1,787
Views
26
CrossRef citations to date
0
Altmetric
Reviews

Unexplored nutritive potential of tomato to combat global malnutrition

, , , , , , , , , , & show all

References

  • Abushita, A., H. Daood, and P. A. Biacs. 2000. Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. Journal of Agricultural and Food Chemistry 48 (6):2075–81. doi: 10.1021/jf990715p.
  • Agarwal, S., and A. V. Rao. 2000. Tomato lycopene and its role in human health and chronic diseases. CMAJ : Canadian Medical Association Journal = Journal de L'Association Medicale Canadienne 163 (6):739–44.
  • Al-Amri, S. M. 2013. Improved growth, productivity and quality of tomato (Solanum lycopersicum L.) plants through application of shikimic acid. Saudi Journal of Biological Sciences 20 (4):339–45. doi: 10.1016/j.sjbs.2013.03.002.
  • Almeida, J., L. Quadrana, R. Asís, N. Setta, F. de Godoy, L. Bermúdez, S. N. Otaiza, J. V. Corrêa da Silva, A. R. Fernie, F. Carrari, et al. 2011. Genetic dissection of vitamin E biosynthesis in tomato. Journal of Experimental Botany 62 (11):3781–98. doi: 10.1093/jxb/err055.
  • Antony, G., J. Zhou, S. Huang, T. Li, B. Liu, F. White, and B. Yang. 2010. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. The Plant Cell 22 (11):3864–76. doi: 10.1105/tpc.110.078964.
  • Apel, W., and R. Bock. 2009. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiology 151 (1):59–66. doi: 10.1104/pp.109.140533.
  • Ayvaz, H., A. M. Santos, and L. E. Rodriguez‐Saona. 2016. Understanding tomato peelability. Comprehensive Reviews in Food Science and Food Safety 15 (3):619–32. doi: 10.1111/1541-4337.12195.
  • Baldina, S., M. E. Picarella, A. D. Troise, A. Pucci, V. Ruggieri, R. Ferracane, A. Barone, V. Fogliano, and A. Mazzucato. 2016. Metabolite profiling of Italian tomato landraces with different fruit types. Frontiers in Plant Science 7:664 doi: 10.3389/fpls.2016.00664.
  • Baldwin, E. A., J. W. Scott, C. K. Shewmaker, and W. Schuch. 2000. Flavor trivia and tomato aroma: Biochemistry and possible mechanisms for control of important aroma components. HortScience 35 (6):1013–22. doi: 10.21273/HORTSCI.35.6.1013.
  • Ballester, A.-R., Y. Tikunov, J. Molthoff, S. Grandillo, M. Viquez-Zamora, R. de Vos, R. A. de Maagd, S. van Heusden, and A. G. Bovy. 2016. Identification of loci affecting accumulation of secondary metabolites in tomato fruit of a Solanum lycopersicum × Solanum chmielewskii Introgression Line Population. Frontiers in Plant Science 7:1428 doi: 10.3389/fpls.2016.01428.
  • Barringer, S. A., M. A. Bennett, and W. D. Bash. 1999. Effect of fruit maturity and nitrogen fertilizer levels on tomato peeling efficiency. Journal of Vegetable Crop Production 5 (1):3–11. doi: 10.1300/J068v05n01_02.
  • Bartley, G. E., and P. A. Scolnik. 1993. cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase. The Journal of Biological Chemistry 268 (34):25718–21.
  • Beckles, D. M., N. Hong, L. Stamova, and K. Luengwilai. 2012. Biochemical factors contributing to tomato fruit sugar content: A review. Fruits 67 (1):49–64. doi: 10.1051/fruits/2011066.
  • Beisel, K. G., S. Jahnke, D. Hofmann, S. Köppchen, U. Schurr, and S. Matsubara. 2010. Continuous turnover of carotenes and chlorophyll a in mature leaves of Arabidopsis revealed by 14CO2 pulse-chase labeling. Plant Physiology 152 (4):2188–99. doi: 10.1104/pp.109.151647.
  • Bénard, C., S. Bernillon, B. Biais, S. Osorio, M. Maucourt, P. Ballias, C. Deborde, S. Colombié, C. Cabasson, D. Jacob, et al. 2015. Metabolomic profiling in tomato reveals diel compositional changes in fruit affected by source-sink relationships. Journal of Experimental Botany 66 (11):3391–404. doi: 10.1093/jxb/erv151.
  • Bhat, J. A., S. Shivaraj, P. Singh, D. B. Navadagi, D. K. Tripathi, P. K. Dash, A. U. Solanke, H. Sonah, and R. Deshmukh. 2019. Role of silicon in mitigation of heavy metal stresses in crop plants. Plants 8 (3):71. doi: 10.3390/plants8030071.
  • Bibikova, M., K. Beumer, J. K. Trautman, and D. Carroll. 2003. Enhancing gene targeting with designed zinc finger nucleases. Science (New York, N.Y.) 300 (5620):764 doi: 10.1126/science.1079512.
  • Bibikova, M., M. Golic, K. G. Golic, and D. Carroll. 2002. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161 (3):1169–1175.
  • Bino, R. J., C. R. De Vos, M. Lieberman, R. D. Hall, A. Bovy, H. H. Jonker, Y. Tikunov, A. Lommen, S. Moco, and I. Levin. 2005. The light-hyperresponsive high pigment-2dg mutation of tomato: alterations in the fruit metabolome . The New Phytologist 166 (2):427–438. doi: 10.1111/j.1469-8137.2005.01362.x.
  • Block, G. 1991. Vitamin C and cancer prevention: The epidemiologic evidence. The American Journal of Clinical Nutrition 53 (1 Suppl):270S–282S. doi: 10.1093/ajcn/53.1.270S.
  • Boch, J., H. Scholze, S. Schornack, A. Landgraf, S. Hahn, S. Kay, T. Lahaye, A. Nickstadt, and U. Bonas. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science (New York, N.Y.) 326 (5959):1509–1512. doi: 10.1126/science.1178811.
  • Bohn, T., C. Desmarchelier, L. O. Dragsted, C. S. Nielsen, W. Stahl, R. Rühl, J. Keijer, and P. Borel. 2017. Host‐related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Molecular Nutrition & Food Research 61 (6):1600685. doi: 10.1002/mnfr.201600685.
  • Boileau, T. W.-M., Z. Liao, S. Kim, S. Lemeshow, J. Erdman, W. John, and S. K. Clinton. 2003. Prostate carcinogenesis in N-methyl-N-nitrosourea (NMU)-testosterone-treated rats fed tomato powder, lycopene, or energy-restricted diets. Journal of the National Cancer Institute 95 (21):1578–1586. doi: 10.1093/jnci/djg081.
  • Borel, P., C. Desmarchelier, M. Nowicki, R. Bott, S. Morange, and N. Lesavre. 2014. Interindividual variability of lutein bioavailability in healthy men: Characterization, genetic variants involved, and relation with fasting plasma lutein concentration. The American Journal of Clinical Nutrition 100 (1):168–175. doi: 10.3945/ajcn.114.085720.
  • Borel, P., C. Desmarchelier, M. Nowicki, and R. Bott. 2015. Lycopene bioavailability is associated with a combination of genetic variants. Free Radical Biology and Medicine 83:238–244. doi: 10.1016/j.freeradbiomed.2015.02.033.
  • Borel, P., C. Desmarchelier, M. Nowicki, and R. Bott. 2015. A combination of single-nucleotide polymorphisms is associated with interindividual variability in dietary β-carotene bioavailability in healthy men. The Journal of Nutrition 145 (8):1740–1747. doi: 10.3945/jn.115.212837.
  • Botinestean, C., N. Hadaruga, D. Hadaruga, and I. Jianu. 2012. Fatty acids composition by gas chromatography–mass spectrometry (GC-MS) and most important physical-chemicals parameters of tomato seed oil. Journal of Agroalimentary Processes and Technologies 18 (1):89–94.
  • Bovy, A., E. Schijlen, and R. D. Hall. 2007. Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): the potential for metabolomics. Metabolomics: Official Journal of the Metabolomic Society (3): :399–412. doi: 10.1007/s11306-007-0074-2.
  • Bovy, A. G., V. Gómez-Roldán, and R. D. Hall. 2010. Strategies to optimize the flavonoid content of tomato fruit. In Recent advances in polyphenol research, ed. C. Santos-Buelga, M. T. Escribano-Bailon, V. Lattanzio, 138–62. Wiley-Blackwell. doi: 10.1002/9781444323375.ch5.
  • Bulley, S., and W. Laing. 2016. The regulation of ascorbate biosynthesis. Current Opinion in Plant Biology 33:15–22. doi: 10.1016/j.pbi.2016.04.010.
  • Butelli, E., L. Titta, M. Giorgio, H.-P. Mock, A. Matros, S. Peterek, E. G. W. M. Schijlen, R. D. Hall, A. G. Bovy, J. Luo, et al. 2008. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology 26 (11):1301–1308. doi: 10.1038/nbt.1506.
  • Campa, C. C., N. R. Weisbach, A. J. Santinha, D. Incarnato, and R. J. Platt. 2019. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nature Methods 16 (9):887–893. doi: 10.1038/s41592-019-0508-6.
  • Capel, C.,. F. J. Yuste-Lisbona, G. López-Casado, T. Angosto, A. Heredia, J. Cuartero, R. Fernández-Muñoz, R. Lozano, and J. Capel. 2017. QTL mapping of fruit mineral contents provides new chances for molecular breeding of tomato nutritional traits. TAG Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 130 (5):903–913. doi: 10.1007/s00122-017-2859-7.
  • Cárdenas, P. D., P. D. Sonawane, U. Heinig, A. Jozwiak, S. Panda, B. Abebie, Y. Kazachkova, M. Pliner, T. Unger, D. Wolf, et al. 2019. Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nature Communications 10 (1):5169 doi: 10.1038/s41467-019-13211-4.
  • Carrari, F., C. Baxter, B. Usadel, E. Urbanczyk-Wochniak, M.-I. Zanor, A. Nunes-Nesi, V. Nikiforova, D. Centero, A. Ratzka, M. Pauly, et al. 2006. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiology 142 (4):1380–1396. doi: 10.1104/pp.106.088534.
  • Castellanos-Sinco, H., C. Ramos-Peñafiel, A. Santoyo-Sánchez, J. Collazo-Jaloma, C. Martínez-Murillo, E. Montaño-Figueroa, and A. Sinco-Ángeles. 2015. Megaloblastic anaemia: Folic acid and vitamin B12 metabolism. Revista Médica Del Hospital General De México 78 (3):135–143. doi: 10.1016/j.hgmx.2015.07.001.
  • Čermák, T., N. J. Baltes, R. Čegan, Y. Zhang, and D. F. Voytas. 2015. High-frequency, precise modification of the tomato genome. Genome Biology 16 (1):232. doi: 10.1186/s13059-015-0796-9.
  • Chander, S., Y. Guo, X. Yang, J. Yan, Y. Zhang, T. Song, and J. Li. 2008. Genetic dissection of tocopherol content and composition in maize grain using quantitative trait loci analysis and the candidate gene approach. Molecular Breeding 22 (3):353–365. doi: 10.1007/s11032-008-9180-8.
  • Charaux, C. 1924. Presence of Rutin in certain plants, preparation and identification of this glucoside and of its decomposition products. Bulletin de la Société de Chimie Biologique 6:641–647.
  • Chaudhary, J., A. Alisha, V. Bhatt, S. Chandanshive, N. Kumar, Z. Mir, A. Kumar, S. K. Yadav, S. M. Shivaraj, H. Sonah, et al. 2019. Mutation breeding in tomato: Advances, applicability and challenges. Plants 8 (5):128. doi: 10.3390/plants8050128.
  • Chen, L., D. Yang, Y. Zhang, L. Wu, Y. Zhang, L. Ye, C. Pan, Y. He, L. Huang, Y.-L. Ruan, et al. 2018. Evidence for a specific and critical role of mitogen-activated protein kinase 20 in uni-to-binucleate transition of microgametogenesis in tomato. The New Phytologist 219 (1):176–194. doi: 10.1111/nph.15150.
  • Cheng, H. M., G. Koutsidis, J. K. Lodge, A. W. Ashor, M. Siervo, and J. Lara. 2019. Lycopene and tomato and risk of cardiovascular diseases: A systematic review and meta-analysis of epidemiological evidence. Critical Reviews in Food Science and Nutrition 59 (1):141–158. doi: 10.1080/10408398.2017.1362630.
  • Christian, M., T. Cermak, E. L. Doyle, C. Schmidt, F. Zhang, A. Hummel, A. J. Bogdanove, and D. F. Voytas. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186 (2):757–761. doi: 10.1534/genetics.110.120717.
  • Cordero, Z., D. Drogan, C. Weikert, and H. Boeing. 2010. Vitamin E and risk of cardiovascular diseases: A review of epidemiologic and clinical trial studies. Critical Reviews in Food Science and Nutrition 50 (5):420–440. doi: 10.1080/10408390802304230.
  • Corona, V., B. Aracri, G. Kosturkova, G. E. Bartley, L. Pitto, L. Giorgetti, P. A. Scolnik, and G. Giuliano. 1996. Regulation of a carotenoid biosynthesis gene promoter during plant development. The Plant Journal: For Cell and Molecular Biology 9 (4):505–512. doi: 10.1046/j.1365-313x.1996.09040505.x.
  • Costa, F., M. de Lurdes Baeta, D. Saraiva, M. T. Verissimo, and F. Ramos. 2011. Evolution of mineral contents in tomato fruits during the ripening process after harvest. Food Analytical Methods 4 (3):410–415. doi: 10.1007/s12161-010-9179-8.
  • Myrianthopoulos, N. C. 1972. Book reviews: Maternal nutrition and the course of pregnancy. Washington D.C. Teratology 6 (1):91–92. doi: 10.1002/tera.1420060111.
  • Coyago-Cruz, E., M. Corell, A. Moriana, D. Hernanz, C. M. Stinco, and A. J. Meléndez-Martínez. 2017. Effect of the fruit position on the cluster on fruit quality, carotenoids, phenolics and sugars in cherry tomatoes (Solanum lycopersicum L.). Food Research International (Ottawa, Ont.) 100 (Pt 1):804–813. doi: 10.1016/j.foodres.2017.08.002.
  • Cronje, C., G. M. George, A. R. Fernie, J. Bekker, J. Kossmann, and R. Bauer. 2012. Manipulation of L-ascorbic acid biosynthesis pathways in Solanum lycopersicum: Elevated GDP-mannose pyrophosphorylase activity enhances L-ascorbate levels in red fruit. Planta 235 (3):553–564. doi: 10.1007/s00425-011-1525-6.
  • Dai, Q., L. Geng, M. Lu, W. Jin, X. Nan, P-a He, and Y. Yao. 2017. Comparative transcriptome analysis of the different tissues between the cultivated and wild tomato. PloS One 12 (3):e0172411 doi: 10.1371/journal.pone.0172411.
  • Dal Cin, V., D. M. Tieman, T. Tohge, R. McQuinn, R. C. de Vos, S. Osorio, E. A. Schmelz, M. G. Taylor, M. T. Smits-Kroon, R. C. Schuurink, et al. 2011. Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit. The Plant Cell 23 (7):2738–2753. doi: 10.1105/tpc.111.086975.
  • Das, D., and S. Barringer. 2006. Potassium hydroxide replacement for lye (sodium hydroxide) in tomato peeling. Journal of Food Processing and Preservation 30 (1):15–19. doi: 10.1111/j.1745-4549.2005.00043.x.
  • Das, S., N. Gautam, S. K. Dey, T. Maiti, and S. Roy. 2009. Oxidative stress in the brain of nicotine-induced toxicity: Protective role of Andrographis paniculata Nees and vitamin E. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme 34 (2):124–135. doi: 10.1139/H08-147.
  • Davuluri, G. R., A. Van Tuinen, P. D. Fraser, A. Manfredonia, R. Newman, D. Burgess, D. A. Brummell, S. R. King, J. Palys, J. Uhlig, et al. 2005. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology 23 (7):890–895. doi: 10.1038/nbt1108.
  • de la Garza, R. D., E. P. Quinlivan, S. M. Klaus, G. J. Basset, J. F. Gregory, and A. D. Hanson. 2004. Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proceedings of the National Academy of Sciences of the United States of America 101 (38):13720–13725. doi: 10.1073/pnas.0404208101.
  • de La Garza, R. I. D., J. F. Gregory, and A. D. Hanson. 2007. Folate biofortification of tomato fruit. Proceedings of the National Academy of Sciences of the United States of America 104 (10):4218–4222. doi: 10.1073/pnas.0700409104.
  • Deng, Y., C. Jiang, C. Li, T. Li, M. Peng, J. Wang, and K. Dai. 2017. 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation. Scientific Reports 7 (1):5588–5588. doi: 10.1038/s41598-017-05196-1.
  • Desmarchelier, C., and P. Borel. 2017. Overview of carotenoid bioavailability determinants: From dietary factors to host genetic variations. Trends in Food Science & Technology 69:270–280. doi: 10.1016/j.tifs.2017.03.002.
  • Desmarchelier, C., J.-F. Landrier, and P. Borel. 2018. Genetic factors involved in the bioavailability of tomato carotenoids. Current Opinion in Clinical Nutrition and Metabolic Care 21 (6):489–497. doi: 10.1097/MCO.0000000000000515.
  • Dharmapuri, S., C. Rosati, P. Pallara, R. Aquilani, F. Bouvier, B. Camara, and G. Giuliano. 2002. Metabolic engineering of xanthophyll content in tomato fruits. FEBS Letters 519 (1-3):30–34. doi: 10.1016/S0014-5793(02)02699-6.
  • Di Matteo, A., A. Sacco, M. Anacleria, M. Pezzotti, M. Delledonne, A. Ferrarini, L. Frusciante, and A. Barone. 2010. The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biology 10 (1):163. doi: 10.1186/1471-2229-10-163.
  • Ding, D., K. Chen, Y. Chen, H. Li, and K. Xie. 2018. Engineering introns to express RNA guides for Cas9- and Cpf1-mediated Multiplex genome editing. Molecular Plant 11 (4):542–552. doi: 10.1016/j.molp.2018.02.005.
  • Elbadrawy, E., and A. Sello. 2016. Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arabian Journal of Chemistry 9:S1010–S1018. doi: 10.1016/j.arabjc.2011.11.011.
  • Enfissi, E. M., F. Barneche, I. Ahmed, C. Lichtlé, C. Gerrish, R. P. McQuinn, J. J. Giovannoni, E. Lopez-Juez, C. Bowler, P. M. Bramley, et al. 2010. Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED1 downregulated tomato fruit. The Plant Cell 22 (4):1190–1215. doi: 10.1105/tpc.110.073866.
  • Enfissi, E. M., P. D. Fraser, L. M. Lois, A. Boronat, W. Schuch, and P. M. Bramley. 2005. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnology Journal 3 (1):17–27. doi: 10.1111/j.1467-7652.2004.00091.x.
  • Eriksson, E. M., A. Bovy, K. Manning, L. Harrison, J. Andrews, J. De Silva, G. A. Tucker, and G. B. Seymour. 2004. Effect of the colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening . Plant Physiology 136 (4):4184–4197. doi: 10.1104/pp.104.045765.
  • Evans, C. E. L. 2017. Sugars and health: A review of current evidence and future policy. The Proceedings of the Nutrition Society 76 (3):400–407. doi: 10.1017/S0029665116002846.
  • Ezz, M. K., N. K. Ibrahim, M. M. Said, and M. A. Farrag. 2018. The beneficial radioprotective Effect of tomato seed oil against gamma radiation-induced damage in male rats. Journal of Dietary Supplements 15 (6):923–938. doi: 10.1080/19390211.2017.1406427.
  • FAO. 2020. Agriculture Organization Corporate Statistical Database [Faostat]. Food and Agriculture Organization of the United Nations: Division of Statistics. Accessed May 06, 2020. www.fao.org/faostat/en/#search/tomato.
  • Fernández-Ruiz, V., A. I. Olives, M. Cámara, M. de Cortes Sánchez-Mata, and M. E. Torija. 2011. Mineral and trace elements content in 30 accessions of tomato fruits (Solanum lycopersicum L.,) and wild relatives (Solanum pimpinellifolium L., Solanum cheesmaniae L. Riley, and Solanum habrochaites (S. Knapp & D.M. Spooner). Biological Trace Element Research 141 (1-3):329–339. doi: 10.1007/s12011-010-8738-6.
  • Fondevila, M., J. Guada, J. Gasa, and C. Castrillo. 1994. Tomato pomace as a protein supplement for growing lambs. Small Ruminant Research 13 (2):117–126. doi: 10.1016/0921-4488(94)90086-8.
  • Fraser, P. D., A. Aharoni, R. D. Hall, S. Huang, J. J. Giovannoni, U. Sonnewald, and A. R. Fernie. 2020. Metabolomics should be deployed in the identification and characterization of gene-edited crops. The Plant Journal: For Cell and Molecular Biology 102 (5):897–902. doi: 10.1111/tpj.14679.
  • Fraser, P. D., E. M. Enfissi, J. M. Halket, M. R. Truesdale, D. Yu, C. Gerrish, and P. M. Bramley. 2007. Manipulation of phytoene levels in tomato fruit: Effects on isoprenoids, plastids, and intermediary metabolism. The Plant Cell 19 (10):3194–3211. doi: 10.1105/tpc.106.049817.
  • Fraser, P. D., J. W. Kiano, M. R. Truesdale, W. Schuch, and P. M. J. P. m b Bramley. 1999. Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Molecular Biology 40 (4):687–698. doi: 10.1023/A:1006256302570.
  • Fraser, P. D., S. Romer, C. A. Shipton, P. B. Mills, J. W. Kiano, N. Misawa, R. G. Drake, W. Schuch, and P. M. Bramley. 2002. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proceedings of the National Academy of Sciences of the United States of America 99 (2):1092–1097. doi: 10.1073/pnas.241374598.
  • Fraser, P. D., M. R. Truesdale, C. R. Bird, W. Schuch, and P. M. Bramley. 1994. Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiology 105 (1):405–413. doi: 10.1104/pp.105.1.405.
  • Fray, R. G., and D. Grierson. 1993. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Molecular Biology 22 (4):589–602. doi: 10.1007/BF00047400.
  • Frei, B. 1997. Vitamin C as an antiatherogen: Mechanism of action. In Vitamin C in health and disease, ed. L. Packer and J. Fuchs 163–82. New York: Marcel and Dekker Inc.
  • Friedman, M. 2015. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. Journal of Agricultural and Food Chemistry 63 (13):3323–3337. doi: 10.1021/acs.jafc.5b00818.
  • Frusciante, L., P. Carli, M. R. Ercolano, R. Pernice, A. D. Matteo, V. Fogliano, and N. Pellegrini. 2007. Antioxidant nutritional quality of tomato. Molecular Nutrition & Food Research 51 (5):609–617. doi: 10.1002/mnfr.200600158.
  • Fujisawa, M., T. Nakano, Y. Shima, and Y. Ito. 2013. A large-scale identification of direct targets of the tomato MADS box transcription factor ripening inhibitor reveals the regulation of fruit ripening. The Plant Cell 25 (2):371–386. doi: 10.1105/tpc.112.108118.
  • Fujiwara, Y., M. Yoshizaki, S. Matsushita, S. Yahara, E. Yae, T. Ikeda, M. Ono, and T. Nohara. 2005. A new tomato pregnane glycoside from the overripe fruits. Chemical & Pharmaceutical Bulletin 53 (5):584–585. doi: 10.1248/cpb.53.584.
  • Gady, A. L., W. H. Vriezen, M. H. Van de Wal, P. Huang, A. G. Bovy, R. G. Visser, and C. W. J. M. B. Bachem. 2012. Induced point mutations in the phytoene synthase 1 gene cause differences in carotenoid content during tomato fruit ripening. Molecular Breeding: New Strategies in Plant Improvement 29 (3):801–812. doi: 10.1007/s11032-011-9591-9.
  • Garg, M., N. Sharma, S. Sharma, P. Kapoor, A. Kumar, V. Chunduri, and P. Arora. 2018. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition 5:12–12. doi: 10.3389/fnut.2018.00012.
  • Giannelos, P., S. Sxizas, E. Lois, F. Zannikos, and G. Anastopoulos. 2005. Physical, chemical and fuel related properties of tomato seed oil for evaluating its direct use in diesel engines. Industrial Crops and Products 22 (3):193–199. doi: 10.1016/j.indcrop.2004.11.001.
  • Gilliland, L. U., M. Magallanes-Lundback, C. Hemming, A. Supplee, M. Koornneef, L. Bentsink, and D. DellaPenna. 2006. Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 103 (49):18834–18841. doi: 10.1073/pnas.0606221103.
  • Giorio, G., A. L. Stigliani, and C. D'Ambrosio. 2008. Phytoene synthase genes in tomato (Solanumlycopersicum L.) - New data on the structures, the deduced amino acid sequences and the expression patterns . The FEBS Journal 275 (3):527–535. doi: 10.1111/j.1742-4658.2007.06219.x.
  • Giovinazzo, G.,. L. D'Amico, A. Paradiso, R. Bollini, F. Sparvoli, and L. DeGara. 2005. Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnology Journal 3 (1):57–69. doi: 10.1111/j.1467-7652.2004.00099.x.
  • Giuliano, G., G. E. Bartley, and P. A. Scolnik. 1993. Regulation of carotenoid biosynthesis during tomato development. The Plant Cell 5 (4):379–387. doi: 10.1105/tpc.5.4.379.
  • Goff, S. A., and H. J. Klee. 2006. Plant volatile compounds: Sensory cues for health and nutritional value?. Science (New York, N.Y.) 311 (5762):815–819. doi: 10.1126/science.1112614.
  • Gouranton, E., C. Thabuis, C. Riollet, C. Malezet-Desmoulins, C. E. Yazidi, M. Amiot, P. Borel, and J. F. Landrier. 2011. Lycopene inhibits proinflammatory cytokine and chemokine expression in adipose tissue. The Journal of Nutritional Biochemistry 22 (7):642–648. doi: 10.1016/j.jnutbio.2010.04.016.
  • Gröber, U., J. Schmidt, and K. Kisters. 2015. Magnesium in prevention and therapy. Nutrients 7 (9):8199–8226. doi: 10.3390/nu7095388.
  • Hamdy, O., and M. Y. Barakatun-Nisak. 2016. Nutrition in Diabetes. Endocrinology and Metabolism Clinics of North America 45 (4):799–817. doi: 10.1016/j.ecl.2016.06.010.
  • Haroldsen, V. M., C. L. Chi-Ham, S. Kulkarni, A. Lorence, and A. B. Bennett. 2011. Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato. Plant Physiology and Biochemistry: PPB 49 (10):1244–1249. doi: 10.1016/j.plaphy.2011.08.003.
  • Hazewindus, M., G. R. Haenen, A. R. Weseler, and A. Bast. 2012. The anti-inflammatory effect of lycopene complements the antioxidant action of ascorbic acid and α-tocopherol. Food Chemistry 132 (2):954–958. doi: 10.1016/j.foodchem.2011.11.075.
  • Hefferon, K. L. 2016. Can biofortified crops help attain food security?. Current Molecular Biology Reports 2 (4):180–185. doi: 10.1007/s40610-016-0048-0.
  • Herrero-Barbudo, C., B. Soldevilla, B. Pérez-Sacristán, I. Blanco-Navarro, M. Herrera, F. Granado-Lorencio, and G. Domínguez. 2013. Modulation of DNA-induced damage and repair capacity in humans after dietary intervention with lutein-enriched fermented milk. PloS One 8 (9):e74135. doi: 10.1371/journal.pone.0074135.
  • Ho, L. 1984. Partitioning of assimilates in fruiting tomato plants. Plant Growth Regulation 2 (4):277–285. doi: 10.1007/BF00027287.
  • Holzapfel, N., B. Holzapfel, S. Champ, J. Feldthusen, J. Clements, and D. W. Hutmacher. 2013. The potential role of lycopene for the prevention and therapy of prostate cancer: From molecular mechanisms to clinical evidence. International Journal of Molecular Sciences 14 (7):14620–14646. doi: 10.3390/ijms140714620.
  • Hörtensteiner, S. 2009. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends in Plant Science 14 (3):155–162. doi: 10.1016/j.tplants.2009.01.002.
  • Huang, J.-C., Y.-J. Zhong, J. Liu, G. Sandmann, and F. Chen. 2013. Metabolic engineering of tomato for high-yield production of astaxanthin. Metabolic Engineering 17:59–67. doi: 10.1016/j.ymben.2013.02.005.
  • Huang, Y.-H., J. Su, Y. Lei, L. Brunetti, M. C. Gundry, X. Zhang, M. Jeong, W. Li, and M. A. Goodell. 2017. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biology 18 (1):176 doi: 10.1186/s13059-017-1306-z.
  • Huttunen, M. M., I. Tillman, H. T. Viljakainen, J. Tuukkanen, Z. Peng, M. Pekkinen, and C. J. Lamberg‐Allardt. 2007. High dietary phosphate intake reduces bone strength in the growing rat skeleton. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research 22 (1):83–92. doi: 10.1359/jbmr.061009.
  • Iijima, Y., Y. Nakamura, Y. Ogata, K. Tanaka, N. Sakurai, K. Suda, T. Suzuki, H. Suzuki, K. Okazaki, M. Kitayama, et al. 2008. Metabolite annotations based on the integration of mass spectral information. The Plant Journal : For Cell and Molecular Biology 54 (5):949–962. doi: 10.1111/j.1365-313X.2008.03434.x.
  • Iijima, Y., B. Watanabe, R. Sasaki, M. Takenaka, H. Ono, N. Sakurai, N. Umemoto, H. Suzuki, D. Shibata, and K. Aoki. 2013. Steroidal glycoalkaloid profiling and structures of glycoalkaloids in wild tomato fruit. Phytochemistry 95:145–157. doi: 10.1016/j.phytochem.2013.07.016.
  • Iniesta, M. D., D. Perez-Conesa, J. Garcia-Alonso, G. Ros, and M. J. s Periago. 2009. Folate content in tomato (Lycopersicon esculentum) influence of cultivar, ripeness, year of harvest, and pasteurization and storage temperatures. Journal of Agricultural and Food Chemistry 57 (11):4739–4745. doi: 10.1021/jf900363r.
  • Isaacson, T., G. Ronen, D. Zamir, and J. Hirschberg. 2002. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. The Plant Cell 14 (2):333–342. doi: 10.1105/tpc.010303.
  • Ismail, A. M., S. Heuer, M. J. Thomson, and M. Wissuwa. 2007. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology 65 (4):547–570. doi: 10.1007/s11103-007-9215-2.
  • Itkin, M., U. Heinig, O. Tzfadia, A. J. Bhide, B. Shinde, P. D. Cardenas, S. E. Bocobza, T. Unger, S. Malitsky, R. Finkers, et al. 2013. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science (New York, N.Y.) 341 (6142):175–179. doi: 10.1126/science.1240230.
  • Itkin, M., I. Rogachev, N. Alkan, T. Rosenberg, S. Malitsky, L. Masini, S. Meir, Y. Iijima, K. Aoki, R. de Vos, et al. 2011. Glycoalkaloid metabolism1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. The Plant Cell 23 (12):4507–4525. doi: 10.1105/tpc.111.088732.
  • Jacob, K., M. J. Periago, V. Böhm, and G. R. Berruezo. 2008. Influence of lycopene and vitamin C from tomato juice on biomarkers of oxidative stress and inflammation. The British Journal of Nutrition 99 (1):137–146. doi: 10.1017/S0007114507791894.
  • Jain, C. K., S. Agarwal, and A. V. Rao. 1999. The effect of dietary lycopene on bioavailability, tissue distribution, in vivo antioxidant properties and colonic preneoplasia in rats. Nutrition Research 19 (9):1383–1391. doi: 10.1016/S0271-5317(99)00095-0.
  • Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, N.Y.) 337 (6096):816–821. doi: 10.1126/science.1225829.
  • Joshi, P. K., D. Gupta, U. K. Nandal, Y. Khan, S. K. Mukherjee, and N. J. G. Sanan-Mishra. 2012. Identification of mirtrons in rice using MirtronPred: A tool for predicting plant mirtrons. Genomics 99 (6):370–375. doi: 10.1016/j.ygeno.2012.04.002.
  • Kadiri, M., A. Ojewumi, and S. Olawale. 2015. Minerals, vitamins and chlorophyll contents of fruits, stems and leaves of tomato and garden egg. Pakistan Journal of Food Sciences 25 (3):150–154.
  • Kanayama, Y. 2017. Sugar metabolism and fruit development in the tomato. The Horticulture Journal 86 (4):417–425. doi: 10.2503/hortj.OKD-IR01.
  • Kaplan, L., Lau. J., and E. J. C.p Stein and biochemistry. 1990. Carotenoid composition, concentrations, and relationships in various human organs. Clinical Biology and Biochemistry 8 (1):1–10.
  • Karppi, J., S. Kurl, T. H. Mäkikallio, K. Ronkainen, and J. A. Laukkanen. 2013. Serum β-carotene concentrations and the risk of congestive heart failure in men: A population-based study. International Journal of Cardiology 168 (3):1841–1846. doi: 10.1016/j.ijcard.2012.12.072.
  • Katsumata, A., M. Kimura, H. Saigo, K. Aburaya, M. Nakano, T. Ikeda, Y. Fujiwara, and R. Nagai. 2011. Changes in esculeoside A content in different regions of the tomato fruit during maturation and heat processing. Journal of Agricultural and Food Chemistry 59 (8):4104–4110. doi: 10.1021/jf104025p.
  • Kiferle, C., S. Gonzali, H. T. Holwerda, R. Real Ibaceta, and P. Perata. 2013. Tomato fruits: A good target for iodine biofortification. Frontiers in Plant Science 4:205 doi: 10.3389/fpls.2013.00205.
  • Kinkade, M. P., and M. R. Foolad. 2013. Validation and fine mapping of lyc12.1, a QTL for increased tomato fruit lycopene content. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 126 (8):2163–2175. doi: 10.1007/s00122-013-2126-5.
  • Kirkland, A. E., G. L. Sarlo, and K. F. Holton. 2018. The Role of Magnesium in Neurological Disorders. Nutrients 10 (6):730. doi: 10.3390/nu10060730.
  • Kirsh, V. A., R. B. Hayes, S. T. Mayne, N. Chatterjee, A. F. Subar, L. B. Dixon, D. Albanes, G. L. Andriole, D. A. Urban, and U. Peters. 2006. Supplemental and dietary vitamin E, beta-carotene, and vitamin C intakes and prostate cancer risk. Journal of the National Cancer Institute 98 (4):245–254. doi: 10.1093/jnci/djj050.
  • Klee, H. J., and J. J. Giovannoni. 2011. Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics 45:41–59. doi: 10.1146/annurev-genet-110410-132507.
  • Klee, H. J., and D. M. Tieman. 2018. The genetics of fruit flavour preferences. Nature Reviews. Genetics 19 (6):347–356. doi: 10.1038/s41576-018-0002-5.
  • Kumawat, S., N. Rana, R. Bansal, G. Vishwakarma, S. T. Mehetre, B. K. Das, M. Kumar, S. K. Yadav, H. Sonah, T. R. Sharma, et al. 2019. Expanding avenue of fast neutron mediated mutagenesis for crop improvement. Plants 8 (6):164. doi: 10.3390/plants8060164.
  • Knoblich, M., B. Anderson, and D. Latshaw. 2005. Analyses of tomato peel and seed byproducts and their use as a source of carotenoids. Journal of the Science of Food and Agriculture 85 (7):1166–1170. doi: 10.1002/jsfa.2091.
  • Kunzler, A., E. A. Kolling, J. D. da Silva, Jr, J. Gasparotto, M. A. de Bittencourt Pasquali, J. C. F. Moreira, and D. P. Gelain. 2017. Retinol (vitamin A) increases α-synuclein, β-amyloid peptide, tau phosphorylation and RAGE content in human SH-SY5Y neuronal cell line. Neurochemical Research 42 (10):2788–2797. doi: 10.1007/s11064-017-2292-y.
  • Labate, J. A., A. P. Breksa, L. D. Robertson, B. A. King, and D. E. King. 2018. Genetic differences in macro-element mineral concentrations among 52 historically important tomato varieties. Plant Genetic Resources: Characterization and Utilization 16 (4):343–351. doi: 10.1017/S1479262117000417.
  • Le Gall, G.,. I. J. Colquhoun, A. L. Davis, G. J. Collins, M. E. J. J. o A. Verhoeyen, and F. Chemistry. 2003. Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. Journal of Agricultural and Food Chemistry 51 (9):2447–2456. doi: 10.1021/jf0259967.
  • Lee, S. K., and A. A. Kader. 2000. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology 20 (3):207–220. doi: 10.1016/S0925-5214(00)00133-2.
  • Lemaire-Chamley, M., F. Mounet, C. Deborde, M. Maucourt, D. Jacob, and A. Moing. 2019. NMR-based tissular and developmental metabolomics of tomato fruit. Metabolites 9 (5):93. doi: 10.3390/metabo9050093.
  • Levine, M., K. R. Dhariwal, R. W. Welch, Y. Wang, and J. B. Park. 1995. Determination of optimal vitamin C requirements in humans. The American Journal of Clinical Nutrition 62 (6 Suppl):1347S–1356S. doi: 10.1093/ajcn/62.6.1347S.
  • Li, F., R. Vallabhaneni, and E. T. Wurtzel. 2008. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiology 146 (3):1333–1345. doi: 10.1104/pp.107.111120.
  • Li, H., H. Liu, Y. Han, X. Wu, W. Teng, G. Liu, and W. Li. 2010. Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theoretical and Applied Genetics 120 (7):1405–1413. doi: 10.1007/s00122-010-1264-2.
  • Li, R., R. Li, X. Li, D. Fu, B. Zhu, H. Tian, Y. Luo, and H. Zhu. 2018. Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnology Journal 16 (2):415–427. doi: 10.1111/pbi.12781.
  • Li, X., Y. Wang, S. Chen, H. Tian, D. Fu, B. Zhu, Y. Luo, and H. Zhu. 2018. Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Frontiers in Plant Science 9:559 doi: 10.3389/fpls.2018.00559.
  • Li, Y., and H. E. Schellhorn. 2007. New developments and novel therapeutic perspectives for vitamin C. The Journal of Nutrition 137 (10):2171–84. doi: 10.1093/jn/137.10.2171.
  • Li, Y., H. Wang, Y. Zhang, and C. Martin. 2018. Can the world’s favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites?. Plant Cell Reports 37 (10):1443–50. doi: 10.1007/s00299-018-2283-8.
  • Liu, D., Y. Liu, W. Zhang, X. Chen, and C. Zou. 2017. Agronomic approach of zinc biofortification can increase zinc bioavailability in wheat flour and thereby reduce zinc deficiency in humans. Nutrients 9 (5):465.
  • Liu, L.,. Z. Shao, M. Zhang, and Q. Wang. 2015. Regulation of carotenoid metabolism in tomato. Molecular Plant 8 (1):28–39. doi: 10.1016/j.molp.2014.11.006.
  • Liu, X., W. Ding, and H. Jiang. 2017. Engineering microbial cell factories for the production of plant natural products: From design principles to industrial-scale production. Microbial Cell Factories 16 (1):1–9. doi: 10.1186/s12934-017-0732-7.
  • Liu, Y., Y. Zhong, H. Chen, D. Wang, M. Wang, J.-S. Ou, and M. Xia. 2017. Retinol-binding protein-dependent cholesterol uptake regulates macrophage foam cell formation and promotes atherosclerosis. Circulation 135 (14):1339–54. doi: 10.1161/CIRCULATIONAHA.116.024503.
  • Lobo, G. P., J. Amengual, D. Baus, R. A. Shivdasani, D. Taylor, and J. V. Lintig. 2013. Genetics and diet regulate vitamin A production via the homeobox transcription factor ISX. The Journal of Biological Chemistry 288 (13):9017–27. doi: 10.1074/jbc.M112.444240.
  • Lois, L. M., Rodríguez, M. ‐Concepción, F. Gallego, N. Campos, and A. Boronat. 2000. Carotenoid biosynthesis during tomato fruit development: Regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. The Plant Journal: For Cell and Molecular Biology 22 (6):503–13. doi: 10.1046/j.1365-313x.2000.00764.x.
  • Lorence, A., B. I. Chevone, P. Mendes, and C. L. Nessler. 2004. Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiology 134 (3):1200–5. doi: 10.1104/pp.103.033936.
  • Lucock, M. 2000. Folic acid: Nutritional biochemistry, molecular biology, and role in disease processes. Molecular Genetics and Metabolism 71 (1-2):121–38. doi: 10.1006/mgme.2000.3027.
  • Luo, J., E. Butelli, L. Hill, A. Parr, R. Niggeweg, P. Bailey, B. Weisshaar, and C. Martin. 2008. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: Expression in fruit results in very high levels of both types of polyphenol. The Plant Journal: For Cell and Molecular Biology 56 (2):316–26. doi: 10.1111/j.1365-313X.2008.03597.x.
  • Luo, Z., J. Zhang, J. Li, C. Yang, T. Wang, B. Ouyang, H. Li, J. Giovannoni, and Z. Ye. 2013. A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. The New Phytologist 198 (2):442–52. doi: 10.1111/nph.12175.
  • Mackowiak, C., and P. Grossl. 1999. Iodate and iodide effects on iodine uptake and partitioning in rice (Oryza sativa L.) grown in solution culture. Plant and Soil 212 (2):133–41. doi: 10.1023/A:1004666607330.
  • Mahavadi, S., A. D. Nalli, H. Wang, D. M. Kendig, M. S. Crowe, V. Lyall, J. R. Grider, and K. S. Murthy. 2018. Regulation of gastric smooth muscle contraction via Ca2+-dependent and Ca2+-independent actin polymerization. PloS One 13 (12):e0209359. doi: 10.1371/journal.pone.0209359.
  • Maligeppagol, M.,. G. S. Chandra, P. M. Navale, H. Deepa, P. Rajeev, R. Asokan, K. P. Babu, C. B. Babu, V. K. Rao, and N. K. Kumar. 2013. Anthocyanin enrichment of tomato (Solanum lycopersicum L.) fruit by metabolic engineering. Current Science 105:72–80.
  • Manoharan, R. K., H.-J. Jung, I. Hwang, N. Jeong, K. H. Kho, M.-Y. Chung, and I.-S. Nou. 2017. Molecular breeding of a novel orange-brown tomato fruit with enhanced beta-carotene and chlorophyll accumulation. Hereditas 154:1. doi: 10.1186/s41065-016-0023-z.
  • Maret, W. 2013. Zinc biochemistry: From a single zinc enzyme to a key element of life. Advances in Nutrition (Bethesda, Md.) 4 (1):82–91. doi: 10.3945/an.112.003038.
  • Martel, C., J. Vrebalov, P. Tafelmeyer, and J. J. Giovannoni. 2011. The tomato MADS-box transcription factor ripening inhibitor interacts with promoters involved in numerous ripening processes in a colorless nonripening-dependent manner. Plant Physiology 157 (3):1568–79. doi: 10.1104/pp.111.181107.
  • Martin-Tanguy, J., F. Cabanne, E. Perdrizet, and C. Martin. 1978. The distribution of hydroxycinnamic acid amides in flowering plants. Phytochemistry 17 (11):1927–8. doi: 10.1016/S0031-9422(00)88735-X.
  • Martin, C., E. Butelli, K. Petroni, and C. Tonelli. 2011. How can research on plants contribute to promoting human health? The Plant Cell 23 (5):1685–99. doi: 10.1105/tpc.111.083279.
  • Mashurabad, P. C., P. Kondaiah, R. Palika, S. Ghosh, M. K. Nair, and P. Raghu. 2016. Eicosapentaenoic acid inhibits intestinal β-carotene absorption by downregulation of lipid transporter expression via PPAR-α dependent mechanism. Archives of Biochemistry and Biophysics 590:118–24. doi: 10.1016/j.abb.2015.11.002.
  • Mazzucato, A., R. Papa, E. Bitocchi, P. Mosconi, L. Nanni, V. Negri, M. E. Picarella, F. Siligato, G. P. Soressi, B. Tiranti, et al. 2008. Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 116 (5):657–69. doi: 10.1007/s00122-007-0699-6.
  • Miller, A. P., J. Coronel, and J. Amengual. 2020. The role of β-carotene and vitamin A in atherogenesis: Evidences from preclinical and clinical studies . Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1865 (11):158635 doi: 10.1016/j.bbalip.2020.158635.
  • Milman, N. 2012. Intestinal absorption of folic acid – New physiologic & molecular aspects. Indian Journal of Medical Research 136 (5):725–8.
  • Mintz-Oron, S., T. Mandel, I. Rogachev, L. Feldberg, O. Lotan, M. Yativ, Z. Wang, R. Jetter, I. Venger, A. Adato, et al. 2008. Gene expression and metabolism in tomato fruit surface tissues. Plant Physiology 147 (2):823–51. doi: 10.1104/pp.108.116004.
  • Moco, S., R. J. Bino, O. Vorst, H. A. Verhoeven, J. de Groot, T. A. van Beek, J. Vervoort, and C. R. De Vos. 2006. A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiology 141 (4):1205–18. doi: 10.1104/pp.106.078428.
  • Moco, S., E. Capanoglu, Y. Tikunov, R. J. Bino, D. Boyacioglu, R. D. Hall, J. Vervoort, and R. C. De Vos. 2007. Tissue specialization at the metabolite level is perceived during the development of tomato fruit. Journal of Experimental Botany 58 (15-16):4131–46. doi: 10.1093/jxb/erm271.
  • Mohan, V., A. Pandey, Y. Sreelakshmi, and R. Sharma. 2016. Neofunctionalization of chromoplast specific lycopene beta cyclase gene (CYC-B) in tomato clade. PloS One 11 (4):e0153333 doi: 10.1371/journal.pone.0153333.
  • Montero-Vargas, J. M., K. Casarrubias-Castillo, N. Martínez-Gallardo, J. J. Ordaz-Ortiz, J. P. Délano-Frier, and R. Winkler. 2018. Modulation of steroidal glycoalkaloid biosynthesis in tomato (Solanum lycopersicum) by jasmonic acid. Plant Science: An International Journal of Experimental Plant Biology 277:155–65. doi: 10.1016/j.plantsci.2018.08.020.
  • Montonen, J., P. Knekt, R. Järvinen, and A. Reunanen. 2004. Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care 27 (2):362–6. doi: 10.2337/diacare.27.2.362.
  • Muir, S. R., G. J. Collins, S. Robinson, S. Hughes, A. Bovy, C. R. De Vos, A. J. van Tunen, and M. E. Verhoeyen. 2001. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnology 19 (5):470–4. doi: 10.1038/88150.
  • Nakai, Y., M. Nakai, and T. Yano. 2017. Sulfur modifications of the Wobble U(34) in tRNAs and their intracellular localization in eukaryotic cells. Biomolecules 7 (4):17. doi: 10.3390/biom7010017.
  • Nechifor, M., and R. Vink. 2011. Magnesium in the central nervous system. Australia: University of Adelaide Press.
  • Nierenberg, D. W., and S. L. Nann. 1992. A method for determining concentrations of retinol, tocopherol, and five carotenoids in human plasma and tissue samples. The American Journal of Clinical Nutrition 56 (2):417–26. doi: 10.1093/ajcn/56.2.417.
  • Niggeweg, R., A. J. Michael, and C. Martin. 2004. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnology 22 (6):746–54. doi: 10.1038/nbt966.
  • Nishimura, M., N. Tominaga, Y. Ishikawa-Takano, M. Maeda-Yamamoto, and J. Nishihira. 2019. Effect of 12-week daily intake of the high-lycopene tomato (Solanum lycopersicum), a variety named. Nutrients 11 (5):1177. doi: 10.3390/nu11051177.
  • Nissim, L., S. D. Perli, A. Fridkin, P. Perez-Pinera, and T. K. Lu. 2014. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Molecular Cell 54 (4):698–710. doi: 10.1016/j.molcel.2014.04.022.
  • Nonaka, S., C. Arai, M. Takayama, C. Matsukura, and H. Ezura. 2017. Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Scientific Reports 7 (1):7057. doi: 10.1038/s41598-017-06400-y.
  • Nunes-Nesi, A., S. Alseekh, F. M. de Oliveira Silva, N. Omranian, G. Lichtenstein, M. Mirnezhad, R. R. R. González, J. S. y Garcia, M. Conte, K. A. Leiss, et al. 2019. Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds. Metabolomics: Official Journal of the Metabolomic Society 15 (4):46. doi: 10.1007/s11306-019-1503-8.
  • Ordóñez-Santos, L. E., M. L. Vázquez-Odériz and M. A. Romero-Rodríguez. 2011. Micronutrient contents in organic and conventional tomatoes (Solanum lycopersicum L.). International Journal of Food Science & Technology 46 (8):1561–8.
  • Osorio, S., R. Alba, C. M. Damasceno, G. Lopez-Casado, M. Lohse, M. I. Zanor, T. Tohge, B. Usadel, J. K. Rose, Z. Fei, et al. 2011. Systems biology of tomato fruit development: Combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant Physiology 157 (1):405–25. doi: 10.1104/pp.111.175463.
  • Palozza, P.,. A. Catalano, R. E. Simone, M. C. Mele, and A. Cittadini. 2012. Effect of lycopene and tomato products on cholesterol metabolism. Annals of Nutrition & Metabolism 61 (2):126–34. doi: 10.1159/000342077.
  • Palozza, P.,. R. Simone, A. Catalano, A. Boninsegna, V. Böhm, K. Fröhlich, M. C. Mele, G. Monego, and F. O. Ranelletti. 2010. Lycopene prevents 7-ketocholesterol-induced oxidative stress, cell cycle arrest and apoptosis in human macrophages. The Journal of Nutritional Biochemistry 21 (1):34–46. doi: 10.1016/j.jnutbio.2008.10.002.
  • Pan, Z., X. Li, G. Bingol, T. McHugh, and G. Atungulu. 2009. Development of infrared radiation heating method for sustainable tomato peeling. Applied Engineering in Agriculture 25 (6):935–41. doi: 10.13031/2013.29227.
  • Pecker, I., R. Gabbay, F. X. Cunningham, and J. Hirschberg. 1996. Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening . Plant Molecular Biology 30 (4):807–19. doi: 10.1007/BF00019013.
  • Perez-Fons, L., T. Wells, D. I. Corol, J. L. Ward, C. Gerrish, M. H. Beale, G. B. Seymour, P. M. Bramley, and P. D. Fraser. 2014. A genome-wide metabolomic resource for tomato fruit from Solanum pennellii. Scientific Reports 4 (1):1–8.
  • Perez, V., and E. T. Chang. 2014. Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. Advances in Nutrition (Bethesda, Md.) 5 (6):712–41. doi: 10.3945/an.114.006783.
  • Quadrana, L., J. Almeida, R. Asís, T. Duffy, P. G. Dominguez, L. Bermúdez, G. Conti, J. V. Corrêa da Silva, I. E. Peralta, V. Colot, et al. 2014. Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nature Communications 5 (1):4027. doi: 10.1038/ncomms5027.
  • Quinet, M., T. Angosto, F. J. Yuste-Lisbona, R. Blanchard-Gros, S. Bigot, J.-P. Martinez, and S. Lutts. 2019. Tomato fruit development and metabolism. Frontiers in Plant Science 10:1554 doi: 10.3389/fpls.2019.01554.
  • Rana, N., M. S. Rahim, G. Kaur, R. Bansal, S. Kumawat, J. Roy, R. Deshmukh, H. Sonah, and T. R. Sharma. 2019. Applications and challenges for efficient exploration of omics interventions for the enhancement of nutritional quality in rice (Oryza sativa L.). Critical Reviews in Food Science and Nutrition 1–17.
  • Rao, A., Z. Waseem, and S. Agarwal. 1998. Lycopene content of tomatoes and tomato products and their contribution to dietary lycopene. Food Research International 31 (10):737–741. doi: 10.1016/S0963-9969(99)00053-8.
  • Reifen, R., T. Nur, Z. Matas, and Z. Halpern. 2001. Lycopene supplementation attenuates the inflammatory status of colitis in a rat model. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift Fur Vitamin- Und Ernahrungsforschung. Journal International de Vitaminologie et de Nutrition 71 (6):347–351. doi: 10.1024/0300-9831.71.6.347.
  • Riccioni, G., L. Speranza, M. Pesce, S. Cusenza, N. D'Orazio, and M. J. Glade. 2012. Novel phytonutrient contributors to antioxidant protection against cardiovascular disease. Nutrition (Burbank, Los Angeles County, Calif.) 28 (6):605–610. doi: 10.1016/j.nut.2011.11.028.
  • Richer, S., W. Stiles, L. Statkute, J. Pulido, J. Frankowski, D. Rudy, K. Pei, M. Tsipursky, and J. Nyland. 2004. Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: The Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry (St. Louis, Mo.) 75 (4):216–229. doi: 10.1016/S1529-1839(04)70049-4.
  • Roberts, R. L., J. Green, and B. Lewis. 2009. Lutein and zeaxanthin in eye and skin health. Clinics in Dermatology 27 (2):195–201. doi: 10.1016/j.clindermatol.2008.01.011.
  • Rock, C., W. Yang, R. Goodrich-Schneider, and H. Feng. 2012. Conventional and alternative methods for tomato peeling. Food Engineering Reviews 4 (1):1–15. doi: 10.1007/s12393-011-9047-3.
  • Rodríguez, J. A., B. Nespereira, M. Pérez-Ilzarbe, E. Eguinoa, and J. A. Páramo. 2005. Vitamins C and E prevent endothelial VEGF and VEGFR-2 overexpression induced by porcine hypercholesterolemic LDL. Cardiovascular Research 65 (3):665–673. doi: 10.1016/j.cardiores.2004.08.006.
  • Rohrmann, J., T. Tohge, R. Alba, S. Osorio, C. Caldana, R. McQuinn, S. Arvidsson, M. J. van der Merwe, D. M. Riaño-Pachón, B. Mueller-Roeber, et al. 2011. Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. The Plant Journal: For Cell and Molecular Biology 68 (6):999–1013. doi: 10.1111/j.1365-313X.2011.04750.x.
  • Roldan, M. V. G., B. Engel, R. C. H. de Vos, P. Vereijken, L. Astola, M. Groenenboom, H. van de Geest, A. Bovy, J. Molenaar, F. van Eeuwijk, et al. 2014. Metabolomics reveals organ-specific metabolic rearrangements during early tomato seedling development. Metabolomics 10 (5):958–974. doi: 10.1007/s11306-014-0625-2.
  • Römer, S., P. D. Fraser, J. W. Kiano, C. A. Shipton, N. Misawa, W. Schuch, and P. M. Bramley. 2000. Elevation of the provitamin A content of transgenic tomato plants. Nature Biotechnology 18 (6):666–669. doi: 10.1038/76523.
  • Ronen, G., L. Carmel-Goren, D. Zamir, and J. Hirschberg. 2000. An alternative pathway to beta -carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proceedings of the National Academy of Sciences of the United States of America 97 (20):11102–11107. doi: 10.1073/pnas.190177497.
  • Ronen, G., M. Cohen, D. Zamir, and J. Hirschberg. 1999. Regulation of carotenoid biosynthesis during tomato fruit development: Expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. The Plant Journal: For Cell and Molecular Biology 17 (4):341–351. doi: 10.1046/j.1365-313x.1999.00381.x.
  • Rosati, C., R. Aquilani, S. Dharmapuri, P. Pallara, C. Marusic, R. Tavazza, F. Bouvier, B. Camara, and G. Giuliano. 2000. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. The Plant Journal: For Cell and Molecular Biology 24 (3):413–420. doi: 10.1046/j.1365-313x.2000.00880.x.
  • Sacco, A., A. Raiola, R. Calafiore, A. Barone, and M. M. Rigano. 2019. New insights in the control of antioxidants accumulation in tomato by transcriptomic analyses of genotypes exhibiting contrasting levels of fruit metabolites. BMC Genomics 20 (1):43 doi: 10.1186/s12864-019-5428-4.
  • SanGiovanni, J., E. Chew, T. Clemons, F. Ferris 3rd, G. Gensler, A. Lindblad, R. Milton, J. Seddon, and R. Sperduto. 2007. The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study. Archives of Ophthalmology 125 (9):1225–1232.
  • Sato, S.,. R. Frederiksen, M. C. Cornwall, and V. J. Kefalov. 2017. The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones. Visual Neuroscience 34. doi: 10.1017/S0952523817000013.
  • Savci, S. 2012. An agricultural pollutant: Chemical fertilizer. International Journal of Environmental Science and Development 3 (1):73–80. doi: 10.7763/IJESD.2012.V3.191.
  • Schauer, N., Y. Semel, I. Balbo, M. Steinfath, D. Repsilber, J. Selbig, T. Pleban, D. Zamir, and A. R. Fernie. 2008. Mode of inheritance of primary metabolic traits in tomato. The Plant Cell 20 (3):509–523. doi: 10.1105/tpc.107.056523.
  • Schauer, N., Y. Semel, U. Roessner, A. Gur, I. Balbo, F. Carrari, T. Pleban, A. Perez-Melis, C. Bruedigam, J. Kopka, et al. 2006. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology 24 (4):447–454. doi: 10.1038/nbt1192.
  • Schijlen, E., J. Beekwilder, R. Hall, and I. van der Meer. 2008. Boosting beneficial phytochemicals in vegetable crop plants. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 3 (025)doi: 10.1079/PAVSNNR20083025.
  • Schmitz, H. H., C. L. Poor, R. B. Wellman, and J. W. Erdman. Jr. 1991. Concentrations of selected carotenoids and vitamin A in human liver, kidney and lung tissue. The Journal of Nutrition 121 (10):1613–1621. doi: 10.1093/jn/121.10.1613.
  • Schwahn, K., L. P. de Souza, A. R. Fernie, and T. Tohge. 2014. Metabolomics-assisted refinement of the pathways of steroidal glycoalkaloid biosynthesis in the tomato clade. Journal of Integrative Plant Biology 56 (9):864–875. doi: 10.1111/jipb.12274.
  • Selhub, J., P. F. Jacques, P. W. F. Wilson, D. Rush, and I. H. Rosenberg. 1993. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270 (22):2693–2698. doi: 10.1001/jama.1993.03510220049033.
  • Semchuk, N. M., V. Lushchak, J. Falk, K. Krupinska, and V. I. Lushchak. 2009. Inactivation of genes, encoding tocopherol biosynthetic pathway enzymes, results in oxidative stress in outdoor grown Arabidopsis thaliana. Plant Physiology and Biochemistry: PPB 47 (5):384–390. doi: 10.1016/j.plaphy.2009.01.009.
  • Shahaf, N., I. Rogachev, U. Heinig, S. Meir, S. Malitsky, M. Battat, H. Wyner, S. Zheng, R. Wehrens, and A. Aharoni. 2016. The WEIZMASS spectral library for high-confidence metabolite identification. Nature Communications 7 (1):12423–13. doi: 10.1038/ncomms12423.
  • Sharma, M. K., A. U. Solanke, D. Jani, Y. Singh, and A. K. Sharma. 2009. A simple and efficient Agrobacterium-mediated procedure for transformation of tomato. Journal of Biosciences 34 (3):423–433. doi: 10.1007/s12038-009-0049-8.
  • Shih, C.-H., Y. Chen, M. Wang, I. K. Chu, and C. Lo. 2008. Accumulation of isoflavone genistin in transgenic tomato plants overexpressing a soybean isoflavone synthase gene. Journal of Agricultural and Food Chemistry 56 (14):5655–5661. doi: 10.1021/jf800423u.
  • Shimatani, Z., T. Ariizumi, U. Fujikura, A. Kondo, H. Ezura, and K. Nishida. 2019. Targeted Base Editing with CRISPR-Deaminase in Tomato. Plant Genome Editing with CRISPR Systems Springer 297–307.
  • Shimatani, Z., S. Kashojiya, M. Takayama, R. Terada, T. Arazoe, H. Ishii, H. Teramura, T. Yamamoto, H. Komatsu, K. Miura, et al. 2017. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology 35 (5):441–443. doi: 10.1038/nbt.3833.
  • Shinozaki, Y., P. Nicolas, N. Fernandez-Pozo, Q. Ma, D. J. Evanich, Y. Shi, Y. Xu, Y. Zheng, S. I. Snyder, L. B. B. Martin, et al. 2018. High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nature Communications 9 (1):364. doi: 10.1038/s41467-017-02782-9.
  • Shutu, X., Z. Dalong, C. Ye, Z. Yi, T. Shah, F. Ali, L. Qing, L. Zhigang, W. Weidong, L. Jiansheng, et al. 2012. Dissecting tocopherols content in maize (Zea mays L.), using two segregating populations and high-density single nucleotide polymorphism markers. BMC Plant Biology 12 (1):201. PMC]
  • Slimestad, R., T. Fossen, and M. J. Verheul. 2008. The flavonoids of tomatoes. Journal of Agricultural and Food Chemistry 56 (7):2436–2441. doi: 10.1021/jf073434n.
  • Solini, A., E. Santini, and E. Ferrannini. 2006. Effect of short-term folic acid supplementation on insulin sensitivity and inflammatory markers in overweight subjects. International Journal of Obesity (2005) 30 (8):1197–1202. doi: 10.1038/sj.ijo.0803265.
  • Sommer, A., and K. S. Vyas. 2012. A global clinical view on vitamin A and carotenoids. The American Journal of Clinical Nutrition 96 (5):1204S–1206S. doi: 10.3945/ajcn.112.034868.
  • Sonawane, P. D., J. Pollier, S. Panda, J. Szymanski, H. Massalha, M. Yona, T. Unger, S. Malitsky, P. Arendt, L. Pauwels, et al. 2016. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nature Plants 3:16205. doi: 10.1038/nplants.2016.205.
  • Splaver, A., G. A. Lamas, and C. H. Hennekens. 2004. Homocysteine and cardiovascular disease: Biological mechanisms, observational epidemiology, and the need for randomized trials. American Heart Journal 148 (1):34–40. doi: 10.1016/j.ahj.2004.02.004.
  • Stahl, W., and H. Sies. 1992. Uptake of lycopene and its geometrical isomers is greater from heat-processed than from unprocessed tomato juice in humans. The Journal of Nutrition 122 (11):2161–2166. doi: 10.1093/jn/122.11.2161.
  • Stahl, W., and H. Sies. 2003. Antioxidant activity of carotenoids. Molecular Aspects of Medicine 24 (6):345–351. doi: 10.1016/S0098-2997(03)00030-X.
  • Stevens, R. G., P. Baldet, J.-P. Bouchet, M. Causse, C. Deborde, C. Deschodt, M. Faurobert, C. Garchery, V. Garcia, H. Gautier, et al. 2018. A systems biology study in tomato fruit reveals correlations between the ascorbate pool and genes involved in ribosome biogenesis, translation, and the heat-shock response. Frontiers in Plant Science 9 (:137 doi: 10.3389/fpls.2018.00137.
  • Stipanuk, M. H., and I. Ueki. 2011. Dealing with methionine/homocysteine sulfur: Cysteine metabolism to taurine and inorganic sulfur. Journal of Inherited Metabolic Disease 34 (1):17–32. doi: 10.1007/s10545-009-9006-9.
  • Street, D. A., G. W. Comstock, R. M. Salkeld, W. Schüep, and M. J. Klag. 1994. Serum antioxidants and myocardial infarction. Are low levels of carotenoids and alpha-tocopherol risk factors for myocardial infarction? Circulation 90 (3):1154–1161. doi: 10.1161/01.cir.90.3.1154.
  • Sun, L., B. Yuan, M. Zhang, L. Wang, M. Cui, Q. Wang, and P. Leng. 2012. Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. Journal of Experimental Botany 63 (8):3097–3108. doi: 10.1093/jxb/ers026.
  • Tamura, T., and M. F. Picciano. 2006. Folate and human reproduction. The American Journal of Clinical Nutrition 83 (5):993–1016. doi: 10.1093/ajcn/83.5.993.
  • Tang, S., C. G. Hass, and S. J. Knapp. 2006. Ty3/gypsy-like retrotransposon knockout of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase is non-lethal, uncovers a cryptic paralogous mutation, and produces novel tocopherol (vitamin E) profiles in sunflower. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 113 (5):783–799. doi: 10.1007/s00122-006-0321-3.
  • Terwoord, J. D., C. M. Hearon, Jr., G. J. Luckasen, J. C. Richards, M. J. Joyner, and F. A. Dinenno. 2018. Elevated extracellular potassium prior to muscle contraction reduces onset and steady-state exercise hyperemia in humans. Journal of Applied Physiology (Bethesda 125 (2):615–623.
  • Teutschbein, J., W. Gross, M. Nimtz, C. Milkowski, B. Hause, and D. Strack. 2010. Identification and localization of a lipase-like acyltransferase in phenylpropanoid metabolism of tomato (Solanum lycopersicum). The Journal of Biological Chemistry 285 (49):38374–38381. doi: 10.1074/jbc.M110.171637.
  • Tieman, D., G. Zhu, M. F. R. Resende, T. Lin, C. Nguyen, D. Bies, J. L. Rambla, K. S. O. Beltran, M. Taylor, B. Zhang, et al. 2017. A chemical genetic roadmap to improved tomato flavor. Science (New York, N.Y.) 355 (6323):391–394. doi: 10.1126/science.aal1556.
  • Tieman, D. M., M. Zeigler, E. A. Schmelz, M. G. Taylor, P. Bliss, M. Kirst, and H. J. Klee. 2006. Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany 57 (4):887–896. doi: 10.1093/jxb/erj074.
  • Tikunov, Y., A. Lommen, C. R. De Vos, H. A. Verhoeven, R. J. Bino, R. D. Hall, and A. G. Bovy. 2005. A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiology 139 (3):1125–1137. doi: 10.1104/pp.105.068130.
  • Tohge, T., L. P. de Souza, and A. R. Fernie. 2014. Genome-enabled plant metabolomics. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 966:7–20. doi: 10.1016/j.jchromb.2014.04.003.
  • Tohge, T., and A. R. Fernie. 2010. Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nature Protocols 5 (6):1210–1227. doi: 10.1038/nprot.2010.82.
  • Tohge, T., and A. R. Fernie. 2015. Metabolomics-inspired insight into developmental, environmental and genetic aspects of tomato fruit chemical composition and quality. Plant & Cell Physiology 56 (9):1681–1696. doi: 10.1093/pcp/pcv093.
  • Tohge, T., and A. R. Fernie. 2017. An overview of compounds derived from the shikimate and phenylpropanoid pathways and their medicinal importance. Mini Reviews in Medicinal Chemistry 17 (12):1013–1027. doi: 10.2174/1389557516666160624123425.
  • Tohge, T.,. F. Scossa, R. Wendenburg, P. Frasse, I. Balbo, M. Watanabe, S. Alseekh, S. S. Jadhav, J. C. Delfin, M. Lohse, et al. 2020. Exploiting natural variation in tomato to define pathway structure and metabolic regulation of fruit polyphenolics in the lycopersicum complex. Molecular Plant 13 (7):1027–1046. doi: 10.1016/j.molp.2020.04.004.
  • Tohge, T.,. Y. Zhang, S. Peterek, A. Matros, G. Rallapalli, Y. A. Tandrón, E. Butelli, K. Kallam, N. Hertkorn, H.-P. Mock, et al. 2015. Ectopic expression of snapdragon transcription factors facilitates the identification of genes encoding enzymes of anthocyanin decoration in tomato. The Plant Journal: For Cell and Molecular Biology 83 (4):686–704. doi: 10.1111/tpj.12920.
  • Tomlinson, M. L., E. Butelli, C. Martin, and S. R. Carding. 2017. Flavonoids from engineered tomatoes inhibit gut barrier pro-inflammatory cytokines and chemokines, via SAPK/JNK and p38 MAPK pathways. Frontiers in Nutrition 4 (61). doi: 10.3389/fnut.2017.00061.
  • Tong, S. Y., J. M. Lee, E. S. Song, K. B. Lee, M. K. Kim, J. K. Lee, S. K. Son, J. P. Lee, J. H. Kim, and Y. I. Kwon. 2009. Functional polymorphism in manganese superoxide dismutase and antioxidant status: Their interactions on the risk of cervical intraepithelial neoplasia and cervical cancer. Gynecologic Oncology 115 (2):272–276. doi: 10.1016/j.ygyno.2009.07.032.
  • Tousoulis, D., C. Antoniades, C. Tentolouris, C. Tsioufis, M. Toutouza, P. Toutouzas, and C. Stefanadis. 2003. Effects of combined administration of vitamins C and E on reactive hyperemia and inflammatory process in chronic smokers. Atherosclerosis 170 (2):261–267. doi: 10.1016/S0021-9150(03)00250-8.
  • Tzin, V., I. Rogachev, S. Meir, M. Moyal Ben Zvi, T. Masci, A. Vainstein, A. Aharoni, and G. Galili. 2013. Tomato fruits expressing a bacterial feedback-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway possess enhanced levels of multiple specialized metabolites and upgraded aroma. Journal of Experimental Botany 64 (14):4441–4452. doi: 10.1093/jxb/ert250.
  • Udensi, U. K., and P. B. Tchounwou. 2017. Potassium homeostasis, oxidative stress, and human disease. International Journal of Clinical and Experimental Physiology 4 (3):111–122. doi: 10.4103/ijcep.ijcep_43_17.
  • Upadhyaya, P., K. Tyagi, S. Sarma, V. Tamboli, Y. Sreelakshmi, and R. Sharma. 2017. Natural variation in folate levels among tomato (Solanum lycopersicum) accessions. Food Chemistry 217:610–619. doi: 10.1016/j.foodchem.2016.09.031.
  • Van Eck, J., P. Keen, and M. Tjahjadi. 2019. Agrobacterium tumefaciens-mediated transformation of tomato. In Transgenic plants, 225–34. Springer.
  • Vanderslice, J. T., D. J. Higgs, J. M. Hayes, and G. Block. 1990. Ascorbic acid and dehydroascorbic acid content of foods-as-eaten. Journal of Food Composition and Analysis 3 (2):105–118. doi: 10.1016/0889-1575(90)90018-H.
  • Vats, S., S. Kumawat, V. Kumar, G. B. Patil, T. Joshi, H. Sonah, T. R. Sharma, and R. Deshmukh. 2019. Genome editing in plants: Exploration of technological advancements and challenges. Cells 8 (11):1386. doi: 10.3390/cells8111386.
  • Vinha, A. F., R. C. Alves, S. V. Barreira, A. Castro, A. S. Costa, and M. B. P. Oliveira. 2014. Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato. Lwt - Food Science and Technology 55 (1):197–202. doi: 10.1016/j.lwt.2013.07.016.
  • Wagner, C., and L. Bailey. 1995. Folate in health and disease. In Folate in health and disease, ed. L. B. Bailey, 23–42. New York: Marcel Dekker.
  • Walter, M. H., J. Hans, and D. Strack. 2002. Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: Differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. The Plant Journal: For Cell and Molecular Biology 31 (3):243–254. doi: 10.1046/j.1365-313x.2002.01352.x.
  • Wang, M., Y. Lu, J. R. Botella, Y. Mao, K. Hua, and J. K. Zhu. 2017. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Molecular Plant 10 (7):1007–1010. doi: 10.1016/j.molp.2017.03.002.
  • Wang, T., H. Zhang, and H. Zhu. 2019. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Horticulture Research 6 (1):77. doi: 10.1038/s41438-019-0159-x.
  • Watson, J., M. Lee, and M. N. Garcia-Casal. 2018. Consequences of inadequate intakes of vitamin A, vitamin B12, vitamin D, calcium, iron, and folate in older persons. Current Geriatrics Reports 7 (2):103–113. doi: 10.1007/s13670-018-0241-5.
  • Weiss, W., D. Frobose, and M. Koch. 1997. Wet tomato pomace ensiled with corn plants for dairy cows. Journal of Dairy Science 80 (11):2896–2900. doi: 10.3168/jds.S0022-0302(97)76254-4.
  • Wheeler, G. L., M. A. Jones, and N. Smirnoff. 1998. The biosynthetic pathway of vitamin C in higher plants. Nature 393 (6683):365–369. doi: 10.1038/30728.
  • White, P. J., and M. R. Broadley. 2005. Biofortifying crops with essential mineral elements. Trends in Plant Science 10 (12):586–593. doi: 10.1016/j.tplants.2005.10.001.
  • Wu, K., J. W. Erdman, S. J. Schwartz, E. A. Platz, M. Leitzmann, S. K. Clinton, V. DeGroff, W. C. Willett, and E. Giovannucci. 2004. Plasma and dietary carotenoids, and the risk of prostate cancer: A nested case-control study. Cancer Epidemiology Biomarkers & Prevention 13 (2):260–269. doi: 10.1158/1055-9965.EPI-03-0012.
  • Wu, M-a, and R. Burrell. 1958. Flavonoid pigments of the tomato (Lycopersicum esculentum Mill). Archives of Biochemistry and Biophysics 74 (1):114–118. doi: 10.1016/0003-9861(58)90205-4.
  • Wurbs, D., S. Ruf, and R. Bock. 2007. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. The Plant Journal : For Cell and Molecular Biology 49 (2):276–288. doi: 10.1111/j.1365-313X.2006.02960.x.
  • Xie, C., Y. L. Chen, D. F. Wang, Y. L. Wang, T. P. Zhang, H. Li, F. Liang, Y. Zhao, and G. Y. Zhang. 2017. SgRNA expression of CRIPSR-Cas9 system based on MiRNA polycistrons as a versatile tool to manipulate multiple and tissue-specific genome editing. Scientific Reports 7 (1):5795. doi: 10.1038/s41598-017-06216-w.
  • Xie, K., B. Minkenberg, and Y. Yang. 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proceedings of the National Academy of Sciences of the United States of America 112 (11):3570–3575. doi: 10.1073/pnas.1420294112.
  • Xiong, J.-S., J. Ding, and Y. Li. 2015. Genome-editing technologies and their potential application in horticultural crop breeding. Horticulture Research 2:15019. doi: 10.1038/hortres.2015.19.
  • Yamanaka, T., J.-P. Vincken, H. Zuilhof, A. Legger, N. Takada, and H. Gruppen. 2009. C22 isomerization in alpha-tomatine-to-esculeoside A conversion during tomato ripening is driven by C27 hydroxylation of triterpenoidal skeleton. Journal of Agricultural and Food Chemistry 57 (9):3786–3791. doi: 10.1021/jf900017n.
  • Yang, L., S. Ren, F. Xu, Z. Ma, X. Liu, and L. Wang. 2019. Recent advances in the pharmacological activities of dioscin. BioMed Research International 2019:5763602. doi: 10.1155/2019/5763602.
  • Ye, J., T. Hu, C. Yang, H. Li, M. Yang, R. Ijaz, Z. Ye, and Y. Zhang. 2015. Transcriptome profiling of tomato fruit development reveals transcription factors associated with ascorbic acid, carotenoid and flavonoid biosynthesis. PloS One 10 (7):e0130885. doi: 10.1371/journal.pone.0130885.
  • Ye, J., W. Li, G. Ai, C. Li, G. Liu, W. Chen, B. Wang, W. Wang, Y. Lu, J. Zhang, et al. 2019. Genome-wide association analysis identifies a natural variation in basic helix-loop-helix transcription factor regulating ascorbate biosynthesis via D-mannose/L-galactose pathway in tomato. PLoS Genetics 15 (5):e1008149. doi: 10.1371/journal.pgen.1008149.
  • Ye, J., X. Wang, T. Hu, F. Zhang, B. Wang, C. Li, T. Yang, H. Li, Y. Lu, J. J. Giovannoni, et al. 2017. An InDel in the promoter of Al-activated malate transporter9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. The Plant Cell 29 (9):2249–2268. doi: 10.1105/tpc.17.00211.
  • Yeats, T. H., G. J. Buda, Z. Wang, N. Chehanovsky, L. C. Moyle, R. Jetter, A. A. Schaffer, and J. K. C. Rose. 2012. The fruit cuticles of wild tomato species exhibit architectural and chemical diversity, providing a new model for studying the evolution of cuticle function. The Plant Journal 69 (4):655–666. doi: 10.1111/j.1365-313X.2011.04820.x.
  • Yin, L. H., L. N. Xu, X. N. Wang, B. N. Lu, Y. T. Liu, and J. Y. Peng. 2010. An economical method for isolation of dioscin from Dioscorea nipponica Makino by HSCCC coupled with ELSD, and a computer-aided UNIFAC mathematical model. Chromatographia 71 (1-2):15–23. doi: 10.1365/s10337-009-1407-2.
  • Yogeeta, S. K., R. B. R. Hanumantra, A. Gnanapragasam, S. Subramanian, S. Rajakannu, and T. Devaki. 2006. Attenuation of abnormalities in the lipid metabolism during experimental myocardial infarction induced by isoproterenol in rats: Beneficial effect of ferulic acid and ascorbic acid. Basic & Clinical Pharmacology & Toxicology 98 (5):467–472. doi: 10.1111/j.1742-7843.2006.pto_335.x.
  • Young, A. J., and G. L. Lowe. 2018. Carotenoids-antioxidant properties. Antioxidants 7 (2):28. doi: 10.3390/antiox7020028.
  • Zhang, B., D. M. Tieman, C. Jiao, Y. Xu, K. Chen, Z. Fei, J. J. Giovannoni, and H. J. Klee. 2016. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proceedings of the National Academy of Sciences of the United States of America 113 (44):12580–12585. doi: 10.1073/pnas.1613910113.
  • Zhang, C., J. Liu, Y. Zhang, X. Cai, P. Gong, J. Zhang, T. Wang, H. Li, and Z. Ye. 2011. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Reports 30 (3):389–398. doi: 10.1007/s00299-010-0939-0.
  • Zhang, W.-F., Z.-H. Gong, M.-B. Wu, H. Chan, Y.-J. Yuan, N. Tang, Q. Zhang, M.-J. Miao, W. Chang, Z. Li, et al. 2019. Integrative comparative analyses of metabolite and transcript profiles uncovers complex regulatory network in tomato (Solanum lycopersicum L.) fruit undergoing chilling injury. Scientific Reports 9 (1):1–13. doi: 10.1038/s41598-019-41065-9.
  • Zhang, Y., E. Butelli, S. Alseekh, T. Tohge, G. Rallapalli, J. Luo, P. G. Kawar, L. Hill, A. Santino, A. R. Fernie, et al. 2015. Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nature Communications 6 (1):1–11. doi: 10.1038/ncomms9635.
  • Zhao, J., C. Sauvage, J. Zhao, F. Bitton, G. Bauchet, D. Liu, S. Huang, D. M. Tieman, H. J. Klee, and M. Causse. 2019. Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nature Communications 10 (1):1534 doi: 10.1038/s41467-019-09462-w.
  • Zhao, X., X. Yuan, S. Chen, L. Meng, and D. Fu. 2018. Role of the tomato TAGL1 gene in regulating fruit metabolites elucidated using RNA sequence and metabolomics analyses. PloS One 13 (6):e0199083. doi: 10.1371/journal.pone.0199083.
  • Zhu, G., S. Wang, Z. Huang, S. Zhang, Q. Liao, C. Zhang, T. Lin, M. Qin, M. Peng, C. Yang, et al. 2018. Rewiring of the fruit metabolome in tomato breeding. Cell 172 (1-2):249–261. doi: 10.1016/j.cell.2017.12.019.
  • Zhu, Z., Y. Zhang, J. Liu, Y. Chen, and X. Zhang. 2018. Exploring the effects of selenium treatment on the nutritional quality of tomato fruit. Food Chemistry 252:9–15. doi: 10.1016/j.foodchem.2018.01.064.
  • Zouari, I., A. Salvioli, M. Chialva, M. Novero, L. Miozzi, G. C. Tenore, P. Bagnaresi, and P. Bonfante. 2014. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genomics 15 (1):221. doi: 10.1186/1471-2164-15-221.
  • Zsögön, A., T. Čermák, E. R. Naves, M. M. Notini, K. H. Edel, S. Weinl, L. Freschi, D. F. Voytas, J. Kudla, and L. E. P. Peres. 2018. De novo domestication of wild tomato using genome editing. Nature Biotechnology 36 (12):1211–1216. doi: 10.1038/nbt.4272.
  • Zuluaga, D. L., S. Gonzali, E. Loreti, C. Pucciariello, E. Degl'Innocenti, L. Guidi, A. Alpi, and P. Perata. 2008. Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Functional Plant Biology: FPB 35 (7):606–618. doi: 10.1071/FP08021.
  • Zuo, J., D. Grierson, L. T. Courtney, Y. Wang, L. Gao, X. Zhao, B. Zhu, Y. Luo, Q. Wang, and J. J. Giovannoni. 2020. Relationships between genome methylation, levels of non-coding RNAs, mRNAs and metabolites in ripening tomato fruit. The Plant Journal: For Cell and Molecular Biology 103 (3):980–994. doi: 10.1111/tpj.14778.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.