992
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Pulses’ germination and fermentation: Two bioprocessing against hypertension by releasing ACE inhibitory peptides

&

References

  • Aluko, R. E. 2015. Structure and function of plant protein-derived antihypertensive peptides. Current Opinion in Food Science 4:44–50. doi: https://doi.org/10.1016/j.cofs.2015.05.002.
  • Aluko, R. E., A. Girgih, R. He, and S. Malomo. 2015. Structural and functional characterization of yellow field pea seed (Pisum sativum L.) protein-derived antihypertensive peptides. Food Research International 7:1–7.
  • Aslani, Z., B. Alipour, P. Mirmiran, and Z. Bahadoran. 2015. Lentil’s (Lens culinaris L.) functional properties in prevention and treatment of non-communicable chronic diseases: A review. International Journal of Nutrition and Food Sciences 4 (2):15–20. doi: https://doi.org/10.11648/j.ijnfs.s.2015040201.14.
  • Awika, J. M., & Duodu, K. G. (2016). Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties: A review. Journal of Functional Foods 38: 1–12.
  • Bamdad, F., S. Dokhani, J. Keramat, and R. Zareie. 2009. The impact of germination and in vitro digestion on the formation of angiotensin converting enzyme (ACE) inhibitory peptides from lentil proteins compared to whey proteins. Journal of Biological, Biomolecular, Agricultural, Food, and Biotechnological Engineering 3:1–11.
  • Barbana, C., and J. I. Boye. 2011. Angiotensin I-converting enzyme inhibitory properties of lentil protein hydrolysates: Determination of the kinetics of inhibition. Food Chemistry 127 (1):94–101. doi: https://doi.org/10.1016/j.foodchem.2010.12.093.
  • Bartolome, B., I. Estrella, and T. Hernandez. 1997. Changes in phenolic compounds in lentils (Lens culinaris) during germination and fermentation. Zeitschrift für Lebensmitteluntersuchung Und -Forschung As 205 (4):290–4. doi: https://doi.org/10.1007/s002170050167.
  • Los, F. G. B., A. A. F. Zielinski, J. P. Wojeicchowski, A. Nogueira, and I. M. Demiate. 2018. Beans (Phaseolus vulgaris L.): Whole seeds with complex chemical composition. Journal of Food Science 19:63–71. doi: https://doi.org/10.1016/j.cofs.2018.01.010.
  • Bautista-Expósito, S., C. Martínez-Villaluenga, M. Dueñas, J. M. Silván, J. Frias, and E. Peñas. 2018. Combination of pH-controlled fermentation in mild acidic conditions and enzymatic hydrolysis by Savinase to improve metabolic health-promoting properties of lentil. Journal of Functional Foods 48:9–18. doi: https://doi.org/10.1016/j.jff.2018.06.019.
  • Bautista-Expósito, S., E. Peñas, J. Manuel Silván, and J. Frias. 2017. pH-controlled fermentation in mild alkaline conditions enhances bioactive compounds and functional features of lentil to ameliorate metabolic disturbances. Food Chemistry 248:1–36.
  • Bessada, S. M., J. C. Barreira, and M. P. Oliveira. 2019. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends in Food Science and Technology 93:53–68. doi: https://doi.org/10.1016/j.tifs.2019.08.022.
  • Bhatnagar, M., S. Attri, K. Sharma, and G. Goel. 2018. Lactobacillus paracasei CD4 as potential indigenous lactic cultures with antioxidative and ACE inhibitory activity in soymilk hydrolysate. Journal of Food Measurement and Characterization 12 (2):1005–10. doi: https://doi.org/10.1007/s11694-017-9715-y.
  • Boye, I., J. Roufik, S. Pesta, and N. C. Barbana. 2010. Angiotensin I-converting enzyme inhibitory properties and SDS-PAGE of red lentil protein hydrolysates. LWT - Food Science and Technology 43 (6):987–91. doi: https://doi.org/10.1016/j.lwt.2010.01.014.
  • Bubelov, Z., D. Sumczynski, and R. Salek. 2017. Effect of cooking and germination on antioxidant activity, total polyphenols and flavonoids, fiber content, and digestibility of lentils (Lens culinaris L.). Journal of Food Processing and Preservation 42 (1):1–7.
  • Burger, T., and Y. Zhang. 2019. Recent progress in the utilization of pea protein as an emulsifier for food applications. Trends in Food Science and Technology 86:1–41.
  • Campos, M. R., and L. A. Guerrero. 2010. Angiotensin-I converting enzyme inhibitory and antioxidant activities of peptide fractions extracted by ultrafiltration of cowpea Vigna unguiculata hydrolysates. Journal of the Science of Food and Agriculture 90 (14):2512–8.
  • Chel-Guerrero, L., M. Domínguez-Magaña, A. Martínez-Ayala, G. Dávila-Ortiz, and D. Betancur-Ancona. 2012. Lima bean (Phaseolus lunatus) protein hydrolysates with ACE-I Inhibitory activity. Food and Nutrition Sciences 03 (04):511–21. doi: https://doi.org/10.4236/fns.2012.34072.
  • Daliri, E. B.-M., B. H. Lee, and D. H. Oh. 2017. Current Trends and Perspectives of Bioactive Peptides 6:1–54.
  • De Pasquale, I., E. Pontonio, M. Gobbetti, and C. G. Rizzello. 2019. Nutritional and functional effects of the lactic acid bacteria fermentation on gelatinized legume flours. International Journal of Food Microbiology 316:1–42.
  • De Souza Rocha, T., L. Hernandez, and Y. Chang. 2014. Impact of germination and enzymatic hydrolysis of cowpea bean (Vigna unguiculata) on the generation of peptides capable to inhibit dipeptidyl peptidase IV. Food Research International 64:1–34.
  • De Souza Rocha, T., L. M. R. Hernandez, L. Mojica, M. H. Johnson, Y. K. Chang, and E. González de Mejía. 2015. Germination of Phaseolus vulgaris and alcalase hydrolysis of its proteins produced bioactive peptides capable of improving markers related to type-2 diabetes in vitro. Food Research International 76:150–9. doi: https://doi.org/10.1016/j.foodres.2015.04.041.
  • Dhull, S. B., S. Punia, M. K. Kidwai, M. Kaur, P. Chawla, S. S. Purewal, and S. Palthania. 2020. Solid-state fermentation of lentil (Lens culinaris L.) with Aspergillus awamori: Effect on phenolic compounds, mineral content, and their bioavailability. Legumesci 1–12. (In press).
  • Drago, S. R., H. Franco-Miranda, R. E. Cian, D. Betancur-Ancona, and L. Chel-Guerrero. 2016. Bioactive properties of Phaseolus lunatus (Lima Bean) and Vigna unguiculata (Cowpea) hydrolyzates incorporated into pasta. residual activity after pasta cooking. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 71 (3):339–7. doi: https://doi.org/10.1007/s11130-016-0565-2.
  • Dueñas, M., D. Fernández, T. Hernández, I. Estrella, and R. Muñoz. 2005. Bioactive phenolic compounds of cowpeas (Vigna sinensis L). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. Journal of the Science of Food and Agriculture 85 (2):297–304. doi: https://doi.org/10.1002/jsfa.1924.
  • Dueñas, M., C. Martínez-Villaluenga, R. I. Limón, E. Peñas, and J. Frias. 2015. Effect of germination and elicitation on phenolic composition and bioactivity of kidney beans. Food Research International 70:55–63. doi: https://doi.org/10.1016/j.foodres.2015.01.018.
  • Durak, A., B. Baraniak, A. Jakubczyk, and M. Wieca. 2013. Biologically active peptides obtained by enzymatic hydrolysis of Adzuki. Food Chemistry 141 (3):2177–83. doi: https://doi.org/10.1016/j.foodchem.2013.05.012.
  • Duranti, M. 2006. Grain legume proteins and nutraceutical properties. Fitoterapia 77 (2):67–82. doi: https://doi.org/10.1016/j.fitote.2005.11.008.
  • Faris, M. A. I., H. R. Takruri, and A. Y. Issa. 2013. Role of lentils (Lens culinaris L.) in human health and nutrition: A review. Mediterranean Journal of Nutrition and Metabolism 6 (1):3–16. doi: https://doi.org/10.1007/s12349-012-0109-8.
  • Franco-Miranda, H., L. Chel-Guerrero, S. Gallegos-Tintoré, A. Castellanos-Ruelas, and D. Betancur-Ancona. 2017. Physicochemical, rheological, bioactive and consumer acceptance analyses of concha-type Mexican sweet bread containing Lima bean or cowpea hydrolysates. Lwt 80:250–6. doi: https://doi.org/10.1016/j.lwt.2017.02.034.
  • Frota, K., R. Santos, V. Ribeiro, and J. Areas. 2015. Cowpea protein reduces LDL-cholesterol and apolipoprotein B concentrations but does not improve biomarkers of inflammation or endothelial dysfunction in adults with moderate hypercholesterolemia. Nutricion Hospitalaria 31:1611–9.
  • Gan, R.-Y., W.-Y. Lui, K. Wu, C.-L. Chan, S.-H. Dai, Z.-Q. Sui, and H. Corke. 2017. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science and Technology 59:1–14. doi: https://doi.org/10.1016/j.tifs.2016.11.010.
  • Garcia-Mora, P., J. Frias, E. Peñas, H. Zieliński, J. A. Giménez-Bastida, W. Wiczkowski, D. Zielińska, and C. Martínez-Villaluenga. 2015. Simultaneous release of peptides and phenolics with antioxidant, ACE-inhibitory, and anti-inflammatory activities from pinto bean (Phaseolus vulgaris L. var. pinto) proteins by subtilisins. Journal of Functional Foods 18:319–32. doi: https://doi.org/10.1016/j.jff.2015.07.010.
  • Garcia-Mora, P., E. Peñas, J. Frias, R. Gomez, and C. Martinez-Villaluenga. 2015. High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chemistry 171:224–32. doi: https://doi.org/10.1016/j.foodchem.2014.08.116.
  • Garcia-Mora, P., E. Peñas, J. Frias, and C. Martínez-Villaluenga. 2014. Savinase, the most suitable enzyme for releasing peptides from lentil (Lens culinaris var. Castellana) protein concentrates with multifunctional properties. Journal of Agricultural and Food Chemistry 62 (18):4166–74. doi: https://doi.org/10.1021/jf500849u.
  • Geil, B., and P. J. Anderson. 1994. Nutrition and health implications of dry Beans: A review. Journal of the American College of Nutrition 13 (6):549–58. doi: https://doi.org/10.1080/07315724.1994.10718446.
  • Ghumman, A., A. Kaur, and N. Singh. 2016. Functionality and digestibility of albumins and globulins from lentil and horse gram and their effect on starch rheology. Food Hydrocolloids 61:843–50. doi: https://doi.org/10.1016/j.foodhyd.2016.07.013.
  • Ghumman, A., A. Kaur, and N. Singh. 2016. Impact of germination on flour, protein and starch characteristics of lentil (Lens culinari) and horsegram (Macrotyloma uniflorum L.) lines. LWT - Food Science and Technology 65:137–44. doi: https://doi.org/10.1016/j.lwt.2015.07.075.
  • Gobbetti, M., M. D. Angelis, R. D. Cagno, A. Polo, and C. G. Rizzello. 2019. The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in the baking industry. Critical Reviews in Food Science and Nutrition 60 (13):1–17. doi: https://doi.org/10.1080/10408398.2019.1631753.
  • Gómez-Favela, M. A., R. Gutiérrez-Dorado, E. O. Cuevas-Rodríguez, V. A. Canizalez-Román, C. del Rosario León-Sicairos, J. Milán-Carrillo, and C. Reyes-Moreno. 2017. Improvement of chia seeds with antioxidant activity, GABA, essential amino acids, and dietary fiber by controlled germination bioprocess. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 72 (4):345–52. doi: https://doi.org/10.1007/s11130-017-0631-4.
  • González-Múniz, R., Martín-Martínez, M. Bonache. A., and M. 2016. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chemistry 221:1–34.
  • Ha, T. J., M.-H. Lee, Y. N. Jeong, J. H. Lee, S.-I. Han, C.-H. Park, S.-B. Pae, C.-D. Hwang, I.-Y. Baek, and K.-Y. Park. 2010. Anthocyanins in Cowpea [Vigna unguiculata (L.) Walp. ssp. Unguiculata]. Food Science and Biotechnology 19 (3):821–6. doi: https://doi.org/10.1007/s10068-010-0115-x.
  • Hachibamba, T., L. Dykes, J. Awika, A. Minnaar, and K. G. Duodu. 2013. Effect of simulated gastrointestinal digestion on phenolic composition and antioxidant capacity of cooked cowpea (Vigna unguiculata) varieties. International Journal of Food Science & Technology 48 (12):2638–49. doi: https://doi.org/10.1111/ijfs.12260.
  • Hajfathalian, M., S. Ghelichi, P. J. García-Moreno, A.-D M. Sorensen, and C. Jacobsen. 2017. Peptides: Production, bioactivity, functionality, and applications. Critical Reviews in Food Science and Nutrition 58:1–34.
  • Hanafi, M. A., S. N. Hashim, S. Y. Chay, A. Ebrahimpour, M. Zarei, K. Muhammad, A. Abdul-Hamid, and N. Saari. 2018. High angiotensin-I converting enzyme (ACE) inhibitory activity of Alcalase-digested green soybean (Glycine max) hydrolysates. Food Research International (Ottawa, Ont.) 106:589–97. doi: https://doi.org/10.1016/j.foodres.2018.01.030.
  • Harnedy, P. A., M. B. O'Keeffe, and R. J. FitzGerald. 2015. Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chemistry 172:400–6. doi: https://doi.org/10.1016/j.foodchem.2014.09.083.
  • Hashemi, M., S. M. Mousavi, S. H. Razavi, and S. A. Shojaosadati. 2011. Mathematical modeling of biomass and α-amylase production kinetics by Bacillus sp. in solid-state fermentation based on solid dry weight variation. Biochemical Engineering Journal 53 (2):159–64. doi: https://doi.org/10.1016/j.bej.2010.09.017.
  • Hashemi, M., S. H. Razavi, S. A. Shojaosadati, S. M. Mousavi, K. Khajeh, and M. Safari. 2010. Development of a solid-state fermentation process for production of an alpha amylase with potentially interesting properties. Journal of Bioscience and Bioengineering 110 (3):333–7. doi: https://doi.org/10.1016/j.jbiosc.2010.03.005.
  • Hiran, P., O. Kerdchoechuen, and N. Laohakunjit. 2016. Combined effects of fermentation and germination on nutritional compositions, functional properties and volatiles of maize seeds. Journal of Cereal Science 71:207–16. doi: https://doi.org/10.1016/j.jcs.2016.09.001.
  • Huang, W. Y., S. T. Davidge, and J. Wu. 2013. Bioactive natural constituents from food sources-potential use in hypertension prevention and treatment. Critical Reviews in Food Science and Nutrition 53 (6):615–30. doi: https://doi.org/10.1080/10408398.2010.550071.
  • Huang, X., W. Cai, and B. Xu. 2014. Kinetic Changes of Nutrients and Antioxidant Capacities of Germinated Soybean (Glycine Max l.) and Mung Bean (VignaRadiata l.) with Germination Time. Food Chemistry 143:268–76.
  • Jakubczyk, A., M. Karaś, U. Złotek, and U. Szymanowska. 2017. Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food Research International (Ottawa, Ont.) 100 (Pt 1):489–96. doi: https://doi.org/10.1016/j.foodres.2017.07.046.
  • Jamdar, S., D. Rajalakshmi, and S. Marathe. 2017. Effect of processing conditions and in vitro protein digestion on bioactive potentials of commonly consumed legumes. Food Bioscience 20 (1):1–41. doi: https://doi.org/10.1016/j.fbio.2017.07.007.
  • Jarpa-Parra, M. 2017. Lentil protein: A review of functional properties and food application. An overview of lentil protein functionality. International Journal of Food Science and Technology 53 (4):1–12.
  • Jayathilake, C., R. Visvanathan, A. Deen, R. Bangamuwage, B. C. Jayawardana, S. Nammi, and R. Liyanage. 2018. Cowpea: An overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture 98 (13):4793–806. doi: https://doi.org/10.1002/jsfa.9074.
  • Jin, A. (L.), J. A. Ozga, D. Lopes-Lutz, A. Schieber, and D. M. Reinecke. 2012. Characterization of proanthocyanidins in pea (Pisum sativum L.), lentil (Lens culinaris L.), and faba bean (Vicia faba L.) seeds. Food Research International 46 (2):528–35. doi: https://doi.org/10.1016/j.foodres.2011.11.018.
  • Kapravelou, G., R. Martínez, A. MAndrade, and C. López. 2014. Improvement of the antioxidant and hypolipidaemic effects of cowpea flours (Vigna unguiculata) by fermentation: Results of in vitro and in vivo experiments. Journal of the Science of Food and Agriculture 95 (6):1–10.
  • Karakaya, S., S. El, S. Simsek, and H. Buyukkestelli. 2016. Vegetable product containing caseinomacropeptide and germinated seed and sprouts. Journal of Food Science and Technology 53 (1):880–7. doi: https://doi.org/10.1007/s13197-015-2059-x.
  • Kehinde, B. A., and P. Sharma. 2018. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review. Critical Reviews in Food Science and Nutrition 60 (2):1–20.
  • Khosravi, A., and S. H. Razavi. 2020. The role of bioconversion processes to enhance polyphenol bioaccessibility in rice bioaccessibility of polyphenols in rice. Food Bioscience 35:1–12.
  • Khosravi, A., S. H. Razavi, and A. M. Fadda. 2020. Advanced assessments on innovative methods to improve the bioaccessibility of polyphenols in wheat. Process Biochemistry 88:1–14. doi: https://doi.org/10.1016/j.procbio.2019.09.005.
  • Kumitch, H. M., A. Stone, M. G. Nosworthy, M. T. Nickerson, J. D. House, D. R. Korber, and T. Tanaka. 2020. Effect of fermentation time on the nutritional properties of pea protein‐enriched flour fermented by Aspergillus oryzae and Aspergillus niger. Cereal Chemistry 97 (1):104–13. doi: https://doi.org/10.1002/cche.10234.
  • Leblanc, A. D., T. D. Luerce, and A. Miyoshi. 2018. The use of native and genetically engineered lactic acid bacteria. Journal of Functional Foods 2:105–28.
  • Lee, S., H. K. Kwon, H. Park, and S. Park. 2018. Solid–state fermentation of germinated black bean (Rhynchosia nulubilis) using Lactobacillus pentosus SC65 and its immunostimulatory effect. Food Bioscience 26:1–31.
  • Lee, B.-H., Y.-S. Lai, and S.-C. Wu. 2015. Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea. Journal of Food and Drug Analysis 23 (4):750–7. doi: https://doi.org/10.1016/j.jfda.2015.06.008.
  • Limón, R. I., E. Peñas, M. I. Torino, C. Martínez-Villaluenga, M. Dueñas, and J. Frias. 2015. Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chemistry 172:343–52. doi: https://doi.org/10.1016/j.foodchem.2014.09.084.
  • Liu, H., Y. Kang, X. Zhao, Y. Liu, X. Zhang, and S. Zhang. 2019. Effects of elicitation on bioactive compounds and biological activities of sprouts. Journal of Functional Foods 53:136–45. doi: https://doi.org/10.1016/j.jff.2018.12.019.
  • López, A., T. El-Nagaar, M. Dueñas, and T. Ortega. 2016. Influence of processing in the phenolic compounds and health promoting of lentil (Lens culinaris L.). Journal of Food Processing and Preservation 41 (5):1–13.
  • López-Barrios, L., M. Antunes-Ricardo, and J. A. Gutiérrez-Uribe. 2016. Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion. Food Chemistry 203:417–24. doi: https://doi.org/10.1016/j.foodchem.2016.02.048.
  • López-Barrios, L., E. Heredia-Olea, D. Heredia-Olea, E. Pérez-Carrillo, and J. A. Gutiérrez. 2018. Bioactive petides by in vitro digestion of germinated bean cotyledons exrudates. Journal of Food Research 7 (1):76–85. doi: https://doi.org/10.5539/jfr.v7n1p76.
  • Ma, Z., J. Boye, and X. Hu. 2018. Nutritional quality and techno-functional changes in raw, germinated and fermented yellow field pea (Pisum sativum L.) upon pasteurization. Lwt 92:147–54. doi: https://doi.org/10.1016/j.lwt.2018.02.018.
  • Mamilla, R., and V. Mishra. 2017. Effect of germination on antioxidant and ACE inhibitory activities of legumes. Lwt 75:51–8. doi: https://doi.org/10.1016/j.lwt.2016.08.036.
  • Manzanares, P., M. Gandía, S. Garrigues, and J. F. Marcos. 2019. Improving Health-promoting effects of food-derived bioactive peptides through rational design and oral delivery sterategies. Nutrients 11 (10):2545. doi: https://doi.org/10.3390/nu11102545.
  • Martin, M., and A. Deussen. 2017. Effects of natural peptides from food proteins on angiotensin converting enzyme activity and hypertension. Critical Reviews in Food Science and Nutrition 59 (8): 1–21.
  • Mojica, L., K. Chen, and E. Mej´Ia. 2014. Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin–pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV. Food Science 80 (1):188–98.
  • Mora-Escobedo, R., J. d Berrios, and G. F. Lopez. 2014. Seeds as functional foods and nutraceuticals. New York: Food sci. Technol. ISBN: 978-1-62948-640-6 (eBook)
  • Mousavi, Z. E., S. M. Mousavi, S. H. Razavi, M. Hadinejad, Z. Emam-Djomeh, and M. Mirzapour. 2013. Effect of Fermentation of Pomegranate Juice by Lactobacillus plantarum and Lactobacillus acidophilus on the Antioxidant Activity and Metabolism of Sugars, Organic Acids and Phenolic Compounds. Food Biotechnology 27 (1):1–13. doi: https://doi.org/10.1080/08905436.2012.724037.
  • Nawaz, K. A. A., S. M. David, E. Murugesh, M. Thandeeswaran, K. G. Kiran, R. Mahendran, M. Palaniswamy, and J. Angayarkanni. 2017. Identification and in silico characterization of a novel peptide inhibitor of angiotensin converting enzyme from pigeon pea (Cajanus cajan). Phytomedicine : international Journal of Phytotherapy and Phytopharmacology 36:1–7. doi: https://doi.org/10.1016/j.phymed.2017.09.013.
  • Ojwang, L. O., N. Banerjee, G. D. Noratto, G. Angel-Morales, T. Hachibamba, J. M. Awika, and S. U. Mertens-Talcott. 2015. Polyphenolic extracts from cowpea (Vigna unguiculata) protect colonic myofibroblasts (CCD18Co cells) from lipopolysaccharide (LPS)-induced inflammation – modulation of microRNA 126. Food & Function 6 (1):145–53. doi: https://doi.org/10.1039/C4FO00459K.
  • Orano-Tamayo, D. O., M. E. Valverde, and O. Paredes-López. 2019. Bioactive peptides from selected Latin American food crops – A nutraceutical and molecular approach. Critical Reviews in Food Science and Nutrition 59 (12):1–27.
  • Paucar-Menacho, L., M. Berhow, and J. Mandarino. 2010. Effect of time and temperature on bioactive compounds in germinated Brazilian soybean cultivar BRS 258. Food Research International 43 (7):1856–65.
  • Pedroche, J., M. M. Yust, J. Girón-Calle, M. Alaiz, F. Millán, and J. Vioque. 2002. Utilisation of chickpea protein isolates for production of peptides with angiotensin I-converting enzyme (ACE)-inhibitory activity. Journal of the Science of Food and Agriculture 82 (9):960–5. doi: https://doi.org/10.1002/jsfa.1126.
  • Peñas, E., R. I. Limón, C. Martínez-Villaluenga, P. Restani, A. Pihlanto, and J. Frias. 2015. Impact of elicitation on antioxidant and potential antihypertensive properties of lentil sprouts. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 70 (4):401–7. doi: https://doi.org/10.1007/s11130-015-0508-3.
  • Piovesana, S., A. L. Capriotti, C. Cavaliere, G. La Barbera, C. M. Montone, R. Zenezini Chiozzi, and A. Laganà. 2018. Recent trends and analytical challenges in plant bioactive peptide separation, identification and validation. Analytical and Bioanalytical Chemistry 410 (15):3425–44. doi: https://doi.org/10.1007/s00216-018-0852-x.
  • Puchalska, P., M. L. Marina Alegre, and M. C. García López. 2015. Isolation and characterization of peptides with antihypertensive activity in foodstuffs. Critical Reviews in Food Science and Nutrition 55 (4):521–51. doi: https://doi.org/10.1080/10408398.2012.664829.
  • Qamar, S., Y. J. Manrique, H. Parekh, and J. R. Falconer. 2019. Nuts, cereals, seeds and legumes proteins derived emulsifiers as a source of plant protein beverages: A review. Critical Reviews in Food Science and Nutrition 3:1–22. doi: https://doi.org/10.1080/10408398.2019.1657062.
  • Quansah, J. K., C. C. Udenigwe, F. K. Saalia, and R. Y. Yada. 2013. The effect of thermal and ultrasonic treatment on amino acid composition, radical scavenging and reducing potential of hydrolysates obtained from simulated gastrointestinal digestion of cowpea proteins. Plant Foods for Human Nutrition 68 (1):31–8. doi: https://doi.org/10.1007/s11130-013-0334-4.
  • Rao, S., K. A. Chinkwo, A. B. Santhakumar, and C. L. Blanchard. 2018. Inhibitory effects of pulse bioactive compounds on cancer development pathways. Diseases 6 (3):72–15. doi: https://doi.org/10.3390/diseases6030072.
  • Reyes-Bastidas, M., E. Z. Reyes-Fernández, J. López-Cervantes, J. Milán-Carrillo, G. F. Loarca-Piña, and C. Reyes-Moreno. 2010. Physicochemical, nutritional and antioxidant properties of tempeh flour from common bean (Phaseolus vulgaris L.). Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional 16 (5):427–34. doi: https://doi.org/10.1177/1082013210367559.
  • Ribeiro, I. C., C. C. Leclercq, N. Simões, A. Toureiro, I. Duarte, J. B. Freire, M. M. Chaves, J. Renaut, and C. Pinheiro. 2017. Identification of chickpea seed proteins resistant to simulated in vitro human digestion. Journal of Proteomics 169:143–52. doi: https://doi.org/10.1016/j.jprot.2017.06.009.
  • Rochín-Medina, J. J., R. Gutiérrez-Dorado, L. M. Sánchez-Magaña, J. Milán-Carrillo, E. O. Cuevas-Rodríguez, S. Mora-Rochín, A. Valdez-Ortiz, and C. Reyes-Moreno. 2015. Enhancement of nutritional properties, and antioxidant and antihypertensive potential of black common bean seeds by optimizing the solid state bioconversion process. International Journal of Food Sciences and Nutrition 66 (5):498–504. doi: https://doi.org/10.3109/09637486.2015.1052377.
  • Roy, F., J. Boye, and B. Simpson. 2010. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Research International 43 (2):432–42. doi: https://doi.org/10.1016/j.foodres.2009.09.002.
  • Rudolph, S., D. Lunow, S. Kaiser, and T. Henle. 2017. Identification and quantification of ACE-inhibiting peptides in enzymatic hydrolysates of plant proteins. Food Chemistry 224:19–25. doi: https://doi.org/10.1016/j.foodchem.2016.12.039.
  • Rui, X., D. Wen, W. Li, X. Chen, M. Jiang, and M. Dong. 2015. Enrichment of ACE inhibitory peptides in navy bean (Phaseolus vulgaris) using lactic acid bacteria. Food & Function 6 (2):622–9. doi: https://doi.org/10.1039/c4fo00730a.
  • Saleh, A. S., P. Wang, N. Wang, S. Yang, and Z. Xiao. 2018. Technologies for enhancement of bioactive components and potential health benefits of cereal and cereal-based foods: Research advances and application challenges. Critical Reviews in Food Science and Nutrition 59 (2):1–22.
  • Sanjukta, S., and A. Rai. 2016. Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science & Technology 50:1–10. doi: https://doi.org/10.1016/j.tifs.2016.01.010.
  • Sanlier, N., B. B. Gökcen, and A. C. Sezgin. 2017. Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition 59 (3):1–23.
  • Segura-Campos, M., L. Chel-Guerre, and D. Betancur-Ancona. 2011. Purification of angiotensin I-converting enzyme inhibitory peptides from a cowpea (Vigna unguiculata) enzymatic hydrolysate Pea 11-2: Phenolic composition and mammary cancer cell inhibition of extracts of whole cowpeas (Vigna unguiculata) and its anatomic. Process Biochemistry 46 (4):864–72. doi: https://doi.org/10.1016/j.procbio.2010.12.008.
  • Simsek, S., S. N. El, A. K. Kilinc, and S. Karakaya. 2014. Vegetable and fermented vegetable juices containing germinated seeds and sprouts of lentil and cowpea. Food Chemistry 156:289–95. doi: https://doi.org/10.1016/j.foodchem.2014.01.095.
  • Sofi, S. A., J. Singh, N. Chhikara, and A. Panghal. 2020. Effect of incorporation of germinated flour and protein isolate from chickpea on different quality characteristics of rice‐based noodle. Cereal Chemistry 97 (1):85–10. doi: https://doi.org/10.1002/cche.10192.
  • Sritongtae, B., T. Sangsukiam, M. R. A. Morgan, and K. Duangmal. 2017. Effect of acid pretreatment and the germination period on the composition and antioxidant activity of rice bean (Vigna umbellata). Food Chemistry 227:280–8. doi: https://doi.org/10.1016/j.foodchem.2017.01.103.
  • Suwanmanon, K., and P. C. Hsieh. 2014. Effect of g-aminobutyric acid and nattokinaseenriched fermented beans on the blood pressure of spontaneously hypertensive and normotensive WistareKyoto rats. Journal of Food and Drug Analysis 22 (4):1–7.
  • Tabera, J., J. Frias, I. Estrella, R. Villa, and C. Vidal-Val. 1995. Natural fermentation of lentils. Influence of time, concentration and temperature on protein content, trypsin inhibitor activity and phenolic compound content. NCBI 201 (6):587–91.
  • Teneva, A., T., Hristova, I., Pavlov, and A., Beshkova. 2018. Lactic acid bacteria—From nature through food to health. In Advances in biotechnology for food industry, eds. I. Teneva-Angelova, 91–133. Plovdiv: Elsevier.
  • Toledo, M. E. O., E. Gonzalez de Mejia, M. Sivaguru, and S. L. Amaya-Llano. 2016. Common bean (Phaseolus vulgaris L.) protein-derived peptides increased insulin secretion, inhibited lipid accumulation, increased glucose uptake and reduced the phosphatase and tensin homologue activation in vitro. Journal of Functional Foods 27:160–77. doi: https://doi.org/10.1016/j.jff.2016.09.001.
  • Torino, M. I., R. I. Limón, C. Martínez-Villaluenga, S. Mäkinen, A. Pihlanto, C. Vidal-Valverde, and J. Frias. 2013. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chemistry 136 (2):1030–7. doi: https://doi.org/10.1016/j.foodchem.2012.09.015.
  • Valdez-Ortiz, A., C. I. Fuentes-Gutiérrez, L. J. Germán-Báez, R. Gutiérrez-Dorado, and S. Medina-Godoy. 2012. Protein hydrolysates obtained from Azufrado (sulphur yellow) beans (Phaseolus vulgaris): Nutritional, ACE-inhibitory and antioxidative characterization. LWT - Food Science and Technology 46 (1):91–6. doi: https://doi.org/10.1016/j.lwt.2011.10.021.
  • Valenzuela-García, P., N. A. Bobadilla, V. Ramírez-González, A. León-Villanueva, I. A. Lares-Asseff, A. Valdez-Ortiz, and S. Medina-Godoy. 2017. Antihypertensive effect of protein hydrolysate from Azufrado beans in spontaneously hypertensive rats. Cereal Chemistry 94 (1):117–23. doi: https://doi.org/10.1094/CCHEM-04-16-0105-FI.
  • Venkidasamy, B., D. Selvaraj, A. S. Nile, S. Ramalingam, G. Kai, and S. H. Nile. 2019. Indian pulses: A review on nutritional, functional and biochemical properties with future perspectives. Trends in Food Science & Technology 88:228–42.
  • Wani, I. A., D. S. Sogi, A. A. Wani, and B. S. Gill. 2013. Physico-chemical and functional properties of flours from Indian kidney bean (Phaseolus vulgaris L.) cultivars. LWT - Food Science and Technology 53 (1):278–84. doi: https://doi.org/10.1016/j.lwt.2013.02.006.
  • Wu, F., and X. Xu. 2019. Sprouted grains-based fermented products. Elsevier 143–73. (In press).
  • Xiao, Y., M. Sun, Q. Zhang, Y. Chen, J. Miao, X. Rui, and M. Dong. 2018. Effects of Cordyceps militaris (L.) Fr. Fermentation on the nutritional, physicochemical, functional properties and angiotensin I converting enzyme inhibitory activity of red bean (Phaseolus angularis [Willd.] W.F. Journal of Food Science and Technology 55 (4):1244–55. doi: https://doi.org/10.1007/s13197-018-3035-z.
  • Xing, Q., S. Dekker, K. Kyriakopoulou, R. M. Boom, E. J. Smid, and M. A. Schutyser. 2020. Enhanced nutritional value of chickpea protein concentrate by dry separation and solid state fermentation. Innovative Food Science and Emerging Technologies 59:1–38.
  • Yi-Shen, Z., S. Shuai, and R. FitzGerald. 2018. Mung bean proteins and peptides: Nutritional, functional and bioactive properties. Food & Nutrition 62:1–11.
  • Yust, M. M., J. Pedroche, J. Girón-Calle, M. Alaiz, F. Millán, and J. Vioque. 2003. Production of ace inhibitory peptides by digestion of chickpea legumin with alcalase. Food Chemistry 81 (3):363–9. doi: https://doi.org/10.1016/S0308-8146(02)00431-4.
  • Zhang, Y., T. Pechan, and S. Chang. 2018. Antioxidant and angiotensin-I converting enzyme inhibitory activities of phenolic extracts and fractions derived from three phenolic-rich legume varieties. Journal of Functional Foods 42:289–97. doi: https://doi.org/10.1016/j.jff.2017.12.060.
  • Zhang, B., H. Peng, Z. Deng, and R. Tsao. 2018. Phytochemicals of lentil (Lens culinaris) and their antioxidant and anti-inflammatory effects. Journal of Food Bioactive 1:93–103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.