2,374
Views
62
CrossRef citations to date
0
Altmetric
Reviews

DNA functionalized metal and metal oxide nanoparticles: principles and recent advances in food safety detection

, &

References

  • Ambrus, A., D. Chen, J. X. Dai, T. Bialis, R. A. Jones, and D. Z. Yang. 2006. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Research 34 (9):2723–35. doi: 10.1093/nar/gkl348.
  • Anne, A., A. Bouchardon, and J. Moiroux. 2003. 3'-Ferrocene-labeled oligonucleotide chains end-tethered to gold electrode surfaces: novel model systems for exploring flexibility of short DNA using cyclic voltammetry. Journal of the American Chemical Society 125 (5):1112–3. doi: 10.1021/ja028640k.
  • Antony, E., A. G. Kozlov, B. Nguyen, and T. M. Lohman. 2012. Plasmodium falciparum SSB tetramer binds single-stranded DNA only in a fully wrapped mode. Journal of Molecular Biology 420 (4–5):284–95. doi: 10.1016/j.jmb.2012.04.022.
  • Asnaashari, M., R. E. Kenari, R. Farahmandfar, S. M. Taghdisi, and K. Abnous. 2018. Fluorescence quenching biosensor for acrylamide detection in food products based on double-stranded DNA and gold nanoparticles. Sensors and Actuators B: Chemical 265:339–45. doi: 10.1016/j.snb.2018.03.083.
  • Bobrinetskiy, I. I., and N. Z. Knezevic. 2018. Graphene-based biosensors for on-site detection of contaminants in food. Analytical Methods 10 (42):5061–70. doi: 10.1039/C8AY01913D.
  • Brase, S., A. Encinas, J. Keck, and C. F. Nising. 2009. Chemistry and biology of mycotoxins and related fungal metabolites. Chemical Reviews 109 (9):3903–90. doi: 10.1021/cr050001f.
  • Brown, K. A., S. Park, and K. Hamad-Schifferli. 2008. Nucleotide-surface interactions in DNA-modified Au-nanoparticle conjugates: Sequence effects on reactivity and hybridization. The Journal of Physical Chemistry C 112 (20):7517–21. doi: 10.1021/jp711869p.
  • Cao, Y. W., R. Jin, and C. A. Mirkin. 2001. DNA-modified core − shell Ag/Au nanoparticles. Journal of the American Chemical Society 123 (32):7961–2. doi: 10.1021/ja011342n.
  • Carter, P., B. Narasimhan, and Q. Wang. 2019. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. International Journal of Pharmaceutics 555:49–62. doi: 10.1016/j.ijpharm.2018.11.032.
  • Chakraborty, S., S. Babanova, R. C. Rocha, A. Desireddy, K. Artyushkova, A. E. Boncella, P. Atanassov, and J. S. Martinez. 2015. A hybrid DNA-templated gold nanocluster for enhanced enzymatic reduction of oxygen. Journal of the American Chemical Society 137 (36):11678–87. doi: 10.1021/jacs.5b05338.
  • Chen, J. H., J. L. Wen, L. Zhuang, and S. G. Zhou. 2016. An enzyme-free catalytic DNA circuit for amplified detection of aflatoxin B1 using gold nanoparticles as colorimetric indicators. Nanoscale 8 (18):9791–7. doi: 10.1039/C6NR01381C.
  • Dehghani, Z., M. Hosseini, J. Mohammadnejad, B. Bakhshi, and A. H. Rezayan. 2018. Colorimetric aptasensor for Campylobacter jejuni cells by exploiting the peroxidase like activity of Au@Pd nanoparticles. Mikrochimica Acta 185 (10):448. doi: 10.1007/s00604-018-2976-2.
  • Ebrahimi, M., J. B. Raoof, and R. Ojani. 2015. Novel electrochemical DNA hybridization biosensors for selective determination of silver ions. Talanta 144:619–26. doi: 10.1016/j.talanta.2015.07.020.
  • Emrani, A. S., N. M. Danesh, P. Lavaee, M. Ramezani, K. Abnous, and S. M. Taghdisi. 2016. Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chemistry 190:115–21. doi: 10.1016/j.foodchem.2015.05.079.
  • Eppinger, M., M. K. Mammel, J. E. Leclerc, J. Ravel, and T. A. Cebula. 2011. Genomic anatomy of Escherichia coli O157:H7 outbreaks. Proceedings of the National Academy of Sciences of the United States of America 108 (50):20142–7. doi: 10.1073/pnas.1107176108.
  • Fei, A. R., Q. Liu, J. Huan, J. Qian, X. Y. Dong, B. J. Qiu, H. P. Mao, and K. Wang. 2015. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosensors & Bioelectronics 70:122–9. doi: 10.1016/j.bios.2015.03.028.
  • Feng, X. B., N. Gan, S. C. Lin, T. H. Li, Y. T. Cao, F. T. Hu, Q. L. Jiang, and Y. J. Chen. 2016. Ratiometric electrochemiluminescent aptasensor array for antibiotic based on internal standard method and spatial-resolved technique. Sensors and Actuators B: Chemical 226:305–11. doi: 10.1016/j.snb.2015.11.131.
  • Ferhan, A. R., L. H. Guo, and D. H. Kim. 2010. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass. Langmuir: The ACS Journal of Surfaces and Colloids 26 (14):12433–42. doi: 10.1021/la101105t.
  • Fratamico, P. M. 2003. Comparison of culture, polymerase chain reaction (PCR), TaqMan Salmonella, and Transia Card Salmonella assays for detection of Salmonella spp. in naturally-contaminated ground chicken, ground turkey, and ground beef. Molecular and Cellular Probes 17 (5):215–21. doi: 10.1016/s0890-8508(03)00056-2.
  • Fu, G. D., D.-W. Sun, H. B. Pu, and Q. Y. Wei. 2019. Fabrication of gold nanorods for SERS detection of thiabendazole in apple. Talanta 195:841–49. DOI: 10.1016/j.talanta.2018.11.114.
  • Fu, Y. X., H. Jin, X. N. Bu, and R. J. Gui. 2018. Melamine-induced decomposition and anti-FRET effect from a self-assembled complex of rhodamine 6G and DNA-stabilized silver nanoclusters used for dual-emitting ratiometric and naked-eye-visible fluorescence detection. Journal of Agricultural and Food Chemistry 66 (37):9819–27. doi: 10.1021/acs.jafc.8b03402.
  • Gai, P. P., C. C. Gu, T. Hou, and F. Li. 2017. Ultrasensitive self-powered aptasensor based on enzyme biofuel cell and DNA bioconjugate: A facile and powerful tool for antibiotic residue detection. Analytical Chemistry 89 (3):2163–9. doi: 10.1021/acs.analchem.6b05109.
  • Guo, Q., J. J. Han, S. Shan, D. F. Liu, S. S. Wu, Y. H. Xiong, and W. H. Lai. 2016. DNA-based hybridization chain reaction and biotin-streptavidin signal amplification for sensitive detection of Escherichia coli O157:H7 through ELISA. Biosensors & Bioelectronics 86:990–5. doi: 10.1016/j.bios.2016.07.049.
  • Hamon, L., D. Pastre, P. Dupaigne, C. L. Breton, E. L. Cam, and O. Pietrement. 2007. High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein-DNA complexes. Nucleic Acids Research 35 (8):e58. doi: 10.1093/nar/gkm147.
  • Hassan, A. H. A., J. F. Bergua, E. Morales-Narvaez, and A. Mekoci. 2019. Validity of a single antibody-based lateral flow immunoassay depending on graphene oxide for highly sensitive determination of E. coli O157:H7 in minced beef and river water. Food Chemistry 297:124965. doi: 10.1016/j.foodchem.2019.124965.
  • He, H. R., D.-W. Sun, H. B. Pu, L. J. Chen, and L. Lin. 2019. Applications of Raman spectroscopic techniques for quality and safety evaluation of milk: a review of recent developments. Critical Reviews in Food Science and Nutrition 59 (5):770–93. DOI: 10.1080/10408398.2018.1528436.
  • He, H. R., D.-W. Sun, H. B. Pu, and L. J. Huang. 2020. Bridging Fe3O4@Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1. Food Chemistry 324:126832.127443. DOI: 10.1016/j.foodchem.2020.
  • Hu, B. X., D.-W. Sun, H. B. Pu, and Q. Y. Wei. 2020a. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Talanta 217:120998. DOI: 10.1016/j.talanta.2020.120998.
  • Hu, B. X., D.-W. Sun, H. B. Pu, and Q. Y. Wei. 2020b. A dynamically optical and highly stable pNIPAM @ Au NRs nanohybrid substrate for sensitive SERS detection of malachite green in fish fillet. Talanta 218:121188. DOI: 10.1016/j.talanta.2020.121188.
  • Hu, W. Y., X. B. Min, X. Y. Li, S. X. Yang, L. B. Yi, and L. Y. Chai. 2016. DNAzyme catalytic beacons-based a label-free biosensor for copper using electrochemical impedance spectroscopy. RSC Advances 6 (8):6679–85. doi: 10.1039/C5RA20641C.
  • Huang, K. J., H. L. Shuai, and Y. X. Chen. 2016. Layered molybdenum selenide stacking flower-like nanostructure coupled with guanine-rich DNA sequence for ultrasensitive ochratoxin A aptasensor application. Sensors and Actuators B: Chemical 225:391–7. doi: 10.1016/j.snb.2015.11.070.
  • Huang, L. J., K. Chen, W. T. Zhang, W. X. Zhu, X. N. Liu, J. Wang, R. Wang, N. Hu, Y. R. Suo, and J. L. Wang. 2018. ssDNA-tailorable oxidase-mimicking activity of spinel MnCo2O4 for sensitive biomolecular detection in food sample. Sensors and Actuators B-Chemical 269:87–95.
  • Huang, R. F., H. X. Liu, Q. Q. Gai, G. J. Liu, and Z. Wei. 2015. A facile and sensitive electrochemiluminescence biosensor for Hg2+ analysis based on a dual-function oligonucleotide probe. Biosensors & Bioelectronics 71:194–9. doi: 10.1016/j.bios.2015.04.038.
  • Hurst, S. J., A. K. R. Lytton-Jean, and C. A. Mirkin. 2006. Maximizing DNA loading on a range of gold nanoparticle sizes. Analytical Chemistry 78 (24):8313–8. doi: 10.1021/ac0613582.
  • Hussain, A., H. B. Pu, and D.-W. Sun. 2019. SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect. Food Additives and Contaminants 36 (6):851–62. DOI: 10.1080/19440049.2019.1591643.
  • Hussain, A., H. B. Pu, and D.-W. Sun. 2020a. Cysteamine modified core-shell nanoparticles for rapid assessment of oxamyl and thiacloprid pesticides in milk using SERS. Journal of Food Measurement and Characterization 14 (4):2021–29. DOI: 10.1007/s11694-020-00448-7.
  • Hussain, A., H. B. Pu, and D.-W. Sun. 2020b. SERS detection of sodium thiocyanate and benzoic acid preservatives in liquid milk using cysteamine functionalized core-shelled nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 229:117994. DOI: 10.1016/j.saa.2019.117994.
  • Hussain, A., D.-W. Sun, and H. B. Pu. 2020c. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS. Food Chemistry 317:126429. DOI: 10.1016/j.foodchem.2020.126429.
  • Hussain, N., H. B. Pu, A. Hussain, and D.-W. Sun. 2020. Rapid detection of ziram residues in apple and pear fruits by SERS based on octanethiol functionalized bimetallic core-shell nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 236:118357. DOI: 10.1016/j.saa.2020.118357.
  • Izadi, Z., M. Sheikh-Zeinoddin, A. A. Ensafi, and S. Soleimanian-Zad. 2016. Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula. Biosensors & Bioelectronics 80:582–9. doi: 10.1016/j.bios.2016.02.032.
  • Jalalian, S. H., N. Karimabadi, M. Ramezani, K. Abnous, and S. M. Taghdisi. 2018. Electrochemical and optical aptamer-based sensors for detection of tetracyclines. Trends in Food Science & Technology 73:45–57. doi: 10.1016/j.tifs.2018.01.009.
  • Jayan, H., H. B. Pu, and D.-W. Sun. 2020. Recent development in rapid detection techniques for microorganism activities in food matrices using bio-recognition: a review. Trends in Food Science & Technology 95:233–46. DOI: 10.1016/j.tifs.2019.11.007.
  • Jena, N. K., K. R. S. Chandrakumar, and S. K. Ghosh. 2012. DNA base-gold nanocluster complex as a potential catalyzing agent: An attractive route for CO oxidation process. The Journal of Physical Chemistry C 116 (32):17063–9. doi: 10.1021/jp3046609.
  • Jiang, Y. F., D.-W. Sun, H. B. Pu, and Q. Y. Wei. 2019. Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor. Talanta 197:151–58. DOI: 10.1016/j.talanta.2019.01.015.
  • Khunrattanaporn, N., P. Rijiravanich, M. Somasundrum, and W. Surareungchai. 2015. Highly sensitive electrochemical detection of genomic DNA based on stem loop probes structured for magnetic collection and measurement via metalised hollow polyelectrolyte shells. Biosensors & Bioelectronics 73:181–7. doi: 10.1016/j.bios.2015.05.068.
  • Lane, A. N., J. B. Chaires, R. D. Gray, and J. O. Trent. 2008. Stability and kinetics of G-quadruplex structures. Nucleic Acids Research 36 (17):5482–515. doi: 10.1093/nar/gkn517.
  • Leng, X. Q., Y. Wang, R. G. Li, S. Liu, J. Z. Yao, Q. Q. Pei, X. J. Cui, Y. Q. Tu, D. Tang, and J. D. Huang. 2018. Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria. Microchimica Acta 185 (3):168. doi: 10.1007/s00604-018-2698-5.
  • Lewis, F. D., R. L. Letsinger, and M. R. Wasielewski. 2001. Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins. Accounts of Chemical Research 34 (2):159–70. doi: 10.1021/ar0000197.
  • Li, D. M., Z. W. Zhu, and D.-W. Sun. 2020. Visualization of the in-situ distribution of contents and hydrogen bonding states of cellular level water in apple tissues by confocal Raman microscopy. Analyst 145:897–907. DOI: 10.1039/C9AN01743G.
  • Li, F. L., X. Y. Wang, X. Sun, Y. M. Guo, and W. P. Zhao. 2018. A dual-signal amplification strategy for kanamycin based on ordered mesoporous carbon-chitosan/gold nanoparticles-streptavidin and ferrocene labelled DNA. Analytica Chimica Acta 1033:185–92. doi: 10.1016/j.aca.2018.05.070.
  • Li, H. X., and L. Rothberg. 2004. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences of Sciences 101 (39):14036–9. doi: 10.1073/pnas.0406115101.
  • Li, J. Y., W. X. Fu, J. C. Bao, Z. Y. Wang, and Z. H. Dai. 2018. Fluorescence regulation of copper nanoclusters via DNA template manipulation toward design of a high signal-to-noise ratio biosensor. ACS Applied Materials & Interfaces 10 (8):6965–71. doi: 10.1021/acsami.7b19055.
  • Li, Y., Z. X. Wang, L. Sun, L. Q. Liu, C. L. Xu, and H. Kuang. 2019. Nanoparticle-based sensors for food contaminants. Trac Trends in Analytical Chemistry 113:74–83. doi: 10.1016/j.trac.2019.01.012.
  • Li, Y., J. Y. Xu, M. M. Jia, Z. K. Yang, Z. W. Liang, J. J. Guo, Y. L. Luo, F. Shen, and C. Y. Sun. 2015. Colorimetric determination of 17 beta-estradiol based on the specific recognition of aptamer and the salt-induced aggregation of gold nanoparticles. Materials Letters 159:221–4. doi: 10.1016/j.matlet.2015.06.079.
  • Li, Z., R. C. Jin, C. A. Mirkin, and R. L. Letsinger. 2002. Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Research 30 (7):1558–62. doi: 10.1093/nar/30.7.1558.
  • Liu, N., and T. Liedl. 2018. DNA-assembled advanced plasmonic architectures. Chemical Reviews 118 (6):3032–53. doi: 10.1021/acs.chemrev.7b00225.
  • Liu, S. H., Y. Fu, C. Xiong, Z. K. Liu, L. Zheng, and F. Yan. 2018. Detection of bisphenol a using DNA-functionalized graphene field effect transistors integrated in microfluidic systems. ACS Applied Materials & Interfaces 10 (28):23522–8. doi: 10.1021/acsami.8b04260.
  • Liu, X. J., M. M. Liu, Y. D. Lu, C. J. Wu, Y. C. Xu, D. Lin, D. C. Lu, T. Zhou, and S. Y. Feng. 2018. Facile Ag-film based surface enhanced Raman spectroscopy using DNA molecular switch for ultra-sensitive mercury ions detection. Nanomaterials 8 (8):596. doi: 10.3390/nano8080596.
  • Liu, Z. W., X. A. Zeng, D.- W. Sun, Z. Han, and R. M. Aadil. 2015. Synergistic effect of thermal and pulsed electric field (PEF) treatment on the permeability of soya PC and DPPC vesicles. Journal of Food Engineering 153:124–31. doi: 10.1016/j.jfoodeng.2014.12.018.
  • Luan, Q., N. Gan, Y. T. Cao, and T. H. Li. 2017. Mimicking an enzyme-based colorimetric aptasensor for antibiotic residue detection in milk combining magnetic loop-DNA probes and CHA-assisted target recycling amplification. Journal of Agricultural and Food Chemistry 65 (28):5731–40. doi: 10.1021/acs.jafc.7b02139.
  • Luan, Q., Y. Xi, N. Gan, Y. T. Cao, T. H. Li, and Y. J. Chen. 2017. A facile colorimetric aptamer assay for small molecule detection in food based on a magnetic single-stranded DNA binding protein-linked composite probe. Sensors and Actuators B: Chemical 239:979–87. doi: 10.1016/j.snb.2016.08.123.
  • Luo, R., Y. H. Li, X. J. Lin, F. Dong, W. Zhang, L. Yan, W. Cheng, H. X. Ju, and S. J. Ding. 2014. A colorimetric assay method for invA gene of Salmonella using DNAzyme probe self-assembled gold nanoparticles as single tag. Sensors and Actuators B: Chemical 198:87–93. doi: 10.1016/j.snb.2014.02.104.
  • Ma, J. L., B. C. Yin, X. Wu, and B. C. Ye. 2016. Copper-mediated DNA-scaffolded silver nanocluster on-off switch for detection of pyrophosphate and alkaline phosphatase. Analytical Chemistry 88 (18):9219–25. doi: 10.1021/acs.analchem.6b02465.
  • Ma, Q., Y. X. Wang, J. Jia, and Y. H. Xiang. 2018. Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles. Food Chemistry 249:98–103. doi: 10.1016/j.foodchem.2018.01.022.
  • Majdinasab, M., A. Hayat, and J. L. Marty. 2018. Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. Trac Trends in Analytical Chemistry 107:60–77. doi: 10.1016/j.trac.2018.07.016.
  • Manikandan, V. S., B. Adhikari, and A. C. Chen. 2018. Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. The Analyst 143 (19):4537–54. doi: 10.1039/C8AN00497H.
  • Manzano, M., S. Viezzi, S. Mazerat, R. S. Marks, and J. Vidic. 2018. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus. Biosensors & Bioelectronics 100:89–95. doi: 10.1016/j.bios.2017.08.043.
  • Manzano, M., P. Vizzini, K. Jia, P. M. Adam, and R. E. Ionescu. 2016. Development of localized surface plasmon resonance biosensors for the detection of Brettanomyces bruxellensis in wine. Sensors and Actuators B: Chemical 223:295–300. doi: 10.1016/j.snb.2015.09.099.
  • Mao, K., H. Zhang, Z. L. Wang, H. R. Cao, K. K. Zhang, X. Q. Li, and Z. G. Yang. 2020. Nanomaterial-based aptamer sensors for arsenic detection. Biosensors & Bioelectronics 148:11785.
  • McVey, C., F. M. Huang, C. Elliott, and C. Cao. 2017. Endonuclease controlled aggregation of gold nanoparticles for the ultrasensitive detection of pathogenic bacterial DNA. Biosensors & Bioelectronics 92:502–8. doi: 10.1016/j.bios.2016.10.072.
  • Mejia, E., Y. S. Ding, M. F. Mora, and C. D. Garcia. 2007. Determination of banned Sudan dyes in chili powder by capillary electrophoresis. Food Chemistry 102 (4):1027–33. doi: 10.1016/j.foodchem.2006.06.038.
  • Miao, Y. B., N. Gan, T. H. Li, H. R. Zhang, Y. T. Cao, and Q. L. Jiang. 2015. A colorimetric aptasensor for chloramphenicol in fish based on double-stranded DNA antibody labeled enzyme-linked polymer nanotracers for signal amplification. Sensors and Actuators B: Chemical 220:679–87. doi: 10.1016/j.snb.2015.05.106.
  • Mondal, B., S. Ramlal, P. S. Lavu, N. Bhavanashri, and J. Kingston. 2018. Highly sensitive colorimetric biosensor for staphylococcal enterotoxin B by a label-free aptamer and gold nanoparticles. Frontiers in Microbiology 9:179. doi: 10.3389/fmicb.2018.00179.
  • Mora, C. A., H. J. Scharer, T. Oberhansli, M. Ludwig, R. Stettler, P. R. Stoessel, R. N. Grass, and W. J. Stark. 2016. Ultrasensitive quantification of pesticide contamination and drift using silica particles with encapsulated DNA. Environmental Science & Technology Letters 3 (1):19–23. doi: 10.1021/acs.estlett.5b00312.
  • Nelson, E. M., and L. J. Rothberg. 2011. Kinetics and mechanism of single-stranded DNA adsorption onto citrate-stabilized gold nanoparticles in colloidal solution. Langmuir: The ACS Journal of Surfaces and Colloids 27 (5):1770–7. doi: 10.1021/la102613f.
  • Nelson, K. E., L. Gamble, L. S. Jung, M. S. Boeckl, E. Naeemi, S. L. Golledge, T. Sasaki, D. G. Castner, C. T. Campbell, and P. S. Stayton. 2001. Surface characterization of mixed self-assembled monolayers designed for streptavidin immobilization. Langmuir 17 (9):2807–16. doi: 10.1021/la001111e.
  • Nordin, N., N. A. Yusof, J. Abdullah, S. Radu, and R. Hushiarian. 2016. Sensitive detection of multiple pathogens using a single DNA probe. Biosensors & Bioelectronics 86:398–405. doi: 10.1016/j.bios.2016.06.077.
  • Novo, P., G. Moulas, D. M. F. Prazeres, V. Chu, and J. P. Conde. 2013. Detection of ochratoxin A in wine and beer by chemiluminescence-based ELISA in microfluidics with integrated photodiodes. Sensors and Actuators B: Chemical 176:232–40. doi: 10.1016/j.snb.2012.10.038.
  • O'Brien, M. N., K. A. Brown, and C. A. Mirkin. 2016. Critical undercooling in DNA-mediated nanoparticle crystallization. ACS Nano 10 (1):1363–8. doi: 10.1021/acsnano.5b06770.
  • Park, J. Y., H. Y. Jeong, M. I. Kim, and T. J. Park. 2015. Colorimetric detection system for Salmonella typhimurium based on peroxidase-like activity of magnetic nanoparticles with DNA aptamers. Journal of Nanomaterials 527126:1–9.
  • Petty, J. T., J. Zheng, N. V. Hud, and R. M. Dickson. 2004. DNA-templated Ag nanocluster formation. Journal of the American Chemical Society 126 (16):5207–12. doi: 10.1021/ja031931o.
  • Qi, Y. Y., F. R. Xiu, G. D. Yu, L. L. Huang, and B. X. Li. 2017. Simple and rapid chemiluminescence aptasensor for Hg2+ in contaminated samples: A new signal amplification mechanism. Biosensors & Bioelectronics 87:439–46. doi: 10.1016/j.bios.2016.08.022.
  • Qi, Y. Y., F. R. Xiu, M. F. Zheng, and B. X. Li. 2016. A simple and rapid chemiluminescence aptasensor for acetamiprid in contaminated samples: Sensitivity, selectivity and mechanism. Biosensors & Bioelectronics 83:243–9. doi: 10.1016/j.bios.2016.04.074.
  • Qian, X. C., Q. Qu, L. Li, X. Ran, L. M. Zuo, R. Huang, and Q. Wang. 2018. Ultrasensitive electrochemical detection of Clostridium perfringens DNA based morphology-dependent DNA adsorption properties of CeO2 nanorods in dairy products. Sensors 18 (6):1878. doi: 10.3390/s18061878.
  • Qin, X. L., Y. Yin, H. J. Yu, W. J. Guo, and M. S. Pei. 2016. A novel signal amplification strategy of an electrochemical aptasensor for kanamycin, based on thionine functionalized graphene and hierarchical nanoporous PtCu. Biosensors & Bioelectronics 77:752–8. doi: 10.1016/j.bios.2015.10.050.
  • Rana, M., E. E. Augspurger, M. S. Hizir, E. Alp, and M. V. Yigit. 2018. Molecular logic gate operations using one-dimensional DNA nanotechnology. Journal of Materials Chemistry C 6 (3):452–5. doi: 10.1039/C7TC04957A.
  • Rapini, R., A. Cincinelli, and G. Marrazza. 2016. Acetamiprid multidetection by disposable electrochemical DNA aptasensor. Talanta 161:15–21. doi: 10.1016/j.talanta.2016.08.026.
  • Ren, S. Y., Q. F. Li, Y. Li, S. Li, T. Han, J. Wang, Y. Peng, J. L. Bai, B. A. Ning, and Z. X. Gao. 2019. Upconversion fluorescent aptasensor for bisphenol A and 17-estradiol based on a nanohybrid composed of black phosphorus and gold, and making use of signal amplification via DNA tetrahedrons. Microchimica Acta 186 (3):151. doi: 10.1007/s00604-019-3266-3.
  • Rezaei, B., M. K. Boroujeni, and A. A. Ensafi. 2016. Development of Sudan II sensor based on modified treated pencil graphite electrode with DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer. Sensors and Actuators B: Chemical 222:849–56. doi: 10.1016/j.snb.2015.09.017.
  • Richards, C. I., S. Choi, J. C. Hsiang, Y. Antoku, T. Vosch, A. Bongiorno, Y. L. Tzeng, and R. M. Dickson. 2008. Oligonucleotide-stabilized Ag nanocluster fluorophores. Journal of the American Chemical Society 130 (15):5038–9. doi: 10.1021/ja8005644.
  • Robati, R. Y., A. Arab, M. Ramezani, F. A. Langroodi, K. Abnous, and S. M. Taghdisi. 2016. Aptasensors for quantitative detection of kanamycin. Biosensors & Bioelectronics 82:162–72. doi: 10.1016/j.bios.2016.04.011.
  • Rotaru, A., S. Dutta, E. Jentzsch, K. Gothelf, and A. Mokhir. 2010. Selective dsDNA-templated formation of copper nanoparticles in solution. Angewandte Chemie (International ed. in English) 49 (33):5665–7. doi: 10.1002/anie.200907256.
  • Saidur, M. R., A. R. A. Aziz, and W. J. Basirun. 2017. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review. Biosensors & Bioelectronics 90:125–39. doi: 10.1016/j.bios.2016.11.039.
  • Sani, N. D. M., L. Y. Heng, R. Marugan, and N. F. Rajab. 2018. Electrochemical DNA biosensor for potential carcinogen detection in food sample. Food Chemistry 269:503–10. doi: 10.1016/j.foodchem.2018.07.035.
  • Santos, V. O., P. B. Pelegrini, F. Mulinari, A. F. Lacerda, R. S. Moura, L. P. V. Cardoso, S. Buhrer-Sekula, R. N. G. Miller, and M. F. Grossi-de-Sa. 2017. Development and validation of a novel lateral flow immunoassay device for detection of aflatoxins in soy-based foods. Analytical Methods 9 (18):2715–22. doi: 10.1039/C7AY00601B.
  • Sedighi-Khavidak, S., M. Mazloum-Ardakani, M. R. Khorasgani, G. Emtiazi, and L. Hosseinzadeh. 2017. Detection of aflD gene in contaminated pistachio with Aspergillus flavus by DNA based electrochemical biosensor. International Journal of Food Properties 20 (sup1):s119–s130. doi: 10.1080/10942912.2017.1291675.
  • Shah, P., P. W. Thulstrup, S. K. Cho, Y. J. Bhang, J. C. Ahn, S. W. Choi, M. J. Bjerrum, and S. W. Yang. 2014. In-solution multiplex miRNA detection using DNA-templated silver nanocluster probes. The Analyst 139 (9):2158–66. doi: 10.1039/c3an02150e.
  • Sharma, J., H. C. Yeh, H. Yoo, J. H. Werner, and J. S. Martinez. 2010. A complementary palette of fluorescent silver nanoclusters. Chemical Communications (Cambridge, England) 46 (19):3280–2. doi: 10.1039/b927268b.
  • Shi, Z.-Y., Y.-T. Zheng, H.-B. Zhang, C.-H. He, W.-D. Wu, and H.-B. Zhang. 2015. DNA Electrochemical aptasensor for detecting fumonisins B-1 based on graphene and thionine nanocomposite. Electroanalysis 27 (5):1097–103. doi: 10.1002/elan.201400504.
  • Singhal, C., A. Dubey, A. Mathur, C. S. Pundir, and J. Narang. 2018. Paper based DNA biosensor for detection of chikungunya virus using gold shells coated magnetic nanocubes. Process Biochemistry 74:35–42. doi: 10.1016/j.procbio.2018.08.020.
  • Storhoff, J. J., R. Elghanian, C. A. Mirkin, and R. L. Letsinger. 2002. Sequence-dependent stability of DNA-modified gold nanoparticles. Langmuir 18 (17):6666–70. doi: 10.1021/la0202428.
  • Sun, J. D., J. Ji, Y. Q. Sun, M. H. Abdalhai, Y. Z. Zhang, and X. L. Sun. 2015. DNA biosensor-based on fluorescence detection of E. coli O157:H7 by Au@Ag nanorods. Biosensors & Bioelectronics 70:239–45. doi: 10.1016/j.bios.2015.03.009.
  • Sun, N. N., Y. Ding, Z. X. Tao, H. J. You, X. D. Hua, and M. H. Wang. 2018. Development of an upconversion fluorescence DNA probe for the detection of acetamiprid by magnetic nanoparticles separation. Food Chemistry 257:289–94. doi: 10.1016/j.foodchem.2018.02.148.
  • Tansakul, N., P. Jala, S. Laopiem, P. Tangmunkhong, and S. Limsuwan. 2013. Co-occurrence of five Fusarium toxins in corn-dried distiller's grains with solubles in Thailand and comparison of ELISA and LC-MS/MS for fumonisin analysis. Mycotoxin Research 29 (4):255–60. doi: 10.1007/s12550-013-0173-z.
  • Verdian, A. 2018. Apta-nanosensors for detection and quantitative determination of acetamiprid - A pesticide residue in food and environment. Talanta 176:456–64. doi: 10.1016/j.talanta.2017.08.070.
  • Wang, C., K. Y. Xing, G. G. Zhang, M. F. Yuan, S. L. Xu, D. F. Liu, W. Y. Chen, J. Peng, S. Hu, and W. H. Lai. 2019. Novel ELISA based on fluorescent quenching of DNA-stabilized silver nanoclusters for detecting E. coli O157:H7. Food Chemistry 281:91–6. doi: 10.1016/j.foodchem.2018.12.079.
  • Wang, H. B., H. Y. Bai, A. L. Mao, and Y. M. Liu. 2019. Poly(adenine) DNA-templated gold nanocluster-based fluorescent strategy for the determination of thiol-containing pharmaceuticals. Analytical Letters 52 (14):2300–11. doi: 10.1080/00032719.2019.1609491.
  • Wang, J., H. G. Li, T. T. Li, and L. S. Ling. 2018. Determination of bacterial DNA based on catalytic oxidation of cysteine by G-quadruplex DNAzyme generated from asymmetric PCR: Application to the colorimetric detection of Staphylococcus aureus. Mikrochimica Acta 185 (9):410. doi: 10.1007/s00604-018-2935-y.
  • Wang, K. Q., D.-W. Sun, H. B. Pu, and Q. Y. Wei. 2019a. Shell thickness-dependent Au@Ag nanoparticles aggregates for high-performance SERS applications. Talanta 195:506–15. DOI: 10.1016/j.talanta.2018.11.057.
  • Wang, K. Q., D.-W. Sun, H. B. Pu, and Q. Y. Wei. 2019b. Surface-enhanced Raman scattering of core-shell Au@Ag nanowire aggregates for rapid detection of difenoconazole in grapes. Talanta 191:449–56. DOI: 10.1016/j.talanta.2018.08.005.
  • Wang, K. Q., D.-W. Sun, H. B. Pu, Q. Y. Wei, and L. J. Huang. 2019c. Stable, flexible, and high-performance SERS chip enabled by a ternary film-packaged plasmonic nanoparticle array. ACS Applied Materials & Interfaces 11:29177–186. DOI: 10.1021/acsami.9b09746.
  • Wang, K. Q., D.-W. Sun, H. B. Pu, and Q. Y. Wei. 2020a. A rapid dual-channel readout approach for sensing carbendazim with 4-aminobenzenethiol functionalized core-shell Au@Ag nanoparticles. Analyst 145:1801–809. DOI: 10.1039/C9AN02185J.
  • Wang, K. Q., D.-W. Sun, H. B. Pu, and Q. Y. Wei. 2020b. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Food Chemistry 310:125923. DOI: 10.1016/j.foodchem.2019.125923.
  • Wang, L. H., C. C. Wang, and H. Li. 2018. Selection of DNA aptamers and establishment of an effective aptasensor for highly sensitive detection of cefquinome residues in milk. The Analyst 143 (13):3202–8. doi: 10.1039/c8an00709h.
  • Wei, M., and W. Y. Zhang. 2018. Ultrasensitive aptasensor with DNA tetrahedral nanostructure for ochratoxin A detection based on hemin/G-quadruplex catalyzed polyaniline deposition. Sensors and Actuators B: Chemical 276:1–7. doi: 10.1016/j.snb.2018.08.072.
  • Wilchek, M., E. A. Bayer, and O. Livnah. 2006. Essentials of biorecognition: The (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction. Immunology Letters 103 (1):27–32. doi: 10.1016/j.imlet.2005.10.022.
  • Willner, I., and E. Katz. 2000. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angewandte Chemie International Edition 39 (7):1180–218. doi: 10.1002/(SICI)1521-3773(20000403)39:7<1180::AID-ANIE1180>3.0.CO;2-E.
  • Wu, W., S. M. Zhao, Y. P. Mao, Z. Y. Fang, X. W. Lu, and L. W. Zeng. 2015. A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification. Analytica Chimica Acta 861:62–8. doi: 10.1016/j.aca.2014.12.041.
  • Wu, L. L., H. B. Pu, L. J. Huang, and D.-W. Sun. 2020. Plasmonic nanoparticles on metal-organic framework: a versatile SERS platform for adsorptive detection of new coccine and orange II dyes in food. Food Chemistry 328:127105. DOI: 10.1016/j.foodchem.2020.127105.
  • Xie, H., Q. Wang, Y. Q. Chai, Y. L. Yuan, and R. Yuan. 2016. Enzyme-assisted cycling amplification and DNA-templated in-situ deposition of silver nanoparticles for the sensitive electrochemical detection of Hg(2.)+. Biosensors & Bioelectronics 86:630–5. doi: 10.1016/j.bios.2016.07.035.
  • Xie, P. S., Y. J. Zhan, M. Wu, L. H. Guo, Z. Y. Lin, B. Qiu, G. N. Chen, and Z. W. Cai. 2017. The detection of melamine base on a turn-on fluorescence of DNA-Ag nanoclusters. Journal of Luminescence 186:103–8. doi: 10.1016/j.jlumin.2017.02.020.
  • Xiong, Y., B. Gao, K. S. Wu, Y. Q. Wu, Y. J. Chai, X. L. Huang, and Y. H. Xiong. 2018. Fluorescence immunoassay based on the enzyme cleaving ss-DNA to regulate the synthesis of histone-ds-poly(AT) templated copper nanoparticles. Nanoscale 10 (42):19890–7. doi: 10.1039/c8nr06175k.
  • Xu, L. G., H. H. Yin, W. Ma, H. Kuang, L. B. Wang, and C. L. Xu. 2015. Ultrasensitive SERS detection of mercury based on the assembled gold nanochains. Biosensors & Bioelectronics 67:472–6. doi: 10.1016/j.bios.2014.08.088.
  • Xu, M. D., Z. Q. Gao, Q. H. Wei, G. N. Chen, and D. P. Tang. 2016. Label-free hairpin DNA-scaffolded silver nanoclusters for fluorescent detection of Hg2+ using exonuclease III-assisted target recycling amplification. Biosensors and Bioelectronics 79:411–5. doi: 10.1016/j.bios.2015.12.081.
  • Yang, F., X. Y. Jiang, X. Zhong, S. P. Wei, and R. Yuan. 2018. Highly sensitive electrochemiluminescence detection of mucin1 based on V2O5 nanospheres as peroxidase mimetics to catalyze H2O2 for signal amplification. Sensors and Actuators B: Chemical 265:126–33. doi: 10.1016/j.snb.2018.03.031.
  • Yang, Y. Q., M. M. Kang, S. M. Fang, M. H. Wang, L. H. He, X. Z. Feng, J. H. Zhao, Z. H. Zhang, and H. Z. Zhang. 2015. A feasible C-rich DNA electrochemical biosensor based on Fe3O4@3D-GO for sensitive and selective detection of Ag+. Journal of Alloys and Compounds 652:225–33. doi: 10.1016/j.jallcom.2015.08.229.
  • Ye, Y. K., Y. Q. Liu, S. D. He, X. Xu, X. D. Cao, Y. W. Ye, and H. S. Zheng. 2018. Ultrasensitive electrochemical DNA sensor for virulence invA gene of Salmonella using silver nanoclusters as signal probe. Sensors and Actuators B: Chemical 272:53–9. doi: 10.1016/j.snb.2018.05.133.
  • Yeh, H. C., J. Sharma, J. J. Han, J. S. Martinez, and J. H. Werner. 2010. A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Letters 10 (8):3106–10. doi: 10.1021/nl101773c.
  • Zhang, J., Y. K. Xia, M. Chen, D. Z. Wu, S. X. Cai, M. M. Liu, W. H. He, and J. H. Chen. 2016. A fluorescent aptasensor based on DNA-scaffolded silver nanoclusters coupling with Zn(II)-ion signal-enhancement for simultaneous detection of OTA and AFB(1). Sensors and Actuators B: Chemical 235:79–85. doi: 10.1016/j.snb.2016.05.061.
  • Zhang, K., J. X. Cao, Y. X. Wu, F. T. Hu, T. H. Li, Y. Wang, and N. Gan. 2019. A fluorometric aptamer method for kanamycin by applying a dual amplification strategy and using double Y-shaped DNA probes on a gold bar and on magnetite nanoparticles. Mikrochimica Acta 186 (2):120. doi: 10.1007/s00604-018-3207-6.
  • Zhang, K., N. Gan, F. T. Hu, X. X. Chen, T. H. Li, and J. X. Cao. 2018. Microfluidic electrophoretic non-enzymatic kanamycin assay making use of a stirring bar functionalized with gold-labeled aptamer, of a fluorescent DNA probe, and of signal amplification via hybridization chain reaction. Mikrochim Acta 185 (3):181. doi: 10.1007/s00604-017-2635-z.
  • Zheng, L. B., P. Qi, and D. Zhang. 2018. DNA-templated fluorescent silver nanoclusters for sensitive detection of pathogenic bacteria based on MNP-DNAzyme-AChE complex. Sensors and Actuators B: Chemical 276:42–7. doi: 10.1016/j.snb.2018.08.078.
  • Zhou, L., S. Poggesi, B. G. Casari, R. Mittapalli, P. M. Adam, M. Manzano, and R. E. Ionescu. 2019. Robust SERS platforms based on annealed gold nanostructures formed on ultrafine glass substrates for various (bio)applications. Biosensors 9 (2):53. doi: 10.3390/bios9020053.
  • Zhu, F. F., J. Peng, Z. Huang, L. M. Hu, G. G. Zhang, D. F. Liu, K. Y. Xing, K. Y. Zhang, and W. H. Lai. 2018. Specific colorimetric ELISA method based on DNA hybridization reaction and non-crosslinking gold nanoparticles aggregation for the detection of amantadine. Food Chemistry 257:382–7. doi: 10.1016/j.foodchem.2018.03.033.
  • Zu, Y. B., and Z. Q. Gao. 2009. Facile and controllable loading of single-stranded DNA on gold nanoparticles. Analytical Chemistry 81 (20):8523–8. doi: 10.1021/ac901459v.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.