1,221
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in seafood bioactive peptides and their potential for managing osteoporosis

, , , , , & show all

References

  • Ahn, C. B., and J. Y. Je. 2019. Bone health-promoting bioactive peptides . Journal of Food Biochemistry 43 (1):e12529. doi: 10.1111/jfbc.12529.
  • An, J., H. Yang, Q. Zhang, C. C. Liu, J. J. Zhao, L. L. Zhang, and B. Chen. 2016. Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci 147:46–58. doi: 10.1016/j.lfs.2016.01.024.
  • Anal, A. K., A. Noomhorm, and P. Vongsawasdi. 2013. Protein Hydrolysates and Bioactive Peptides from Seafood and Crustacean Waste: Their Extraction, Bioactive Properties and Industrial Perspectives. In Marine Proteins and Peptides: Biological Activities and Application, ed. Se‐Kwon Kim,709–35. Chichester: John Wiley & Sons, Ltd.
  • Asha, K. K., R. Anandan, S. Mathew, and P. T. Lakshmanan. 2014. Biochemical profile of oyster Crassostrea madrasensis and its nutritional attributes. The Egyptian Journal of Aquatic Research 40 (1):35–41. doi: 10.1016/j.ejar.2014.02.001.
  • Baron, R., S. Ferrari, and R. G. G. Russell. 2011. Denosumab and bisphosphonates: Different mechanisms of action and effects. Bone 48 (4):677–92. doi: 10.1016/j.bone.2010.11.020.
  • Becker, W., and A. Richmond. 2004. Microalgae in human and animal nutrition. Handbook of Microalgal Culture Biotechnology and Applied Phycology 312:312–51.
  • Bergman, R. J., D. Gazit, A. J. Kahn, H. Gruber, S. Mcdougall, and T. J. Hahn. 1996. Age-related changes in osteogenic stem cells in mice. Journal of Bone and Mineral Research 11 (5):568–77. doi: 10.1002/jbmr.5650110504.
  • Bernaerts, T. M., L. Gheysen, I. Foubert, M. E. Hendrickx, and A. M. Van Loey. 2019. The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnology Advances 37 (8):107419. doi: 10.1016/j.biotechadv.2019.107419.
  • Bernardini, R. D., P. Harnedy, D. Bolton, J. Kerry, E. O’Neill, A. M. Mullen, and M. Hayes. 2011. Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chemistry 124 (4):1296–307. doi: 10.1016/j.foodchem.2010.07.004.
  • Brouns, F., and C. Vermeer. 2000. Functional food ingredients for reducing the risks of osteoporosis. Trends in Food Science & Technology 11 (1):22–33. doi: 10.1016/S0924-2244(99)00052-7.
  • Brown, C. 2017. Osteoporosis: Staying strong. Nature 550 (7674):S15–S17. doi: 10.1038/550S15a.
  • Bullamore, J. R., R. Wilkinson, J. C. Gallagher, B. E. C. Nordin, and D. H. Marshall. 1970. Effects of age on calcium absorption. The Lancet 296 (7672):535–7. doi: 10.1016/S0140-6736(70)91344-9.
  • Campbell, P. N. 2005. Bovine spongiform encephalopathy-some surprises for biochemists. Iubmb Life 57 (4-5):273–6. doi: 10.1080/15216540500097152.
  • Carson, M. A., and S. A. Clarke. 2018. Bioactive Compounds from Marine Organisms: Potential for Bone Growth and Healing. Marine Drugs 16 (9):340. doi: 10.3390/md16090340.
  • Chang, J., Z. Wang, E. Tang, Z. Fan, L. Mccauley, R. Franceschi, K. Guan, P. H. Krebsbach, and C. Y. Wang. 2009. Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nature Medicine 15 (6):682–9. doi: 10.1038/nm.1954.
  • Chapurlat, R. D. 2015. Odanacatib: A review of its potential in the management of osteoporosis in postmenopausal women. Therapeutic Advances in Musculoskeletal Disease 7 (3):103–9. doi: 10.1177/1759720X15580903.
  • Chen, H., Z. Xu, F. Fan, P. Shi, M. Tu, Z. Wang, and M. Du. 2019. Identification and mechanism evaluation of a novel osteogenesis promoting peptide from tubulin alpha-1C chain in Crassostrea gigas. Food Chemistry 272:751–7. doi: 10.1016/j.foodchem.2018.07.063.
  • Chen, J., X. Qiu, G. Hao, M. Zhang, and W. Weng. 2017. Preparation and bioavailability of calcium-chelating peptide complex from tilapia skin hydrolysates. Journal of the Science of Food and Agriculture 97 (14):4898–903. doi: 10.1002/jsfa.8363.
  • Cicero, A. F. G., F. Fogacci, and A. Colletti. 2017. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. British Journal of Pharmacology 174 (11):1378–94. doi: 10.1111/bph.13608.
  • Conlon, J. M. 2007. Purification of naturally occurring peptides by reversed-phase HPLC. Nature Protocols 2 (1):191–7. doi: 10.1038/nprot.2006.437.
  • Costaiche, G. M., and L. Niculae. 2014. Fish production worldwide. Scientific Papers: Management, Economic Engineering in Agriculture & Rural Development 14 (4):61–4.
  • Daneault, A., J. Prawitt, V. F. Soule, V. Coxam, and Y. Wittrant. 2017. Biological effect of hydrolyzed collagen on bone metabolism. Critical Reviews in Food Science and Nutrition 57 (9):1922–37. doi: 10.1080/10408398.2015.1038377.
  • Danen, E. H., and K. M. Yamada. 2001. Fibronectin, integrins, and growth control. Journal of Cellular Physiology 189 (1):1–13. doi: 10.1002/jcp.1137.
  • Dorniak-Wall, T., R. Grivell, G. Dekker, W. Hague, and J. Dodd. 2014. The role of L-arginine in the prevention and treatment of pre-eclampsia: A systematic review of randomised trials. Journal of Human Hypertension 28 (4):230–5. doi: 10.1038/jhh.2013.100.
  • Durica, S. 2007. [Use of estrogen-replacement therapy in menopause-secondary prevention of osteoporosis] . Vojnosanitetski Pregled 64 (1):37–44. doi: 10.2298/VSP0701037D.
  • Eastell, R., T. W. O'Neill, L. C. Hofbauer, B. Langdahl, I. R. Reid, D. T. Gold, and S. R. Cummings. 2016. Postmenopausal osteoporosis. Nature Reviews Disease Primers 2 (1):1–16. doi: 10.1038/nrdp.2016.69.
  • Fan, F., M. Tu, M. Liu, P. Shi, Y. Wang, D. Wu, and M. Du. 2017. Isolation and characterization of lactoferrin peptides with stimulatory effect on osteoblast proliferation. Journal of Agricultural and Food Chemistry 65 (33):7179–85. doi: 10.1021/acs.jafc.7b02067.
  • FAO. 2007. Increasing the contribution of small-scale fisheries to poverty alleviation and food security.
  • FAO. 2012. The state of world fisheries and aquaculture. State of World Fisheries & Aquaculture 4 (1):40–1.
  • FAO/WHO1991. Protein quality evaluation. Report of joint FAO/WHO expert consultation (Vol. 51, pp: 1. Rome, Italy: Food and Agriculture Organization of United Nations.
  • Feng, Y. W., L. Z. Ma, Y. C. Du, S. H. Fan, and R. T. Dai. 2012. Chemical composition analysis of three commercially important fish species (sardine, anchovy and mackerel). Advanced Materials Research 554-556:900–4. doi: 10.4028/www.scientific.net/AMR.554-556.900.
  • Gaillard, C., H. S. Bhatti, M. Novoa-Garrido, V. Lind, M. Y. Roleda, and M. R. Weisbjerg. 2018. Amino acid profiles of nine seaweed species and their in situ degradability in dairy cows. Animal Feed Science and Technology 241:210–22. doi: 10.1016/j.anifeedsci.2018.05.003.
  • Garibaldi, L. 2002. ASFIS list of species for fishery statistics purposes. Asfis Reference.
  • Gennari, C., G. Martini, and R. Nuti. 1998. Secondary osteoporosis. Aging (Milan, Italy) 10 (3):214–24. doi: 10.1007/BF03339655.
  • Gomez-Guillen, M. C., B. Gimenez, M. E. Lopez-Caballero, and M. P. Montero. 2011. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids 25 (8):1813–27. doi: 10.1016/j.foodhyd.2011.02.007.
  • Guo, H., Z. Hong, and R. Yi. 2015. Core-shell collagen peptide chelated calcium/calcium alginate nanoparticles from fish scales for calcium supplementation. Journal of Food Science 80 (7):N1595–N1601. doi: 10.1111/1750-3841.12912.
  • Halim, N., H. Yusof, and N. Sarbon. 2016. Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review. Trends in Food Science & Technology 51:24–33. doi: 10.1016/j.tifs.2016.02.007.
  • Hannan, M. T., D. T. Felson, B. Dawson-Hughes, K. L. Tucker, L. A. Cupples, P. W. F. Wilson, and D. P. Kiel. 2000. Risk factors for longitudinal bone loss in elderly men and women: The Framingham Osteoporosis Study. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research 15 (4):710–20. doi: 10.1359/jbmr.2000.15.4.710.
  • Hardouin, K., G. Bedoux, A. S. Burlot, N. C. Pi, and N. Bourgougnon. 2014. Enzymatic recovery of metabolites from seaweeds: Potential applications. Sea Plants 71 (71):279–320. doi: 10.1016/B978-0-12-408062-1.00010-X.
  • Hei, Z., M. Zhao, Y. Tian, H. Chang, X. Shen, G. Xia, and J. Wang. 2019. Isolation and characterization of a novel sialoglycopeptide promoting osteogenesis from Gadus morhua Eggs. Molecules 25 (1):156. doi: 10.3390/molecules25010156.
  • Heining, E., R. Bhushan, P. Paarmann, Y. I. Henis, and P. Knaus. 2011. Spatial segregation of BMP/Smad signaling affects osteoblast differentiation in C2C12 Cells. Plos One 6 (10):e25163. doi: 10.1371/journal.pone.0025163.
  • Heo, S. Y., S. C. Ko, S. Y. Nam, J. Oh, Y. M. Kim, J. I. Kim, N. Kim, M. Yi, and W. K. Jung. 2018. Fish bone peptide promotes osteogenic differentiation of MC3T3-E1 pre-osteoblasts through upregulation of MAPKs and Smad pathways activated BMP-2 receptor. Cell Biochemistry and Function 36 (3):137–46. doi: 10.1002/cbf.3325.
  • Hou, T., W. W. Liu, W. Shi, Z. L. Ma, and H. He. 2017. Desalted duck egg white peptides promote calcium uptake by counteracting the adverse effects of phytic acid. Food Chemistry 219:428–35. doi: 10.1016/j.foodchem.2016.09.166.
  • Hou, T., y Liu, d Guo, B. Li, and H. He. 2017. Collagen peptides from crucian skin improve calcium bioavailability and structure characterization by HPLC-ESI-MS/MS. Journal of Agricultural and Food Chemistry 65 (40):8847–54. doi: 10.1021/acs.jafc.7b03059.
  • Hu, C. H., C. H. Yao, T. M. Chan, T. L. Huang, Y. Sen, C. Y. Huang, and C. Y. Ho. 2016. Effects of different concentrations of collagenous peptide from fish scales on osteoblast proliferation and osteoclast resorption. The Chinese Journal of Physiology 59 (4):191–201. doi: 10.4077/CJP.2016.BAE398.
  • Hyung, J., C. Ahn, and J. Je. 2016. Osteoblastogenic activity of ark shell protein hydrolysates with low molecular weight in mouse mesenchymal stem cells. RSC Advances 6 (35):29365–70. doi: 10.1039/C6RA00898D.
  • Hyung, J. H., C. B. Ahn, and J. Y. Je. 2018. Blue mussel (Mytilus edulis) protein hydrolysate promotes mouse mesenchymal stem cell differentiation into osteoblasts through up-regulation of bone morphogenetic protein. Food Chemistry 242:156–61. (MAR.1): doi: 10.1016/j.foodchem.2017.09.043.
  • Ishak, N. H., and N. M. Sarbon. 2018. A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing. Food and Bioprocess Technology 11 (1):2–16. doi: 10.1007/s11947-017-1940-1.
  • Iwai, K., T. Hasegawa, Y. Taguchi, F. Morimatsu, K. Sato, Y. Nakamura, A. Higashi, Y. Kido, Y. Nakabo, and K. Ohtsuki. 2005. Identification of food-derived collagen peptides in human blood after oral ingestion of gelatin hydrolysates. Journal of Agricultural and Food Chemistry 53 (16):6531–6. doi: 10.1021/jf050206p.
  • Johnson, G. L., and R. Lapadat. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science (New York, N.Y.) 298 (5600):1911–2. doi: 10.1126/science.1072682.
  • Jung, W. K., B. J. Lee, and S. K. Kim. 2006. Fish-bone peptide increases calcium solubility and bioavailability in ovariectomised rats. The British Journal of Nutrition 95 (1):124–8. doi: 10.1079/BJN20051615.
  • Kanis, J. A. 1994. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. WHO Study Group. Osteoporosis International : a Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 4 (6):368–81. doi: 10.1007/BF01622200.
  • Karsenty, G. 2003. The complexities of skeletal biology. Nature 423 (6937):316–8. doi: 10.1038/nature01654.
  • Kim, H. N., J. Chang, L. Shao, L. Han, S. Iyer, S. C. Manolagas, C. A. O'Brien, R. L. Jilka, D. Zhou, and M. Almeida. 2017. DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell 16 (4):693–703. doi: 10.1111/acel.12597.
  • Kittiphattanabawon, P., S. Benjakul, W. Visessanguan, T. Nagai, and M. Tanaka. 2005. Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food Chemistry 89 (3):363–72. doi: 10.1016/j.foodchem.2004.02.042.
  • Komori, T. 2010. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell and Tissue Research 339 (1):189–95. doi: 10.1007/s00441-009-0832-8.
  • Krupinska, K., N. E. Blanco, S. Oetke, and M. Zottini. 2020. Genome communication in plants mediated by organelle-n-ucleus-located proteins. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 375 (1801):20190397 doi: 10.1098/rstb.2019.0397.
  • Kumari, A., S. K. Yadav, and S. C. Yadav. 2010. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75 (1):1–18. doi: 10.1016/j.colsurfb.2009.09.001.
  • Landis, W. J. 1996. Mineral characterization in calcifying tissues: Atomic, molecular and macromolecular perspectives. Connective Tissue Research 34 (4):239–46. doi: 10.3109/03008209609005267.
  • Lemasson, A., J. Hall-Spencer, V. Kuri, and A. Knights. 2019. Changes in the biochemical and nutrient composition of seafood due to ocean acidification and warming. Marine Environmental Research 143:82–92. doi: 10.1016/j.marenvres.2018.11.006.
  • Lin, Q., J. Lin, J. Lu, and B. Li. 2008. Biochemical composition of six seahorse species, Hippocampus sp., from the Chinese coast. Journal of the World Aquaculture Society 39 (2):225–34. doi: 10.1111/j.1749-7345.2008.00159.x.
  • Liu, Y. F., I. Oey, P. Bremer, A. Carne, and P. Silcock. 2018. Bioactive peptides derived from egg proteins: A review. Critical Reviews in Food Science and Nutrition 58 (15):2508–30. doi: 10.1080/10408398.2017.1329704.
  • Magura, J., R. Moodley, and S. B. Jonnalagadda. 2016. Chemical composition of selected seaweeds from the Indian Ocean, KwaZulu-Natal coast, South Africa. Journal of Environmental Science and Health, Part B 51 (8):525–33. doi: 10.1080/03601234.2016.1170547.
  • Manolagas, S. C., C. A. O'Brien, and M. Almeida. 2013. The role of estrogen and androgen receptors in bone health and disease. Nature Reviews. Endocrinology 9 (12):699–712. doi: 10.1038/nrendo.2013.179.
  • Marie, P. 2008. Transcription factors controlling osteoblastogenesis. Archives of Biochemistry and Biophysics 473 (2):98–105. doi: 10.1016/j.abb.2008.02.030.
  • Mellander, O. 1950. The physiological importance of the casein phosphopeptide calcium salts. II. Peroral calcium dosage of infants. Acta Societatis Medicorum Upsaliensis 55 (5-6):247–55.
  • Miller, S. C., B. M. Bowman, and W. S. S. Jee. 1995. Available animal models of osteopenia — Small and large. Bone 17 (4 Suppl):117S–23. doi: 10.1016/8756-3282(95)00284-K.
  • Mohammed, H. H. H., G. Jin, M. Ma, I. Khalifa, R. Shukat, A. E. Elkhedir, Q. Zeng, and A. E. Noman. 2020. Comparative characterization of proximate nutritional compositions, microbial quality and safety of camel meat in relation to mutton, beef, and chicken. LWT-Food Science and Technology 118:108714. doi: 10.1016/j.lwt.2019.108714.
  • Moskowitz, R. W. 2000. Role of collagen hydrolysate in bone and joint disease. Seminars in Arthritis and Rheumatism 30 (2):87–99. doi: 10.1053/sarh.2000.9622.
  • Naczk, M., J. Williams, K. Brennan, C. Liyanapathirana, and F. Shahidi. 2004. Compositional characteristics of green crab (Carcinus maenas). Food Chemistry 88 (3):429–34. doi: 10.1016/j.foodchem.2004.01.056.
  • Nagai, T., M. Izumi, and M. Ishii. 2004. Fish scale collagen. Preparation and partial characterization. International Journal of Food Science and Technology 39 (3):239–44. doi: 10.1111/j.1365-2621.2004.00777.x.
  • Nagai, T., and N. Suzuki. 2000. Isolation of collagen from fish waste material – Skin, bone and fins. Food Chemistry 68 (3):277–81. doi: 10.1016/S0308-8146(99)00188-0.
  • Nguyen, M. H. T., Z. J. Qian, V. T. Nguyen, I. W. Choi, S. J. Heo, C. H. Oh, D. H. Kang, G. H. Kim, and W. K. Jung. 2013. Tetrameric peptide purified from hydrolysates of biodiesel byproducts of Nannochloropsis oculata induces osteoblastic differentiation through MAPK and Smad pathway on MG-63 and D1 cells. Process Biochemistry 48 (9):1387–94. doi: 10.1016/j.procbio.2013.06.031.
  • Nguyen, V.-T., S.-C. Ko, S.-J. Heo, D.-H. Kang, C. Oh, K.-N. Kim, Y.-J. Jeon, Y.-M. Kim, W. S. Park, I.-W. Choi, et al. 2018. Ciona intestinalis calcitonin-like peptide promotes osteoblast differentiation and mineralization through MAPK pathway in MC3T3-E1 cells. Process Biochemistry 67:127–38. doi: 10.1016/j.procbio.2018.01.025.
  • Niccolai, A., G. C. Zittelli, L. Rodolfi, N. Biondi, and M. R. Tredici. 2019. Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research 42:101617. doi: 10.1016/j.algal.2019.101617.
  • O'Brien, C. A., D. Jia, L. I. Plotkin, T. Bellido, C. C. Powers, S. A. Stewart, S. C. Manolagas, and R. S. Weinstein. 2004. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145 (4):1835–41. doi: 10.1210/en.2003-0990.
  • Oesser, S., M. Adam, W. Babel, and J. Seifert. 1999. Oral administration of (14)C labeled gelatin hydrolysate leads to an accumulation of radioactivity in cartilage of mice (C57/BL). The Journal of Nutrition 129 (10):1891–5. doi: 10.1093/jn/129.10.1891.
  • Oh, Y., C.-B. Ahn, J.-H. Hyung, and J.-Y. Je. 2019. Two novel peptides from ark shell protein stimulate osteoblast differentiation and rescue ovariectomy-induced bone loss. Toxicology and Applied Pharmacology 385:114779. doi: 10.1016/j.taap.2019.114779.
  • Oluwaniyi, O. O., O. O. Dosumu, and G. V. Awolola. 2010. Effect of local processing methods (boiling, frying and roasting) on the amino acid composition of four marine fishes commonly consumed in Nigeria. Food Chemistry 123 (4):1000–6. doi: 10.1016/j.foodchem.2010.05.051.
  • Padovani, R. M., D. M. Lima, F. A. B. Colugnati, and D. B. Rodriguez-Amaya. 2007. Comparison of proximate, mineral and vitamin composition of common Brazilian and US foods. Journal of Food Composition and Analysis 20 (8):733–8. doi: 10.1016/j.jfca.2007.03.006.
  • Peng, Z., H. Hou, K. Zhang, and B. F. Li. 2017. Effect of calcium-binding peptide from Pacific cod (Gadus macrocephalus) bone on calcium bioavailability in rats. Food Chemistry 221:373–8. doi: 10.1016/j.foodchem.2016.10.078.
  • Perkins, S. L., R. Gibbons, S. Kling, and A. J. Kahn. 1994. Age-Related Bone Loss in Mice Is Associated with an Increased Osteoclast Progenitor Pool. Bone 15 (1):65–72. doi: 10.1016/8756-3282(94)90893-1.
  • Plaza, M., A. Cifuentes, and E. Ibanez. 2008. In the search of new functional food ingredients from algae. Trends in Food Science & Technology 19 (1):31–9. doi: 10.1016/j.tifs.2007.07.012.
  • Ponnapakkam, T., R. Katikaneni, J. Sakon, R. Stratford, and R. C. Gensure. 2014. Treating osteoporosis by targeting parathyroid hormone to bone. Drug Discovery Today 19 (3):204–8. doi: 10.1016/j.drudis.2013.07.015.
  • Prato, E., G. Portacci, and F. Biandolino. 2010. Effect of diet on growth performance, feed efficiency and nutritional composition of Octopus vulgaris. Aquaculture 309 (1-4):203–11. doi: 10.1016/j.aquaculture.2010.09.036.
  • Qian, Z. J., B. Ryu, K. H. Kang, S. J. Heo, D. H. Kang, S. Y. Bae, S. J. Park, J. I. Kim, Y. M. Kim, Y. T. Kim, et al. 2018. Cellular properties of the fermented microalgae Pavlova lutheri and its isolated active peptide in osteoblastic differentiation of MG‑63 cells. Molecular Medicine Reports 17 (1):2044–50. doi: 10.3892/mmr.2017.8087.
  • Quarles, L. D., D. A. Yohay, L. W. Lever, R. Caton, and R. Wenstrup. 1992. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: An in vitro model of osteoblast development. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research 7 (6):683–92. doi: 10.1002/jbmr.5650070613.
  • Reinwald, S., and D. Burr. 2008. Review of nonprimate, large animal models for osteoporosis research. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research 23 (9):1353–68. doi: 10.1359/jbmr.080516.
  • Riggs, B. L. 1991. Overview of osteoporosis. The Western Journal of Medicine 154 (1):63–77. doi: 10.1039/9781847551559-00001
  • Rodgers, J. B., M.-C. Monier-Faugere, and H. Malluche. 1993. Animal models for the study of bone loss after cessation of ovarian function. Bone 14 (3):369–77. doi: 10.1016/8756-3282(93)90166-8.
  • Rodriguez, M. I. A., L. G. R. Barroso, and M. L. Sanchez. 2018. Collagen: A review on its sources and potential cosmetic applications. Journal of Cosmetic Dermatology 17 (1):20–6. doi: 10.1111/jocd.12450.
  • Rosen, V., R. S. Thies, and K. Lyons. 1996. Signaling pathways in skeletal formation: A role for BMP receptors. Annals of the New York Academy of Sciences 785:59–69. doi: 10.1111/j.1749-6632.1996.tb56244.x.
  • Ryoo, H. M., M.-H. Lee, and Y.-J. Kim. 2006. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene 366 (1):51–7. doi: 10.1016/j.gene.2005.10.011.
  • Ryu, B. M., Z. J. Qian, and S. K. Kim. 2010. Purification of a peptide from seahorse, that inhibits TPA-induced MMP, iNOS and COX-2 expression through MAPK and NF-kappaB activation, and induces human osteoblastic and chondrocytic differentiation. Chemico-Biological Interactions 184 (3):413–22. doi: 10.1016/j.cbi.2009.12.003.
  • Senthilkumar, K., J. Venkatesan, and S. K. Kim. 2014. Marine derived natural products for osteoporosis. Biomedicine & Preventive Nutrition 4 (1):1–7. doi: 10.1016/j.bionut.2013.12.005.
  • Shams-White, M. M., M. Chung, M. X. Du, Z. X. Fu, K. L. Insogna, M. C. Karlsen, M. S. LeBoff, S. A. Shapses, J. Sackey, T. C. Wallace, et al. 2017. Dietary protein and bone health: A systematic review and meta-analysis from the National Osteoporosis Foundation. The American Journal of Clinical Nutrition 105 (6):1528–43. doi: 10.3945/ajcn.116.145110.
  • Shi, L., G. Hao, J. Chen, S. Ma, and W. Weng. 2020. Nutritional evaluation of Japanese abalone (Haliotis discus hannai Ino) muscle: Mineral content, amino acid profile and protein digestibility. Food Research International (Ottawa, Ont.) 129:108876. doi: 10.1016/j.foodres.2019.108876.
  • Yamada, S., H. Nagaoka, M. Terajima, N. Tsuda, Y. Hayashi, and M. Yamauchi. 2013. Effects of fish collagen peptides on collagen post-translational modifications and mineralization in an osteoblastic cell culture system. Dental Materials Journal 32 (1):88–95. doi: 10.4012/dmj.2012-220.
  • Sieber, C., J. Kopf, C. Hiepen, and P. Knaus. 2009. Recent advances in BMP receptor signaling. Cytokine & Growth Factor Reviews 20 (5-6):343–55. doi: 10.1016/j.cytogfr.2009.10.007.
  • Siebers, M., P. Ter Brugge, X. Walboomers, and J. Jansen. 2005. Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials 26 (2):137–46. doi: 10.1016/j.biomaterials.2004.02.021.
  • Suzuki, A., J. Guicheux, G. Palmer, Y. Miura, Y. Oiso, J. P. Bonjour, and J. Caverzasio. 2002. Evidence for a role of p38 MAP kinase in expression of alkaline phosphatase during osteoblastic cell differentiation. Bone 30 (1):91–8. doi: 10.1016/S8756-3282(01)00660-3.
  • Tadic, T.,. M. Dodig, I. Erceg, I. Marijanovic, M. Mina, Z. Kalajzic, D. Velonis, M. S. Kronenberg, R. A. Kosher, D. Ferrari, et al. 2002. Overexpression of Dlx5 in chicken calvarial cells accelerates osteoblastic differentiation. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research 17 (6):1008–14. doi: 10.1359/jbmr.2002.17.6.1008.
  • Thompson, D. D., H. A. Simmons, C. M. Pirie, and H. Z. Ke. 1995. FDA guidelines and animal models for osteoporosis. Bone 17 (4 Suppl):125S–133. S. doi: 10.1016/8756-3282(95)00285-L.
  • Tian, J. M., B. Ran, C. L. Zhang, D. M. Yan, and X. H. Li. 2018. Estrogen and progesterone promote breast cancer cell proliferation by inducing cyclin G1 expression. Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas 51 (3):1–7. doi: 10.1590/1414-431X20175612.
  • Tibbetts, S. M., C. G. Whitney, M. J. MacPherson, S. Bhatti, A. H. Banskota, R. Stefanova, and P. J. McGinn. 2015. Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Research 11 (2015):435–47. doi: 10.1016/j.algal.2014.11.011.
  • Trumbo, P., S. Schlicker, A. A. Yates, and M. Poos. 2002. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Journal of the American Dietetic Association 102 (11):1621–30. doi: 10.1016/S0002-8223(02)90346-9.
  • Tzaphlidou, M. 2005. The role of collagen in bone structure: An image processing approach. Micron (Oxford, England : 1993) 36 (7-8):593–601. doi: 10.1016/j.micron.2005.05.009.
  • Valverde, J. C., S. Martínez-Llorens, A. T. Vidal, M. Jover, C. Rodríguez, J. Estefanell, J. I. Gairín, P. M. Domingues, C. J. Rodríguez, and B. G. García. 2013. Amino acids composition and protein quality evaluation of marine species and meals for feed formulations in cephalopods. Aquaculture International 21 (2):413–33. doi: 10.1007/s10499-012-9569-6.
  • Waghmare, A. G., M. K. Salve, J. G. LeBlanc, and S. S. Arya. 2016. Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. Bioresources and Bioprocessing 3 (1):16. doi: 10.1186/s40643-016-0094-8.
  • Wang, A. Y., Y. Tian, M. Yuan, L. Zhang, J. F. Chen, W. J. Xu, H. Y. Meng, X. M. Yu, Y. Q. Wang, Q. Y. Guo, et al. 2014. Effect of Cervus and Cucumis Peptides on Osteoblast Activity and Fracture Healing in Osteoporotic Bone. Evidence-Based Complementary and Alternative Medicine : eCAM 2014:958908–10. doi: 10.1155/2014/958908.
  • Wang, X., X. Shen, X. Li, and C. M. Agrawal. 2002. Age-related changes in the collagen network and toughness of bone. Bone 31 (1):1–7. doi: 10.1016/S8756-3282(01)00697-4.
  • Wang, X. Q., H. H. Yu, R. G. Xing, and P. C. Li. 2017. Characterization, preparation, and purification of marine bioactive peptides. BioMed Research International 2017:9746720–16. doi: 10.1155/2017/9746720.
  • Wang, Y., S. Wang, J. Wang, C. Xue, Y. Chang, and Y. Xue. 2015. Preparation and anti-osteoporotic activities in vivo of phosphorylated peptides from Antarctic krill (Euphausia superba). Peptides 68:239–45. doi: 10.1016/j.peptides.2014.10.004.
  • Watanabe, A., S. Yoneyama, M. Nakajima, N. Sato, R. Takao-Kawabata, Y. Isogai, A. Sakurai-Tanikawa, K. Higuchi, A. Shimoi, H. Yamatoya, et al. 2012. Osteosarcoma in Sprague-Dawley rats after long-term treatment with teriparatide (human parathyroid hormone (1-34)). The Journal of Toxicological Sciences 37 (3):617–29. doi: 10.2131/jts.37.617.
  • Wong, K., and P. C. Cheung. 2000. Nutritional evaluation of some subtropical red and green seaweeds: Part I—proximate composition, amino acid profiles and some physico-chemical properties. Food Chemistry 71 (4):475–82. doi: 10.1016/S0308-8146(00)00175-8.
  • Wong, S. K., K. Y. Chin, F. H. Suhaimi, F. Ahmad, and S. Ima-Nirwana. 2016. The relationship between metabolic syndrome and osteoporosis: A review. Nutrients 8 (6):347. doi: 10.3390/nu8060347.
  • Xia, G., j Wang, y Tian, y Wang, y Zhao, z Yu, s Wang, and C. Xue. 2015. Phosphorylated peptides from Antarctic krill (Euphausia superba) prevent estrogen Deficiency Induced Osteoporosis by Inhibiting Bone Resorption in Ovariectomized Rats . Journal of Agricultural and Food Chemistry 63 (43):9550–7. doi: 10.1021/acs.jafc.5b04263.
  • Xiao, G. Z., R. Gopalakrishnan, D. Jiang, E. Reith, M. D. Benson, and R. T. Franceschi. 2002. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research 17 (1):101–10. doi: 10.1359/jbmr.2002.17.1.101.
  • Xu, Y. J., X. L. Han, and Y. Li. 2010. Effect of marine collagen peptides on long bone development in growing rats. Journal of the Science of Food and Agriculture 90 (9):1485–91. doi: 10.1002/jsfa.3972.
  • Yamada, S., H. Nagaoka, M. Terajima, N. Tsuda, Y. Hayashi, and M. Yamauchi. 2013. Effects of fish collagen peptides on collagen post-translational modifications and mineralization in an osteoblastic cell culture system. Dental Materials Journal 32 (1):88–95. doi: 10.4012/dmj.2012-220.
  • Zanocco, K. A., and M. W. Yeh. 2017. Primary hyperparathyroidism: Effects on bone health. Endocrinology and Metabolism Clinics of North America 46 (1):87–104. doi: 10.1016/j.ecl.2016.09.012.
  • Zhang, K., B. Li, Q. Chen, Z. Zhang, X. Zhao, and H. Hou. 2018. Functional calcium binding peptides from Pacific Cod (Gadus macrocephalus) Bone: Calcium bioavailability enhancing activity and anti-osteoporosis effects in the ovariectomy-induced osteoporosis rat model. Nutrients 10 (9):1325. doi: 10.3390/nu10091325.
  • Zhang, L., S. Zhang, H. Song, and B. Li. 2018. Effect of collagen hydrolysates from silver carp skin (Hypophthalmichthys molitrix) on osteoporosis in chronologically aged mice: Increasing bone remodeling. Nutrients 10 (10):1434. doi: 10.3390/nu10101434.
  • Zheng, L. X., X. Q. Chen, and K. L. Cheong. 2020. Current trends in marine algae polysaccharides: The digestive tract, microbial catabolism, and prebiotic potential. International Journal of Biological Macromolecules 151:344–54. doi: 10.1016/j.ijbiomac.2020.02.168.
  • Zotti, M., L. D. Coco, S. A. D. Pascali, D. Migoni, S. Vizzini, G. Mancinelli, and F. P. Fanizzi. 2016. Comparative analysis of the proximate and elemental composition of the blue crab Callinectes sapidus, the warty crab Eriphia verrucosa, and the edible crab Cancer pagurus. Heliyon 2 (2):e00075 doi: 10.1016/j.heliyon.2016.e00075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.