640
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Non-conventional cultures and metabolism-derived compounds for bioprotection of meat and meat products: a review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahmad, V., M. S. Khan, Q. M. S. Jamal, M. A. Alzohairy, M. A. Al Karaawi, and M. U. Siddiqui. 2017. Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. International Journal of Antimicrobial Agents 49 (1):1–11. doi: 10.1016/J.IJANTIMICAG.2016.08.016.
  • Ajitha, B., Y. A. K. Reddy, P. S. Reddy, H. J. Jeon, and C. W. Ahn. 2016. Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. RSC Advances 6 (42):36171–9. doi: 10.1039/C6RA03766F.
  • Andreevskaya, M., E. Jääskeläinen, P. Johansson, A. Ylinen, L. Paulin, J. Björkroth, and P. Auvinen. 2018. Food spoilage-associated leuconostoc, lactococcus, and lactobacillus species display different survival strategies in response to competition. Applied and Environmental Microbiology 84 (13):e00554–18. doi: 10.1128/AEM.00554-18.
  • Arbulu, S., J. J. Juan, G. Loreto, F. Javier, M. C. Luis, H. Carmen, and E. H. Pablo. 2019. Cloning and expression of synthetic genes encoding native, hybrid- and bacteriocin-derived chimeras from mature class IIa bacteriocins, by Pichia pastoris (Syn. Komagataella spp.). Food Research International (Ottawa, Ont.) 121:888–99. doi: 10.1016/J.FOODRES.2019.01.015.
  • Barakat, R. K., M. W. Griffiths, and L. J. Harris. 2000. Isolation and characterization of Carnobacterium, Lactococcus, and Enterococcus spp. from cooked, modified atmosphere packaged, refrigerated, poultry meat. International Journal of Food Microbiology 62 (1–2):83–94. doi: 10.1016/S0168-1605(00)00381-0.
  • Barbour, A., J. Tagg, O. K. Abou-Zied, and K. Philip. 2016. New insights into the mode of action of the lantibiotic salivaricin B. Scientific Reports 6 (1):31749. doi: 10.1038/srep31749.
  • Ben Said, L., H. Gaudreau, L. Dallaire, M. Tessier, and I. Fliss. 2019. Bioprotective culture: A new generation of food additives for the preservation of food quality and safety. Industrial Biotechnology 15 (3):138–47. doi: 10.1089/ind.2019.29175.lbs.
  • Bocate, K. P., Reis, G. F. de Souza, P. C. Oliveira, A. G. Junior, Durán, N. Nakazato, G. Furlaneto, M. C. de Almeida, R. S. Panagio. and L. A. 2019. Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. International Journal of Food Microbiology 291:79–86. doi: 10.1016/j.ijfoodmicro.2018.11.012.
  • Cao, S., R. Du, F. Zhao, H. Xiao, Y. Han, and Z. Zhou. 2019. The mode of action of bacteriocin CHQS, a high antibacterial activity bacteriocin produced by Enterococcus faecalis TG2. Food Control. 96:470–8. doi: 10.1016/j.foodcont.2018.09.028.
  • Carocho, M., P. Morales, and I. C. F. R. Ferreira. 2015. Natural food additives: Quo vadis? Trends in Food Science & Technology 45 (2):284–95. doi: 10.1016/j.tifs.2015.06.007.
  • Castellano, P., M. Pérez Ibarreche, M. Blanco Massani, C. Fontana, and G. M. Vignolo. 2017. Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: A focus on meat ecosystems and industrial environments. Microorganisms 5 (3):38. doi: 10.3390/microorganisms5030038.
  • Chakchouk-Mtibaa, A., L. Elleuch, S. Smaoui, S. Najah, I. Sellem, S. Abdelkafi, and L. Mellouli. 2014. An antilisterial bacteriocin BacFL31 produced by Enterococcus faecium FL31 with a novel structure containing hydroxyproline residues. Anaerobe 27:1–6. doi: 10.1016/j.anaerobe.2014.02.002.
  • Chakchouk-Mtibaa, A., L. Elleuch, S. Smaoui, S. Najah, I. Sellem, H. Mejdoub, S. Abdelkafi, and L. Mellouli. 2014. Characterization of the bacteriocin BacJ1 and its effectiveness for the inactivation of Salmonella typhimurium during turkey escalope storage. Food Chemistry 152:566–72. doi: 10.1016/J.FOODCHEM.2013.12.002.
  • Chandra Ojha, S., C. Imtong, K. Meetum, S. Sakdee, G. Katzenmeier, and C. Angsuthanasombat. 2018. Purification and characterization of the antibacterial peptidase lysostaphin from Staphylococcus simulans: Adverse influence of Zn2+ on bacteriolytic activity. Protein Expression and Purification 151:106–12. doi: 10.1016/J.PEP.2018.06.013.
  • Chen, C., X. Chen, M. Jiang, X. Rui, W. Li, and M. Dong. 2014. A newly discovered bacteriocin from Weissella hellenica D1501 associated with Chinese Dong fermented meat (Nanx Wudl). Food Control 42:116–24. doi: 10.1016/j.foodcont.2014.01.031.
  • Chen, D., and T. Zhao. 2018. Organic acids, detergents, and their combination for inactivation of foodborne pathogens and spoilage microorganisms. In Natural and bio-based antimicrobials for food applications, ed. X. Fan, H. Ngo and C.Wu, 63–85, Chapter 4. Washington: American Chemical Society. doi: 10.1021/bk-2018-1287.ch004.
  • Chen, Y., and J. Nielsen. 2016. Biobased organic acids production by metabolically engineered microorganisms. Current Opinion in Biotechnology 37:165–72. doi: 10.1016/j.copbio.2015.11.004.
  • Churchward, C. P., R. G. Alany, and L. A. S. Snyder. 2018. Alternative antimicrobials: The properties of fatty acids and monoglycerides. Critical Reviews in Microbiology 44 (5):561–70. doi: 10.1080/1040841X.2018.1467875.
  • Ciani, M., F. Comitini, and I. Mannazzu. 2008. Fermentation. In Encyclopedia of Ecology, ed. S. Jørgensen and B. Fath, vol. 2, 1548–57. Oxford: Elsevier.
  • Cifuentes Bachmann, D. E., and F. Leroy. 2015. Use of bioprotective cultures in fish products. Current Opinion in Food Science 6:19–23. doi: 10.1016/j.cofs.2015.11.009.
  • Cohen, M. J., J. H. Eberts, and D. E. Hillman. 2018imicrobial alcohol foam compositions and methods preparation. US Patent, filed November 8, 2016, and issued April 17, 2018. https://patents.google.com/patent/US9943080B2
  • Corrêa Feijó, J. A., A. Gonçalves Evangelista, T. M. Nazareth, and F. B. Luciano. 2019. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia 8:100494. doi: 10.1016/j.mtla.2019.100494.
  • Danielski, G. M., P. H. Imazaki, C. M. de Andrade Cavalari, G. Daube, A. Clinquart, and R. E. F. de Macedo. 2020. Carnobacterium maltaromaticum as bioprotective culture in vitro and in cooked ham. Meat Science 162:108035. doi: 10.1016/j.meatsci.2019.108035.
  • Deus, D., C. Kehrenberg, D. Schaudien, G. Klein, and C. Krischek. 2017. Effect of a nano-silver coating on the quality of fresh turkey meat during storage after modified atmosphere or vacuum packaging. Poultry Science 96 (2):449–57. doi: 10.3382/ps/pew308.
  • Doulgeraki, A. I., D. Ercolini, F. Villani, and G. J. E. Nychas. 2012. Spoilage microbiota associated to the storage of raw meat in different conditions. International Journal of Food Microbiology 157 (2):130–41. doi: 10.1016/j.ijfoodmicro.2012.05.020.
  • European Food Safety Authority and European Centre for Disease Prevention and Control. 2017. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2016. EFSA Journal 15 (12):5077, 228. doi: 10.2903/j.efsa.2017.5077.
  • Ferreira, A. R. V., V. D. Alves, and I. M. Coelhoso. 2016. Polysaccharide-based membranes in food packaging applications. Membranes 6 (2):22. doi: 10.3390/membranes6020022.
  • Fessard, A., and F. Remize. 2017. Why are Weissella spp. not used as commercial starter cultures for food fermentation? Fermentation 3 (3):38. doi: 10.3390/fermentation3030038.
  • Franz, C. M. A. P., M. J. van Belkum, W. H. Holzapfel, H. Abriouel, and A. Gálvez. 2007. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiology Reviews 31 (3):293–310. doi: 10.1111/j.1574-6976.2007.00064.x.
  • Fusco, V., G. M. Quero, G. S. Cho, J. Kabisch, D. Meske, H. Neve, W. Bockelmann, and C. M. A. P. Franz. 2015. The genus Weissella: Taxonomy, ecology and biotechnological potential. Frontiers in Microbiology 6:155. doi: 10.3389/fmicb.2015.00155.
  • Guilger, M., T. Pasquoto-Stigliani, N. Bilesky-Jose, R. Grillo, P. C. Abhilash, L. F. Fraceto, and R. d Lima. 2017. Biogenic silver nanoparticles based on Trichoderma harzianum: Synthesis, characterization, toxicity evaluation and biological activity. Scientific Reports 7:44421. doi: 10.1038/srep44421.
  • Hammi, I., F. Delalande, R. Belkhou, E. Marchioni, S. Cianferani, and S. Ennahar. 2016. Maltaricin CPN, a new class IIa bacteriocin produced by Carnobacterium maltaromaticum CPN isolated from mould-ripened cheese. Journal of Applied Microbiology 121 (5):1268–74. doi: 10.1111/jam.13248.
  • Hauser, C., J. Thielmann, and P. Muranyi. 2016. Organic acids. In Antimicrobial food packaging, ed. JorgeBarros-Velázquez, 563–80. USA: Elsevier. doi: 10.1016/B978-0-12-800723-5.00046-2.
  • Hoang Thi, T. T., Y. Lee, L. T. Phuong, and K. D. Park. 2018. Nitric oxide-releasing injectable hydrogels with high antibacterial activity through in situ formation of peroxynitrite. Acta Biomaterialia 67:66–78. doi: 10.1016/j.actbio.2017.12.005.
  • Hoelzer, K., A. I. M. Switt, M. Wiedmann, and K. J. Boor. 2018. Emerging needs and opportunities in foodborne disease detection and prevention: From tools to people. Food Microbiology 75:65–71. doi: 10.1016/j.fm.2017.07.006.
  • Holck, A. L., M. K. Pettersen, M. H. Moen, and O. Sorheim. 2014. Prolonged shelf life and reduced drip loss of chicken filets by the use of carbon dioxide emitters and modified atmosphere packaging. Journal of Food Protection 77 (7):1133–41. doi: 10.4315/0362-028X.JFP-13-428.
  • Holzapfel, W. H., C. M. A. P. Franz, W. Ludwig, W. Back, and L. M. T. Dicks. 2006. The genera Pediococcus and Tetragenococcus. In The prokaryotes, ed. M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt, 229–66.New York: Springer. doi: 10.1007/0-387-30744-3_8.
  • Hong, J., J. Kim, L. H. Quan, S. Heu, and E. Roh. 2018. Purification and characterization of pasteuricin produced by Staphylococcus pasteuri RSP-1 and active against multidrug-resistant Staphylococcus aureus. Journal of Food Protection 81 (11):1768–75. doi: 10.4315/0362-028X.JFP-18-111.
  • Horita, C. N., R. C. Baptista, M. Y. R. Caturla, J. M. Lorenzo, F. J. Barba, and A. S. Sant’Ana. 2018. Combining reformulation, active packaging and non-thermal post-packaging decontamination technologies to increase the microbiological quality and safety of cooked ready-to-eat meat products. Trends in Food Science & Technology 72:45–61. doi: 10.1016/j.tifs.2017.12.003.
  • Hossain, M. I., M. Sadekuzzaman, and S. D. Ha. 2017. Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review. Food Research International (Ottawa, Ont.) 100 (Pt 1):63–73. doi: 10.1016/j.foodres.2017.07.077.
  • Hu, Z. Y., D. Balay, Y. Hu, L. M. McMullen, and M. G. Gänzle. 2019. Effect of chitosan, and bacteriocin - Producing Carnobacterium maltaromaticum on survival of Escherichia coli and Salmonella typhimurium on beef. International Journal of Food Microbiology 290:68–75. doi: 10.1016/j.ijfoodmicro.2018.10.003.
  • Huang, E., and A. E. Yousef. 2015. Biosynthesis of paenibacillin, a lantibiotic with N-terminal acetylation, by Paenibacillus polymyxa. Microbiological Research 181:15–21. doi: 10.1016/J.MICRES.2015.08.001.
  • Humphries, R. M., and A. J. Linscott. 2015. Practical guidance for clinical microbiology laboratories: Diagnosis of bacterial gastroenteritis. Clinical Microbiology Reviews 28 (1):3–31. doi: 10.1128/CMR.00073-14.
  • Iacumin, L., G. Cappellari, A. Colautti, and G. Comi. 2020. Listeria monocytogenes survey in cubed cooked ham packaged in modified atmosphere and bioprotective effect of selected lactic acid bacteria. Microorganisms 8 (6):898. doi: 10.3390/microorganisms8060898.
  • Ibarra, R., K. M. Rich, M. Adasme, A. Kamp, R. S. Singer, M. Atlagich, C. Estrada, R. Jacob, N. Zimin-Veselkoff, J. Escobar-Dodero, et al. 2018. Animal production, animal health and food safety: Gaps and challenges in the Chilean industry. Food Microbiology 75:114–8. doi: 10.1016/j.fm.2017.10.004.
  • Ibrahim, O. O. 2019. Classification of antimicrobial peptides bacteriocins, and the nature of some bacteriocins with potential applications in food safety and bio-pharmaceuticals osama. EC Microbiology 7 (15):591–608.
  • Irkin, R., and O. K. Esmer. 2015. Novel food packaging systems with natural antimicrobial agents. Journal of Food Science and Technology 52 (10):6095–111. doi: 10.1007/s13197-015-1780-9.
  • Jones, R. J., H. M. Hussein, M. Zagorec, G. Brightwell, and J. R. Tagg. 2008. Isolation of lactic acid bacteria with inhibitory activity against pathogens and spoilage organisms associated with fresh meat. Food Microbiology 25 (2):228–34. doi: 10.1016/j.fm.2007.11.001.
  • Kase, J. A., G. Zhang, and Y. Chen. 2017. Recent foodborne outbreaks in the United States linked to atypical vehicles — lessons learned. Current Opinion in Food Science 18:56–63. doi: 10.1016/j.cofs.2017.10.014.
  • Kim, Y., H. Kim, L. R. Beuchat, and J. H. Ryu. 2018. Development of non-pathogenic bacterial biofilms on the surface of stainless steel which are inhibitory to Salmonella enterica. Food Microbiology 69:136–42. doi: 10.1016/j.fm.2017.08.003.
  • Koné, A. P., J. M. V. Zea, D. Gagné, D. Cinq-Mars, F. Guay, and L. Saucier. 2018. Application of Carnobacterium maltaromaticum as a feed additive for weaned rabbits to improve meat microbial quality and safety. Meat Science 135:174–88. doi: 10.1016/j.meatsci.2017.09.017.
  • Kumar, P., M. K. Chatli, A. K. Verma, N. Mehta, O. P. Malav, D. Kumar, and N. Sharma. 2017. Quality, functionality, and shelf life of fermented meat and meat products: A review. Critical Reviews in Food Science and Nutrition 57 (13):2844–56. doi: 10.1080/10408398.2015.1074533.
  • Kumar, V., and S. K. Tiwari. 2017. Halocin HA1: An archaeocin produced by the haloarchaeon Haloferax larsenii HA1. Process Biochemistry 61:202–8. doi: 10.1016/j.procbio.2017.06.010.
  • Kumariya, R., A. K. Garsa, Y. S. Rajput, S. K. Sood, N. Akhtar, and S. Patel. 2019. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis 128:171–7. doi: 10.1016/j.micpath.2019.01.002.
  • Lasik-Kurdyś, M., and A. Sip. 2019. Evaluation of the antimicrobial activity of bacteriocin-like inhibitory substances of enological importance produced by Oenococcus oeni isolated from wine. European Food Research and Technology 245 (2):375–82. doi: 10.1007/s00217-018-3169-2.
  • Leisner, J. J., B. G. Laursen, H. Prévost, D. Drider, and P. Dalgaard. 2007. Carnobacterium: Positive and negative effects in the environment and in foods. FEMS Microbiology Reviews 31 (5):592–613. doi: 10.1111/j.1574-6976.2007.00080.x.
  • Lind, H., H. Jonsson, and J. Schn. 2005. Antifungal effect of dairy propionibacteria-contribution of organic acids. International Journal of Food Microbiology 98 (2):157–65. doi: 10.1016/j.ijfoodmicro.2004.05.020.
  • Lonergan, S. M., D. G. Topel, and D. N. Marple. 2019. Meat microbiology and safety. In The science of animal growth and meat technology, ed. S. Lonergan, D. Topel and D. Marple, 183–204. Cambridge: Elsevier. doi: 10.1016/B978-0-12-815277-5.00012-3.
  • Luo, Q., S. Li, S. Liu, and H. Tan. 2017. Foodborne illness outbreaks in China, 2000-2014. International Journal of Clinical and Experimental Medicine 10 (3):5821–31.
  • Majumdar, A., N. Pradhan, J. Sadasivan, A. Acharya, N. Ojha, S. Babu, and S. Bose. 2018. Food degradation and foodborne diseases: A microbial approach. In Microbial contamination and food degradation, ed. A. Grumezescu and A. M. Holban, 109–48. Cambridge: Elsevier. doi: 10.1016/B978-0-12-811515-2.00005-6.
  • Marcelino, P. R. F., G. F. D. Peres, R. Terán-Hilares, F. C. Pagnocca, C. A. Rosa, T. M. Lacerda, J. C. dos Santos, and S. S. da Silva. 2019. Biosurfactants production by yeasts using sugarcane bagasse hemicellulosic hydrolysate as new sustainable alternative for lignocellulosic biorefineries. Industrial Crops and Products 129:212–23. doi: 10.1016/j.indcrop.2018.12.001.
  • Marcos, B., T. Aymerich, J. M. Monfort, and M. Garriga. 2007. Use of antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. International Journal of Food Microbiology 120 (1–2):152–8. doi: 10.1016/j.ijfoodmicro.2007.06.003.
  • Martin-Visscher, L. A., S. Yoganathan, C. S. Sit, C. T. Lohans, and J. C. Vederas. 2011. The activity of bacteriocins from Carnobacterium maltaromaticum UAL307 against gram-negative bacteria in combination with EDTA treatment. FEMS Microbiology Letters 317 (2):152–9. doi: 10.1111/j.1574-6968.2011.02223.x.
  • Melini, V., and F. Melini. 2018. Strategies to extend bread and GF bread shelf-life: From sourdough to antimicrobial active packaging and nanotechnology. Fermentation 4 (1):9. doi: 10.3390/fermentation4010009.
  • Mieszkin, S., N. Hymery, S. Debaets, E. Coton, G. Le Blay, F. Valence, and J. Mounier. 2017. Action mechanisms involved in the bioprotective effect of Lactobacillus harbinensis K.V9.3.1.Np against Yarrowia lipolytica in fermented milk. International Journal of Food Microbiology 248:47–55. doi: 10.1016/j.ijfoodmicro.2017.02.013.
  • Mokoena, M. P. 2017. Lactic acid bacteria and their bacteriocins: Classification, biosynthesis, and applications against uropathogens: A mini-review. Molecules 22 (8):1255. doi: 10.3390/molecules22081255.
  • Moreira, T. F. M., A. de Oliveira, T. B. V. da Silva, A. R. Dos Santos, O. H. Gonçalves, R. Gonzalez, S. da, A. A. Droval, and F. V. Leimann. 2019. Hydrogels based on gelatin: Effect of lactic and acetic acids on microstructural modifications, water absorption mechanisms and antibacterial activity. LWT 103:69–77. doi: 10.1016/j.lwt.2018.12.040.
  • Morris, M. A., S. C. Padmanabhan, M. C. Cruz-Romero, E. Cummins, and J. P. Kerry. 2017. Development of active, nanoparticle, antimicrobial technologies for muscle-based packaging applications. Meat Science 132:163–78. doi: 10.1016/j.meatsci.2017.04.234.
  • Nagase, S., M. Matsue, Y. Mori, M. Honda-Ogawa, and K. Sugitani. 2017. Comparison of antimicrobial spectrum and mechanisms of organic virgin coconut oil and lauric acid against bacteria. Journal of Wellness and Health Care 41 (1):87–95. doi: 10.24517/00048862.
  • Nanotkar, R. Y., T. K. Sar, S. Akhtar, R. Buragohain, and T. K. Mandal. 2018. Alternatives and supportives to antimicrobial therapy for preventing antimicrobial resistance. Journal of Applied Biopharmaceutics and Pharmacokinetics 6:14–21.
  • Ning, Y., A. Yan, K. Yang, Z. Wang, X. Li, and Y. Jia. 2017. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms. Food Chemistry 228:533–40. doi: 10.1016/j.foodchem.2017.01.112.
  • Nitschke, M., and S. S. E. Silva. 2018. Recent food applications of microbial surfactants. Critical Reviews in Food Science and Nutrition 58 (4):631–8. doi: 10.1080/10408398.2016.1208635.
  • Nsoesie, E. O., S. A. Kluberg, and J. S. Brownstein. 2014. Online reports of foodborne illness capture foods implicated in official foodborne outbreak reports. Preventive Medicine 67:264–9. doi: 10.1016/j.ypmed.2014.08.003.
  • Oliveira, M., V. Ferreira, R. Magalhães, and P. Teixeira. 2018. Biocontrol strategies for mediterranean-style fermented sausages. Food Research International (Ottawa, Ont.) 103:438–49. doi: 10.1016/j.foodres.2017.10.048.
  • Orihuel, A., J. Bonacina, M. J. Vildoza, E. Bru, G. Vignolo, L. Saavedra, and S. Fadda. 2018. Biocontrol of Listeria monocytogenes in a meat model using a combination of a bacteriocinogenic strain with curing additives. Food Research International (Ottawa, Ont.) 107:289–96. doi: 10.1016/j.foodres.2018.02.043.
  • Papagianni, M., and D. Sergelidis. 2013. Effects of the presence of the curing agent sodium nitrite, used in the production of fermented sausages, on bacteriocin production by Weissella paramesenteroides DX grown in meat simulation medium. Enzyme and Microbial Technology 53 (1):1–5. doi: 10.1016/j.enzmictec.2013.04.003.
  • Papagianni, M., and E. M. Papamichael. 2011. Purification, amino acid sequence and characterization of the class IIa bacteriocin weissellin A, produced by Weissella paramesenteroides DX. Bioresource Technology 102 (12):6730–4. doi: 10.1016/j.biortech.2011.03.106.
  • Patel, V., D. Berthold, P. Puranik, and M. Gantar. 2015. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnology Reports (Amsterdam, Netherlands) 5:112–9. doi: 10.1016/j.btre.2014.12.001.
  • Paudyal, N., H. Pan, X. Liao, X. Zhang, X. Li, W. Fang, and M. Yue. 2018. A meta-analysis of major foodborne pathogens in Chinese food commodities between 2006 and 2016. Foodborne Pathogens and Disease 15 (4):187–97. doi: 10.1089/fpd.2017.2417.
  • Perrone, G., A. Rodriguez, D. Magistà, and N. Magan. 2019. Insights into existing and future fungal and mycotoxin contamination of cured meats. Current Opinion in Food Science 29:20–7. doi: 10.1016/j.cofs.2019.06.012.
  • Pirsa, S., and T. Shamusi. 2019. Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulose-polypyrrole-ZnO film. Materials Science & Engineering. C, Materials for Biological Applications 102:798–809. doi: 10.1016/j.msec.2019.02.021.
  • Popova, T. 2017. Effect of probiotics in poultry for improving meat quality. Current Opinion in Food Science 14:72–7. doi: 10.1016/j.cofs.2017.01.008.
  • Protection Health. 2017. National notifiable diseases surveillance system. Communicable Diseases Intelligence Quarterly Report 41 (4):E515–E522.
  • Raghunath, A., and E. Perumal. 2017. Metal oxide nanoparticles as antimicrobial agents: A promise for the future. International Journal of Antimicrobial Agents 49 (2):137–52. doi: 10.1016/j.ijantimicag.2016.11.011.
  • Ramachandran, R., C. Krishnaraj, V. K. A. Kumar, S. L. Harper, T. P. Kalaichelvan, and S. I. Yun. 2018. In vivo toxicity evaluation of biologically synthesized silver nanoparticles and gold nanoparticles on adult zebrafish: A comparative study. 3 Biotech 8 (10):441. doi: 10.1007/s13205-018-1457-y.
  • Rathod, D., P. Golinska, M. Wypij, H. Dahm, and M. Rai. 2016. A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Medical Microbiology and Immunology 205 (5):435–47. doi: 10.1007/s00430-016-0462-1.
  • Rheder, D. T., M. Guilger, N. Bilesky-José, T. Germano-Costa, T. Pasquoto-Stigliani, T. B. B. Gallep, R. Grillo, C. d S. Carvalho, L. F. Fraceto, and R. Lima. 2018. Synthesis of biogenic silver nanoparticles using Althaea officinalis as reducing agent: Evaluation of toxicity and ecotoxicity. Scientific Reports 8 (1):1–11. doi: 10.1038/s41598-018-30317-9.
  • Ryan, L. A. M., E. Zannini, F. Dal Bello, A. Pawlowska, P. Koehler, and E. K. Arendt. 2011. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. International Journal of Food Microbiology 146 (3):276–83. doi: 10.1016/j.ijfoodmicro.2011.02.036.
  • Salvucci, E., J. G. LeBlanc, and G. Pérez. 2016. Technological properties of lactic acid bacteria isolated from raw cereal material. LWT 70:185–91. doi: 10.1016/j.lwt.2016.02.043.
  • Sánchez Mainar, M., D. A. Stavropoulou, and F. Leroy. 2017. Exploring the metabolic heterogeneity of coagulase-negative staphylococci to improve the quality and safety of fermented meats: A review. International Journal of Food Microbiology 247:24–37. doi: 10.1016/J.IJFOODMICRO.2016.05.021.
  • Singh, P., Y.-J. Kim, D. Zhang, and D.-C. Yang. 2016. Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology 34 (7):588–99. doi: 10.1016/j.tibtech.2016.02.006.
  • Singh, R., U. U. Shedbalkar, S. A. Wadhwani, and B. A. Chopade. 2015. Bacteriagenic silver nanoparticles: Synthesis, mechanism, and applications. Applied Microbiology and Biotechnology 99 (11):4579–93. doi: 10.1007/s00253-015-6622-1.
  • Singh, S., M. Ho Lee, L. Park, Y. Shin, and Y. S. Lee. 2016. Antimicrobial seafood packaging: A review. Journal of Food Science and Technology 53 (6):2505–18. doi: 10.1007/s13197-016-2216-x.
  • Sofi, S. A., J. Singh, S. Rafiq, U. Ashraf, B. N. Dar, and G. A. Nayik. 2018. A comprehensive review on antimicrobial packaging and its use in food packaging. Current Nutrition & Food Science 14 (4):305–12. doi: 10.2174/1573401313666170609095732.
  • Souza Monteiro, D. M., T. Roberts, W. J. Armbruster, and D. Jones. 2018. Overview of food safety economics. In Food safety economics. Food microbiology and food safety, ed. T. Roberts, 3–12. Cham: Springer. doi: 10.1007/978-3-319-92138-9_1.
  • Talluri, S. 2019. Computational protein design of bacteriocins based on structural scaffold of aureocin A53. International Journal of Bioinformatics Research and Applications 15 (2):129–43. doi: 10.1504/IJBRA.2019.099575.
  • Teixeira, L. M., V. L. C. Merquior, and P. L. Shewmaker. 2014. Vagococcus. In Encyclopedia of food microbiology, ed. C. Batt and M.-L. Tortorello,2nd ed., vol. 3, 673–9. Burlington: Academic Press Location. doi: 10.1016/B978-0-12-384730-0.00342-6.
  • Trabelsi, I., S. Ben Slima, N. Ktari, M. Triki, R. Abdehedi, W. Abaza, H. Moussa, A. Abdeslam, and R. Ben Salah. 2019. Incorporation of probiotic strain in raw minced beef meat: Study of textural modification, lipid and protein oxidation and color parameters during refrigerated storage. Meat Science 154:29–36. doi: 10.1016/j.meatsci.2019.04.005.
  • Trinetta, V., and C. N. Cutter. 2016. Pullulan. In Antimicrobial food packaging, ed. J. Barros-Velázque, 385–97. USA: Academic Press. doi: 10.1016/B978-0-12-800723-5.00030-9.
  • Vasanth, S. B., and G. A. Kurian. 2017. Toxicity evaluation of silver nanoparticles synthesized by chemical and green route in different experimental models. Artificial Cells, Nanomedicine, and Biotechnology 45 (8):1721–7. doi: 10.1080/21691401.2017.1282500.
  • Vazquez-Rodriguez, A., X. G. Vasto-Anzaldo, D. Barboza Perez, E. Vázquez-Garza, H. Chapoy-Villanueva, G. García-Rivas, J. A. Garza-Cervantes, J. J. Gómez-Lugo, A. E. Gomez-Loredo, M. T. Garza Gonzalez, et al. 2018. Microbial competition of Rhodotorula mucilaginosa UANL-001L and E. coli increase biosynthesis of non-toxic exopolysaccharide with applications as a wide-spectrum antimicrobial. Scientific Reports 8 (1):798. doi: 10.1038/s41598-017-17908-8.
  • Vermeiren, L., F. Devlieghere, and J. Debevere. 2004. Evaluation of meat born lactic acid bacteria as protective ciltures for the biopreservation of cooked meat products. International Journal of Food Microbiology 96 (2):149–64. doi: 10.1016/j.ijfoodmicro.2004.03.016.
  • Vezina, B., B. H. A. Rehm, and A. T. Smith. 2019. Bioinformatic prospecting identified 99 novel, misannotated and unnoticed putative circular bacteriocins. Research Square 1–21. doi: 10.21203/rs.2.15348.
  • Vezina, B., B. H. A. Rehm, and A. T. Smith. 2020. Bioinformatic prospecting and phylogenetic analysis reveals 94 undescribed circular bacteriocins and key motifs. BMC Microbiology 20 (1):77. doi: 10.1186/s12866-020-01772-0.
  • Wang, H., X. Zhang, Q. Zhang, K. Ye, X. Xu, and G. Zhou. 2015. Comparison of microbial transfer rates from Salmonella spp. biofilm growth on stainless steel to selected processed and raw meat. Food Control. 50:574–80. doi: 10.1016/j.foodcont.2014.09.049.
  • Wang, Y., Y. Qin, Y. Zhang, R. Wu, and P. Li. 2019. Antibacterial mechanism of plantaricin LPL-1, a novel class IIa bacteriocin against Listeria monocytogenes. Food Control. 97:87–93. doi: 10.1016/j.foodcont.2018.10.025.
  • Wescombe, P. A., M. Upton, P. Renault, R. E. Wirawan, D. Power, J. P. Burton, C. N. Chilcott, and J. R. Tagg. 2011. Salivaricin 9, a new lantibiotic produced by Streptococcus salivarius. Microbiology (Reading, England) 157 (Pt 5):1290–9. doi: 10.1099/mic.0.044719-0.
  • WHO. 2015. WHO estimates of the global burden of foodborne diseases: Foodborne disease burden epidemiology reference group 2007–2015. Geneva: WHO.
  • Woraprayote, W., L. Pumpuang, A. Tosukhowong, T. Zendo, K. Sonomoto, S. Benjakul, and W. Visessanguan. 2018. Antimicrobial biodegradable food packaging impregnated with bacteriocin 7293 for control of pathogenic bacteria in pangasius fish fillets. LWT 89:427–33. doi: 10.1016/j.lwt.2017.10.026.
  • Woraprayote, W., Y. Malila, S. Sorapukdee, A. Swetwiwathana, S. Benjakul, and W. Visessanguan. 2016. Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Science 120:118–32. doi: 10.1016/j.meatsci.2016.04.004.
  • Yi, L., T. Qi, Y. Hong, L. Deng, and K. Zeng. 2020. Screening of bacteriocin-producing lactic acid bacteria in Chinese homemade pickle and dry-cured meat, and bacteriocin identification by genome sequencing. LWT 125:109177. doi: 10.1016/j.lwt.2020.109177.
  • Yu, Y. J., Z. Chen, P. T. Chen, and I.-S. Ng. 2018. Production, characterization and antibacterial activity of exopolysaccharide from a newly isolated Weissella cibaria under sucrose effect. Journal of Bioscience and Bioengineering 126 (6):769–77. doi: 10.1016/J.JBIOSC.2018.05.028.
  • Zhang, C., S. Zhang, W. Liu, T. Guo, R. Gu, and J. Kong. 2019. Potential application and bactericidal mechanism of lactic acid-hydrogen peroxide consortium. Applied Biochemistry and Biotechnology 189 (3):822–33. doi: 10.1007/s12010-019-03031-z.
  • Zhao, X., L. Zhou, M. S. Riaz Rajoka, L. Yan, C. Jiang, D. Shao, J. Zhu, J. Shi, Q. Huang, H. Yang, et al. 2018. Fungal silver nanoparticles: Synthesis, application and challenges. Critical Reviews in Biotechnology 38 (6):817–35. doi: 10.1080/07388551.2017.1414141.
  • Zhitnitsky, D., J. Rose, and O. Lewinson. 2017. The highly synergistic, broad spectrum, antibacterial activity of organic acids and transition metals. Scientific Reports 7:44554. doi: 10.1038/srep44554.
  • Zhou, Y., Y. Cui, and X. Qu. 2019. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydrate Polymers 207:317–32. doi: 10.1016/j.carbpol.2018.11.093.
  • Zou, J., H. Jiang, H. Cheng, J. Fang, and G. Huang. 2018. Strategies for screening, purification and characterization of bacteriocins. International Journal of Biological Macromolecules 117:781–9. doi: 10.1016/j.ijbiomac.2018.05.233.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.