j.bcab.2013.01.001.
  • Yon, J. O., J. S. Lee, B. G. Kim, S. D. Kim, and D. H. Nam. 2008. Immobilization of Streptomyces phospholipase D on a Dowex macroporous resin. Biotechnology and Bioprocess Engineering 13 (1):102–7. doi: 10.1007/s12257-007-0188-4.
  • Yu, L., and D. J. O’Sullivan. 2018. Immobilization of whole cells of Lactococcus lactis containing high levels of a hyperthermostable β-galactosidase enzyme in chitosan beads for efficient galacto-oligosaccharide production. Journal of Dairy Science 101 (4):2974–83. doi: 10.3168/jds.2017-13770.
  • Yun, J. W., S. C. Kang, and S. K. Song. 1995. Continuous production of fructooligosaccharides from sucrose by immobilized fructosyltransferase. Biotechnology Techniques 9 (11):805–8. doi: 10.1007/BF00159405.
  • Yun, J. W., and S. K. Song. 1996. Continuous production of fructooligosaccharides using fructosyltransferase immobilized on ion exchange resin. Biotechnology and Bioprocess Engineering 1 (1):18–21. doi: 10.1007/BF02949138.
  • Yun, J. W., and S. K. Song. 1999. Enzymatic production of fructooligosaccharides from sucrose. In Carbohydrate biotechnology protocols, ed. C. Bucke, 141–51. Methods in Biotechnology, 10. Totowa, NJ: Humana Press. doi: 10.1007/978-1-59259-261-6_12.
  • Zambelli, P., L. Tamborini, S. Cazzamalli, A. Pinto, S. Arioli, S. Balzaretti, F. J. Plou, L. Fernandez-Arrojo, F. Molinari, P. Conti, et al. 2016 . An efficient continuous flow process for the synthesis of a non-conventional mixture of fructooligosaccharides. Food Chemistry 190:607–13. doi: 10.1016/j.foodchem.2015.06.002.
  • Zdarta, J., A. S. Meyer, T. Jesionowski, and M. Pinelo. 2018. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts 8 (2):92. doi: 10.3390/catal8020092.
  • Zdarta, J., K. Budzinska, A. Kolodziejczak-Radzimska, L. Klapiszewski, K. Siwinska-Stefanska, P. Bartczak, A. Piasecki, H. Maciejewski, and T. Jesionowski. 2015. Hydroxyapatite as a support in protease immobilization process. Physicochemical Problems of Mineral Processing 51:633–46. doi: 10.5277/ppmp150222.
  • Zechel, D. L., and S. G. Withers. 2000. Glycosidase mechanisms: Anatomy of a finely tuned catalyst. Accounts of Chemical Research 33 (1):11–8. doi: 10.1021/ar970172+.
  • Zhang, Z., F. Zhang, L. Song, N. Sun, W. Guan, B. Liu, J. Tian, Y. Zhang, and W. Zhang. 2018. Site-directed mutation of β-galactosidase from Aspergillus candidus to reduce galactose inhibition in lactose hydrolysis. 3 Biotech 8 (11):452. doi: 10.1007/s13205-018-1418-5.
  • Zhou, Q. Z. K., and X. C. Dong. 2001. Immobilization of β-galactosidase on graphite surface by glutaraldehyde. Journal of Food Engineering 48 (1):69–74. doi: 10.1016/S0260-8774(00)00147-3.
  • Zucca, P., and E. Sanjust. 2014. Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms. Molecules (Basel, Switzerland) 19 (9):14139–94. doi: 10.3390/molecules190914139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.