2,699
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Current progress in kokumi-active peptides, evaluation and preparation methods: a review

, &

References

  • Amino, Y., M. Nakazawa, M. Kaneko, T. Miyaki, N. Miyamura, Y. Maruyama, and Y. Eto. 2016. Structure-CaSR-activity relation of kokumi γ-glutamyl peptides. Chemical & Pharmaceutical Bulletin 64 (8):1181–9. doi: 10.1248/cpb.c16-00293.
  • Anand, V., M. Kataria, V. Kukkar, V. Saharan, and P. K. Choudhury. 2007. The latest trends in the taste assessment of pharmaceuticals. Drug Discovery Today 12 (5–6):257–65. doi: 10.1016/j.drudis.2007.01.010.
  • Behrens, M., W. Meyerhof, C. Hellfritsch, and T. Hofmann. 2011. Sweet and umami taste: Natural products, their chemosensory targets, and beyond. Angewandte Chemie (International ed. in English) 50 (10):2220–42. doi: 10.1002/anie.201002094.
  • Brehm, L., M. Junger, O. Frank, and T. Hofmann. 2019. Discovery of a thiamine-derived taste enhancer in process flavors. Journal of Agricultural and Food Chemistry 67 (20):5857–65. doi: 10.1021/acs.jafc.9b01832.
  • Brennan, S. C., T. S. Davies, M. Schepelmann, and D. Riccardi. 2014. Emerging roles of the extracellular calcium-sensing receptor in nutrient sensing: Control of taste modulation and intestinal hormone secretion. British Journal of Nutrition 111 (S1):S16–S22. doi: 10.1017/S0007114513002250.
  • Broadhead, G. K., H. C. Mun, V. A. Avlani, O. Jourdon, W. B. Church, A. Christopoulos, L. Delbridge, and A. D. Conigrave. 2011. Allosteric modulation of the calcium-sensing receptor by gamma-glutamyl peptides: inhibition of PTH secretion, suppression of intracellular cAMP levels, and a common mechanism of action with L-amino acids. The Journal of Biological Chemistry 286 (11):8786–97. doi: 10.1074/jbc.M110.149724.
  • Brown, E. M., G. Gamba, D. Riccardi, M. Lombardi, R. Butters, O. Kifor, A. Sun, M. A. Hediger, J. Lytton, and S. C. Hebert. 1993. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid . Nature 366 (6455):575–80. doi: 10.1038/366575a0.
  • Brown, E. M., C. Katz, R. Butters, and O. Kifor. 1991. Polyarginine, polylysine, and protamine mimic the effects of high extracellular calcium concentrations on dispersed bovine parathyroid cells. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research 6 (11):1217–25. doi: 10.1002/jbmr.5650061112.
  • Brown, E. M., and R. J. MacLeod. 2001. Extracellular calcium sensing and extracellular calcium signaling. Physiological Reviews 81 (1):239–97. doi: 10.1152/physrev.2001.81.1.239.
  • Chang, R. B., H. Waters, and E. R. Liman. 2010. A proton current drives action potentials in genetically identified sour taste cells. Proceedings of the National Academy of Sciences of the United States of America 107 (51):22320–5. doi: 10.1073/pnas.1013664107.
  • Cho, J., M. Park, D. Choi, and S. K. Lee. 2012. Cloning and expression of γ-glutamyl transpeptidase and its relationship to greening in crushed garlic (Allium sativum) cloves. Journal of the Science of Food and Agriculture 92 (2):253–7. doi: 10.1002/jsfa.4610.
  • Conigrave, A. D., H. C. Mun, and H. C. Lok. 2007. Aromatic L-amino acids activate the calcium-sensing receptor. The Journal of Nutrition 137 (6 Suppl 1):1524S–1527. S. doi: 10.1093/jn/137.6.1524S.
  • de Mortel, E., Z. A. Shen, J. F. Barnett, L. Krsmanovic, A. Myhre, and B. F. Delaney. 2010. Toxicology studies with N-acetyl-L-serine. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 48 (8–9):2193–9. doi: 10.1016/j.fct.2010.05.045.
  • Dunkel, A., J. Koster, and T. Hofmann. 2007. Molecular and sensory characterization of gamma-glutamyl peptides as key contributors to the kokumi taste of edible beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry 55 (16):6712–9. doi: 10.1021/jf071276u.
  • Feng, T., Y. Wu, Z. Zhang, S. Song, H. Zhuang, Z. Xu, L. Yao, and M. Sun. 2019. Purification, identification, and sensory evaluation of kokumi peptides from Agaricus bisporus mushroom. Foods 8 (2):43. doi: 10.3390/foods8020043.
  • Feng, T., Z. Zhang, H. Zhuang, J. Zhou, and Z. Xu. 2016. Effect of peptides on new taste sensation: Kokumi-review. Mini-Reviews in Organic Chemistry 13 (4):255–61. doi: 10.2174/1570193X13666160530144058.
  • Gabriel, A. S., H. Uneyama, T. Maekawa, and K. Torii. 2009. The calcium-sensing receptor in taste tissue. Biochemical and Biophysical Research Communications 378 (3):414–8. doi: 10.1016/j.bbrc.2008.11.060.
  • Hammerl, R., O. Frank, and T. Hofmann. 2017. Differential off-line LC-NMR (DOLC-NMR) metabolomics to monitor tyrosine-induced metabolome alterations in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry 65 (15):3230–41. doi: 10.1021/acs.jafc.7b00975.
  • Hartman, S. C. 1971. Glutaminases and γ-glutamyl transferases. Enzymes 4:79–100. doi: 10.1016/S1874-6047(08)60364-9.
  • Hazelwood, L. A., J. M. Daran, A. J. A. van Maris, J. T. Pronk, and J. R. Dickinson. 2008. The ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Applied and Environmental Microbiology 74 (8):2259–66. doi: 10.1128/AEM.02625-07.
  • Hillmann, H., and T. Hofmann. 2016. Quantitation of key tastants and re-engineering the taste of Parmesan cheese. Journal of Agricultural and Food Chemistry 64 (8):1794–805. doi: 10.1021/acs.jafc.6b00112.
  • Izquierdo-Pulido, M., A. Marine-Font, and M. C. Vidal-Carou. 2000. Effect of tyrosine on tyramine formation during beer fermentation. Food Chemistry 70 (3):329–32. doi: 10.1016/S0308-8146(00)00095-9.
  • Jung, D. W., J. H. Hong, and K. O. Kim. 2010. Sensory characteristics and consumer acceptability of beef soup with added glutathione and/or MSG. Journal of Food Science 75 (1):S36–S42. doi: 10.1111/j.1750-3841.2009.01411.x.
  • Karangwa, E., N. Murekatete, J. D. Habimana, K. Masamba, E. Duhoranimana, B. Muhoza, and X. M. Zhang. 2016. Contribution of crosslinking products in the flavour enhancer processing: The new concept of Maillard peptide in sensory characteristics of Maillard reaction systems. Journal of Food Science and Technology 53 (6):2863–75. doi: 10.1007/s13197-016-2268-y.
  • Kim, H. O., and E. C. Y. Li-Chan. 2006. Quantitative structure-activity relationship study of bitter peptides. Journal of Agricultural and Food Chemistry 54 (26):10102–11. doi: 10.1021/jf062422j.
  • Kim, M. J., H. J. Son, Y. Kim, T. Misaka, and M. R. Rhyu. 2015. Umami-bitter interactions: The suppression of bitterness by umami peptides via human bitter taste receptor. Biochemical and Biophysical Research Communications 456 (2):586–90. doi: 10.1016/j.bbrc.2014.11.114.
  • Kinnamon, S. C. 2009. Umami taste transduction mechanisms. The American Journal of Clinical Nutrition 90 (3):753S–5S. doi: 10.3945/ajcn.2009.27462k.
  • Kirimura, J., A. Shimizu, A. Kimizuka, T. Ninomiya, and N. Katsuya. 1969. Contribution of peptides and amino acids to the taste of foods. Journal of Agricultural and Food Chemistry 17 (4):689–95. doi: 10.1021/jf60164a031.
  • Kuroda, M., Y. Kato, J. Yamazaki, N. Kageyama, T. Mizukoshi, H. Miyano, and Y. Eto. 2012. Determination of γ-glutamyl-valyl-glycine in raw scallop and processed scallop products using high pressure liquid chromatography-tandem mass spectrometry. Food Chemistry 134 (3):1640–4. doi: 10.1016/j.foodchem.2012.03.048.
  • Kuroda, M., Y. Kato, J. Yamazaki, Y. Kai, T. Mizukoshi, H. Miyano, and Y. Eto. 2012. Determination and quantification of γ-glutamyl-valyl-glycine in commercial fish sauces. Journal of Agricultural and Food Chemistry 60 (29):7291–6. doi: 10.1021/jf3012932.
  • Kuroda, M., Y. Kato, J. Yamazaki, Y. Kai, T. Mizukoshi, H. Miyano, and Y. Eto. 2013. Determination and quantification of the kokumi peptide, γ-glutamyl-valyl-glycine, in commercial soy sauces. Food Chemistry 141 (2):823–8. doi: 10.1016/j.foodchem.2013.03.070.
  • Kuroda, M., and N. Miyamura. 2015. Mechanism of the perception of “kokumi” substances and the sensory characteristics of the “kokumi” peptide, γ-Glu-Val-Gly. Flavour 4 (1):11. doi: 10.1186/2044-7248-4-11.
  • Li, Q., J. Liu, C. De Gobba, L. Zhang, W. Bredie, and R. Lamestch. 2020. Production of taste enhancers from protein hydrolysates of porcine hemoglobin and meat using Bacillus amyloliquefaciens γ-glutamyltranspeptidase. Journal of Agricultural and Food Chemistry. Advance Online Publication doi: 10.1021/acs.jafc.0c04513.
  • Lin, J., D. Sun-Waterhouse, C. Cui, and H. Lu. 2020. Increasing antioxidant activities of the glutamine-cysteine mixture by the glutaminase from Bacillus amyloliquefaciens. Food Chemistry 308:125701 doi: 10.1016/j.foodchem.2019.125701.
  • Liu, J., M. Liu, C. He, H. Song, and F. Chen. 2015. Effect of thermal treatment on the flavor generation from Maillard reaction of xylose and chicken peptide. Lwt - Food Science and Technology 64 (1):316–25. doi: 10.1016/j.lwt.2015.05.061.
  • Liu, J., H. Song, Y. Liu, P. Li, J. Yao, and J. Xiong. 2015. Discovery of kokumi peptide from yeast extract by LC-Q-TOF-MS/MS and sensomics approach. Journal of the Science of Food and Agriculture 95 (15):3183–94. doi: 10.1002/jsfa.7058.
  • Magno, A. L., B. K. Ward, and T. Ratajczak. 2011. The calcium-sensing receptor: A molecular perspective. Endocrine Reviews 32 (1):3–30. doi: 10.1210/er.2009-0043.
  • Margolskee, R. F. 2002. Molecular mechanisms of bitter and sweet taste transduction. The Journal of Biological Chemistry 277 (1):1–4. doi: 10.1074/jbc.r100054200.
  • Martins, S., W. M. F. Jongen, and M. van Boekel. 2000. A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology 11 (9–10):364–73. doi: 10.1016/S0924-2244(01)00022-X.
  • Maruyama, Y., R. Yasuda, M. Kuroda, and Y. Eto. 2012. Kokumi substances, enhancers of basic tastes, induce responses in calcium-sensing receptor expressing taste cells. Plos One 7 (4):e34489. doi: 10.1371/journal.pone.0034489.
  • McLarnon, S. J., D. Holden, D. T. Ward, M. N. Jones, A. C. Elliott, and D. Riccardi. 2002. Aminoglycoside antibiotics induce pH-sensitive activation of the calcium-sensing receptor. Biochemical and Biophysical Research Communications 297 (1):71–7. doi: 10.1016/S0006-291X(02)02133-2.
  • Miyaki, T., H. Kawasaki, M. Kuroda, N. Miyamura, and T. Kouda. 2015. Effect of a kokumi peptide, γ-glutamyl-valyl-glycine, on the sensory characteristics of chicken consommé. Flavour 4 (1):17. doi: 10.1186/2044-7248-4-17.
  • Miyamura, N., Y. Iida, M. Kuroda, Y. Kato, J. Yamazaki, T. Mizukoshi, and H. Miyano. 2015. Determination and quantification of kokumi peptide, γ-glutamyl-valyl-glycine, in brewed alcoholic beverages. Journal of Bioscience and Bioengineering 120 (3):311–4. doi: 10.1016/j.jbiosc.2015.01.018.
  • Miyamura, N., M. Kuroda, Y. Kato, J. Yamazaki, T. Mizukoshi, H. Miyano, and Y. Eto. 2014. Determination and quantification of a kokumi peptide, gamma-glutamyl-valyl-glycine, in fermented shrimp paste condiments. Food Science and Technology Research 20 (3):699–703. doi: 10.3136/fstr.20.699.
  • Mummalaneni, S., J. Qian, T. H. T. Phan, M. R. Rhyu, G. L. Heck, J. A. DeSimone, and V. Lyall. 2014. Effect of ENaC modulators on rat neural responses to NaCl. Plos One 9 (5):e98049. doi: 10.1371/journal.pone.0098049.
  • Nandakumar, R., K. Yoshimune, M. Wakayama, and M. Moriguchi. 2003. Microbial glutaminase: Biochemistry, molecular approaches and applications in the food industry. Journal of Molecular Catalysis B: Enzymatic 23 (2–6):87–100. doi: 10.1016/S1381-1177(03)00075-4.
  • Nishimura, T., and M. Kuroda. 2019. Koku in food science and physiology: Recent research on a key concept in palatability. Singapore: Springer Singapore. doi: 10.1007/978-981-13-8453-0.
  • Ogasawara, M., T. Katsumata, and M. Egi. 2006. Taste properties of Maillard-reaction products prepared from 1000 to 5000 Da peptide. Food Chemistry 99 (3):600–4. doi: 10.1016/j.foodchem.2005.08.040.
  • Ohsu, T., Y. Amino, H. Nagasaki, T. Yamanaka, S. Takeshita, T. Hatanaka, Y. Maruyama, N. Miyamura, and Y. Eto. 2010. Involvement of the calcium-sensing receptor in human taste perception. Journal of Biological Chemistry 285 (2):1016–22. doi: 10.1074/jbc.M109.029165.
  • Pinsorn, P.,. A. Oikawa, M. Watanabe, R. Sasaki, P. Ngamchuachit, R. Hoefgen, K. Saito, and S. Sirikantaramas. 2018. Metabolic variation in the pulps of two durian cultivars: Unraveling the metabolites that contribute to the flavor. Food Chemistry 268:118–25. doi: 10.1016/j.foodchem.2018.06.066.
  • Procopio, S., D. Krause, T. Hofmann, and T. Becker. 2013. Significant amino acids in aroma compound profiling during yeast fermentation analyzed by PLS regression. Lwt - Food Science and Technology 51 (2):423–32. doi: 10.1016/j.lwt.2012.11.022.
  • Quinn, S. J., C. P. Ye, R. Diaz, O. Kifor, M. Bai, P. Vassilev, and E. Brown. 1997. The Ca2+-sensing receptor: A target for polyamines. The American Journal of Physiology 273 (4):C1315–C1323. doi: 10.1152/ajpcell.1997.273.4.c1315.
  • Ray, K., S. P. Ghosh, and J. K. Northup. 2004. The role of cysteines and charged amino acids in extracellular loops of the human Ca(2+) receptor in cell surface expression and receptor activation processes. Endocrinology 145 (8):3892–903. doi: 10.1210/en.2003-1653.
  • Roudot-Algaron, F., L. Kerhoas, D. Le Bars, J. Einhorn, and J. C. Gripon. 1994. Isolation of gamma-glutamyl peptides from Comté cheese. Journal of Dairy Science 77 (5):1161–6. doi: 10.3168/jds.S0022-0302(94)77053-3.
  • Saidak, Z., M. Brazier, S. Kamel, and R. Mentaverri. 2009. Agonists and allosteric modulators of the calcium-sensing receptor and their therapeutic applications. Molecular Pharmacology 76 (6):1131–44. doi: 10.1124/mol.109.058784.
  • Salger, M., T. D. Stark, and T. Hofmann. 2019. Taste modulating peptides from overfermented cocoa beans. Journal of Agricultural and Food Chemistry 67 (15):4311–20. doi: 10.1021/acs.jafc.9b00905.
  • Sgarbi, E., C. Lazzi, L. Iacopino, C. Bottesini, F. Lambertini, S. Sforza, and M. Gatti. 2013. Microbial origin of non proteolytic aminoacyl derivatives in long ripened cheeses. Food Microbiology 35 (2):116–20. doi: 10.1016/j.fm.2013.02.013.
  • Shah, A., M. Ogasawara, M. Egi, H. Kurihara, and K. Takahashi. 2010. Identification and sensory evaluation of flavour enhancers in Japanese traditional dried herring (Clupea pallasii) fillet. Food Chemistry 122 (1):249–53. doi: 10.1016/j.foodchem.2010.02.072.
  • Shibata, M., M. Hirotsuka, Y. Mizutani, H. Takahashi, T. Kawada, K. Matsumiya, Y. Hayashi, and Y. Matsumura. 2017. Isolation and characterization of key contributors to the "kokumi" taste in soybean seeds. Bioscience, Biotechnology, and Biochemistry 81 (11):2168–77. doi: 10.1080/09168451.2017.1372179.
  • Shibata, M., M. Hirotsuka, Y. Mizutani, H. Takahashi, T. Kawada, K. Matsumiya, Y. Hayashi, and Y. Matsumura. 2018. Thermal treatment of soybean seeds can improve the quality of soymilk by enhancing the extraction efficiency of "kokumi" taste components. Food Science and Technology Research 24 (6):1111–9. doi: 10.3136/fstr.24.1111.
  • Sofyanovich, O. A., H. Nishiuchi, K. Yamagishi, E. V. Matrosova, and V. A. Serebrianyi. 2019. Multiple pathways for the formation of the γ-glutamyl peptides γ-glutamyl-valine and γ- glutamyl-valyl-glycine in Saccharomyces cerevisiae. Plos One 14 (5):e0216622. doi: 10.1371/journal.pone.0216622.
  • Spaggiari, G., A. Di Pizio, and P. Cozzini. 2020. Sweet, umami and bitter taste receptors: State of the art of in silico molecular modeling approaches. Trends in Food Science & Technology 96:21–9. doi: 10.1016/j.tifs.2019.12.002.
  • Speranza, G., and C. F. Morelli. 2012. gamma-Glutamyl transpeptidase-catalyzed synthesis of naturally occurring flavor enhancers. Journal of Molecular Catalysis B: Enzymatic 84:65–71. doi: 10.1016/j.molcatb.2012.03.014.
  • Suzuki, H., Y. Kajimoto, and H. Kumagai. 2002. Improvement of the bitter taste of amino acids through the transpeptidation reaction of bacterial gamma-glutamyltranspeptidase. Journal of Agricultural and Food Chemistry 50 (2):313–8. doi: 10.1021/jf010726u.
  • Suzuki, H., K. Kato, and H. Kumagai. 2004. Enzymatic synthesis of gamma-glutamylvaline to improve the bitter taste of valine. Journal of Agricultural and Food Chemistry 52 (3):577–80. doi: 10.1021/jf0347564.
  • Suzuki, H., and H. Kumagai. 2004. Application of bacterial γ-glutamyl-transpeptidase to improve the taste of food. Challenges in Taste Chemistry and Biology 867:223–37. doi: 10.1021/bk-2003-0867.ch015.
  • Suzuki, H., Y. Nakafuji, and T. Tamura. 2017. New method to produce kokumi seasoning from protein hydrolysates using bacterial enzymes. Journal of Agricultural and Food Chemistry 65 (48):10514–9. doi: 10.1021/acs.jafc.7b03690.
  • Suzuki, H., C. Yamada, and K. Kato. 2007. gamma-Glutamyl compounds and their enzymatic production using bacterial gamma-glutamyltranspeptidase. Amino Acids 32 (3):333–40. doi: 10.1007/s00726-006-0416-9.
  • Toelstede, S., A. Dunkel, and T. Hofmann. 2009. A series of kokumi peptides impart the long-lasting mouthfulness of matured Gouda cheese. Journal of Agricultural and Food Chemistry 57 (4):1440–8. doi: 10.1021/jf803376d.
  • Toelstede, S., and T. Hofmann. 2009. Kokumi-active glutamyl peptides in cheeses and their biogeneration by Penicillium roquefortii. Journal of Agricultural and Food Chemistry 57 (9):3738–48. doi: 10.1021/jf900280j.
  • Tomita, K., T. Yano, T. Kitagata, H. Kumagai, and T. Tochikura. 1989. Formation of gamma-glutamyl-transferase peptides by glutaminase of Aspergillus-oryzae. Agricultural and Biological Chemistry 53 (7):1995–6. doi: 10.1080/00021369.1989.10869596.
  • Ueda, Y., M. Sakaguchi, K. Hirayama, R. Miyajima, and A. Kimizuka. 1990. Characteristic flavor constituents in water extract of garlic. Agricultural and Biological Chemistry 54 (1):163–9. doi: 10.1080/00021369.1990.10869909.
  • Ueda, Y., T. Tsubuku, and R. Miyajima. 1994. Composition of sulfur-containing components in onion and their flavor characters. Bioscience, Biotechnology, and Biochemistry 58 (1):108–10. doi: 10.1271/bbb.58.108.
  • Ueda, Y., M. Yonemitsu, T. Tsubuku, M. Sakaguchi, and R. Miyajima. 1997. Flavor characteristics of glutathione in raw and cooked foodstuffs. Bioscience, Biotechnology, and Biochemistry 61 (12):1977–80. doi: 10.1271/bbb.61.1977.
  • US Food and Drug Administration (USFDA). 2019. Part 172—Food additives permitted for direct addition to food for human consumption. Section §172.372—N-acetyl-L-methionine. Accessed April 17, 2020. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.372.
  • Wakamatsu, J., T. D. Stark, and T. Hofmann. 2016. Taste-active Maillard reaction products in roasted garlic (Allium sativum). Journal of Agricultural and Food Chemistry 64 (29):5845–54. doi: 10.1021/acs.jafc.6b02396.
  • Wang, W.,. L. Zhang, Z. Wang, X. Wang, and Y. Liu. 2019. Physicochemical and sensory variables of Maillard reaction products obtained from Takifugu obscurus muscle hydrolysates. Food Chemistry 290:40–6. doi: 10.1016/j.foodchem.2019.03.065.
  • Winkel, C., A. de Klerk, J. Visser, E. de Rijke, J. Bakker, T. Koenig, and H. Renes. 2008. New developments in umami (enhancing) molecules. Chemistry & Biodiversity 5 (6):1195–203. doi: 10.1002/cbdv.200890096.
  • Wu, G., Y. Fang, S. Yang, J. R. Lupton, and N. D. Turner. 2004. Glutathione metabolism and its implications for health. The Journal of Nutrition 134 (3):489–92. doi: 10.1093/jn/134.3.489.
  • Xu, X., M. You, H. Song, L. Gong, and W. Pan. 2018. Investigation of umami and kokumi taste-active components in bovine bone marrow extract produced during enzymatic hydrolysis and Maillard reaction. International Journal of Food Science & Technology 53 (11):2465–81. doi: 10.1111/ijfs.13893.
  • Yamamoto, T., U. Watanabe, M. Fujimoto, and N. Sako. 2009. Taste preference and nerve response to 5'-inosine monophosphate are enhanced by glutathione in mice. Chemical Senses 34 (9):809–18. doi: 10.1093/chemse/bjp070.
  • Yan, B., Y. Chen, W. Wang, J. Zhao, W. Chen, and M. Ganzle. 2018. γ-Glutamyl cysteine ligase of lactobacillus reuteri synthesizes γ-Glutamyl dipeptides in sourdough. Journal of Agricultural and Food Chemistry 66 (46):12368–75. doi: 10.1021/acs.jafc.8b05056.
  • Yang, J., W. Bai, X. Zeng, and C. Cui. 2019a. γ-[Glu](n = 1,2)-Phe/-Met/-Val stimulates gastrointestinal hormone (CCK and GLP-1) secretion by activating the calcium-sensing receptor. Food & Function 10 (7):4071–80. doi: 10.1039/c9fo00313d.
  • Yang, J., W. Bai, X. Zeng, and C. Cui. 2019b. Gamma glutamyl peptides: The food source, enzymatic synthesis, kokumi-active and the potential functional properties - A review. Trends in Food Science & Technology 91:339–46. doi: 10.1016/j.tifs.2019.07.022.
  • Yang, J., and J. Lee. 2019. Application of sensory descriptive analysis and consumer studies to investigate traditional and authentic foods: A review. Foods 8 (2):54. doi: 10.3390/foods8020054.
  • Yang, J., D. Sun-Waterhouse, C. Cui, K. Dong, and W. Wang. 2017. Synthesis and sensory characteristics of kokumi gamma-[Glu]n-Phe in the presence of glutamine and phenylalanine: Glutaminase from Bacillus amyloliquefaciens or Aspergillus oryzae as the catalyst. Journal of Agricultural and Food Chemistry 65 (39):8696–703. doi: 10.1021/acs.jafc.7b03419.
  • Yang, J., D. Sun-Waterhouse, C. Cui, K. Dong, and M. Zhao. 2018. Gamma-Glu-Met synthesised using a bacterial glutaminase as a potential inhibitor of dipeptidyl peptidase IV. International Journal of Food Science & Technology 53 (5):1166–75. doi: 10.1111/ijfs.13692.
  • Yang, J., D. Sun-Waterhouse, C. Cui, H. Zhao, and K. Dong. 2018. Gamma-glutamylation of the white particulates of sufu and simultaneous synthesis of multiple acceptor amino acids-containing gamma-glutamyl peptides: Favorable catalytic actions of glutaminase. Lwt-Food Science and Technology 96:315–21. doi: 10.1016/j.lwt.2018.05.055.
  • Yang, J., D. Sun-Waterhouse, J. Xie, L. Wang, H. Chen, C. Cui, and M. Zhao. 2018. Comparison of kokumi gamma-[Glu](n>1)-Val and gamma-[Glu](n>1)-Met synthesized through transpeptidation catalyzed by glutaminase from Bacillus amyloliquefaciens. Food Chemistry 247:89–97. doi: 10.1016/j.foodchem.2017.11.096.
  • Yang, J., D. Sun-Waterhouse, W. Zhou, C. Cui, and W. Wang. 2019. Glutaminase-catalyzed gamma-glutamylation to produce CCK secretion-stimulatory gamma-[Glu](n)-Trp peptides superior to tryptophan. Journal of Functional Foods 60:103418. doi: 10.1016/j.jff.2019.103418.
  • Yoshimoto, N., A. Yabe, Y. Sugino, S. Murakami, N. Sai-Ngam, S. Sumi, T. Tsuneyoshi, and K. Saito. 2015. Garlic γ-glutamyl transpeptidases that catalyze deglutamylation of biosynthetic intermediate of alliin . Frontiers in Plant Science 5:758. doi: 10.3389/fpls.2014.00758.
  • Yu, M., S. He, M. Tang, Z. Zhang, Y. Zhu, and H. Sun. 2018. Antioxidant activity and sensory characteristics of Maillard reaction products derived from different peptide fractions of soybean meal hydrolysate. Food Chemistry 243:249–57. doi: 10.1016/j.foodchem.2017.09.139.
  • Yu, X., L. Zhang, X. Miao, Y. Li, and Y. Liu. 2017. The structure features of umami hexapeptides for the T1R1/T1R3 receptor. Food Chemistry 221:599–605. doi: 10.1016/j.foodchem.2016.11.133.
  • Zhang, J., D. Sun-Waterhouse, G. Su, and M. Zhao. 2019. New insight into umami receptor, umami/umami-enhancing peptides and their derivatives: A review. Trends in Food Science & Technology 88:429–38. doi: 10.1016/j.tifs.2019.04.008.
  • Zhang, J., M. Zhao, G. Su, and L. Lin. 2019. Identification and taste characteristics of novel umami and umami-enhancing peptides separated from peanut protein isolate hydrolysate by consecutive chromatography and UPLC-ESI-QTOF-MS/MS. Food Chemistry 278:674–82. doi: 10.1016/j.foodchem.2018.11.114.
  • Zhang, Y., Y. Ma, Z. Ahmed, W. Geng, W. Tang, Y. Liu, H. Jin, F. Jiang, J. Wang, and Y. Wang. 2019. Purification and identification of kokumi-enhancing peptides from chicken protein hydrolysate. International Journal of Food Science & Technology 54 (6):2151–8. doi: 10.1111/ijfs.14122.
  • Zhang, Y., C. Venkitasamy, Z. Pan, W. Liu, and L. Zhao. 2017. Novel umami ingredients: Umami peptides and their taste. Journal of Food Science 82 (1):16–23. doi: 10.1111/1750-3841.13576.
  • Zhao, C. J., and M. G. Ganzle. 2016. Synthesis of taste-active γ-Glutamyl Dipeptides during Sourdough Fermentation by Lactobacillus reuteri . Journal of Agricultural and Food Chemistry 64 (40):7561–8. doi: 10.1021/acs.jafc.6b02298.
  • Zhao, C. J., A. Schieber, and M. G. Ganzle. 2016. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review. Food Research International (Ottawa, Ont.) 89 (Pt 1):39–47. doi: 10.1016/j.foodres.2016.08.042.
  • Zhu, X., D. Sun-Waterhouse, J. Chen, C. Cui, and W. Wang. 2020. Bitter-tasting hydrophobic peptides prepared from soy sauce using aqueous ethanol solutions influence taste sensation. International Journal of Food Science & Technology 55 (1):146–56. doi: 10.1111/ijfs.14271.
  • Zhu, X., Q. Tao, D. Sun-Waterhouse, W. Li, S. Liu, and C. Cui. 2019. γ-[Glu]n-Trp ameliorates anxiety/depression-like behaviors and its anti-inflammatory effect in an animal model of anxiety/depression. Food & Function 10 (9):5544–54. doi: 10.1039/c9fo01467e.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.