3,287
Views
34
CrossRef citations to date
0
Altmetric
Reviews

Microencapsulation of essential oils by complex coacervation method: preparation, thermal stability, release properties and applications

, , , , &

References

  • Anvari, M., C. H. Pan, W. B. Yoon, and D. Chung. 2015. Characterization of fish gelatin-gum arabic complex coacervates as influenced by phase separation temperature. International Journal of Biological Macromolecules 79:894–902. doi: 10.1016/j.ijbiomac.2015.06.004.
  • Ban, Z., J. Zhang, L. Li, Z. Luo, Y. Wang, Q. Yuan, B. Zhou, and H. Liu. 2020. Ginger essential oil-based microencapsulation as an efficient delivery system for the improvement of Jujube (Ziziphus jujuba Mill.) fruit quality. Food Chemistry 306:125628. doi: 10.1016/j.foodchem.2019.125628
  • Bastos, L. P. H., C. W. P. de Carvalho, and E. E. Garcia-Rojas. 2018. Formation and characterization of the complex coacervates obtained between lactoferrin and sodium alginate. International Journal of Biological Macromolecules 120 (Pt A):332–8. doi: 10.1016/j.ijbiomac.2018.08.050.
  • Basu, S., D. Banerjee, R. Chowdhury, and P. Bhattacharya. 2018. Controlled release of microencapsulated probiotics in food matrix. Journal of Food Engineering 238:61–9. doi: 10.1016/j.jfoodeng.2018.06.005
  • Bisht, B., U. C. Lohani, V. Kumar, P. Gururani, and R. Sinhmar. 2020. Edible hydrocolloids as sustainable substitute for non-biodegradable materials. Critical Review in Food Science and Nutrition :1–33. doi: 10.1080/10408398.2020.1827219.
  • Bosnea, L. A., T. Moschakis, and C. G. Biliaderis. 2017. Microencapsulated cells of Lactobacillus paracasei subsp. paracasei in biopolymer complex coacervates and their function in a yogurt matrix. Food & Function 8 (2):554–62. doi: 10.1039/c6fo01019a.
  • Bruneau, M., S. Bennici, J. Brendle, P. Dutournie, L. Limousy, and S. Pluchon. 2019. Systems for stimuli-controlled release: Materials and applications. Journal of Controlled Release : official Journal of the Controlled Release Society 294:355–71. doi: 10.1016/j.jconrel.2018.12.038.
  • Can Karaca, A., N. H. Low, and M. T. Nickerson. 2015. Potential use of plant proteins in the microencapsulation of lipophilic materials in foods. Trends in Food Science & Technology 42 (1):5–12. doi: 10.1016/j.tifs.2014.11.002
  • Chakravartula, S. S. N., M. Soccio, N. Lotti, F. Balestra, M. Dalla Rosa, and V. Siracusa. 2019. Characterization of composite edible films based on pectin/alginate/whey protein concentrate. Materials (Basel), 12 (15):2454. doi: 10.3390/ma12152454
  • Chang, P. G., R. Gupta, Y. P. Timilsena, and B. Adhikari. 2016. Optimisation of the complex coacervation between canola protein isolate and chitosan. Journal of Food Engineering 191:58–66. doi: 10.1016/j.jfoodeng.2016.07.008
  • Chen, M., Y. Hu, J. Zhou, Y. Xie, H. Wu, T. Yuan, and Z. Yang. 2016. Facile fabrication of tea tree oil-loaded antibacterial microcapsules by complex coacervation of sodium alginate/quaternary ammonium salt of chitosan. RSC Advances 6 (16):13032–9. doi: 10.1039/c5ra26052c
  • Condict, L., V. D. Paramita, and S. Kasapis. 2019. Dairy protein–ligand interactions upon thermal processing and targeted delivery for the design of functional foods. Current Opinion in Food Science 27:8–17. doi: 10.1016/j.cofs.2019.03.007
  • Croguennec, T., G. M. Tavares, and S. Bouhallab. 2017. Heteroprotein complex coacervation: A generic process. Advances in Colloid and Interface Science 239:115–26. doi: 10.1016/j.cis.2016.06.009.
  • Damerau, A., P. Kamlang-Ek, T. Moisio, A. M. Lampi, and V. Piironen. 2014. Effect of SPME extraction conditions and humidity on the release of volatile lipid oxidation products from spray-dried emulsions. Food Chemistry 157:1–9. doi: 10.1016/j.foodchem.2014.02.032.
  • de Kruif, C. G., F. Weinbreck, and R. de Vries. 2004. Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science 9 (5):340–9. doi: 10.1016/j.cocis.2004.09.006
  • de Matos, E. F., B. S. Scopel, and A. Dettmer. 2018. Citronella essential oil microencapsulation by complex coacervation with leather waste gelatin and sodium alginate. Journal of Environmental Chemical Engineering 6 (2):1989–94. doi: 10.1016/j.jece.2018.03.002
  • de Matos, S. P., L. G. Lucca, and L. S. Koester. 2019. Essential oils in nanostructured systems: Challenges in preparation and analytical methods. Talanta 195:204–14. doi: 10.1016/j.talanta.2018.11.029.
  • Deka, C., D. Deka, M. M. Bora, D. K. Jha, and D. K. Kakati. 2016. Synthesis of peppermint oil-loaded chitosan/alginate polyelectrolyte complexes and study of their antibacterial activity. Journal of Drug Delivery Science and Technology 35:314–22. doi: 10.1016/j.jddst.2016.08.007
  • Dima, C., M. Cotârlet, P. Alexe, and S. Dima. 2014. Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k-carrageenan complex coacervation method. Innovative Food Science & Emerging Technologies 22:203–11. doi: 10.1016/j.ifset.2013.12.020
  • Dong, Z., Y. Ma, K. Hayat, C. Jia, S. Xia, and X. Zhang. 2011. Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation. Journal of Food Engineering 104 (3):455–60. doi: 10.1016/j.jfoodeng.2011.01.011
  • Duconseille, A., F. Wien, F. Audonnet, A. Traore, M. Refregiers, T. Astruc, and V. Santé-Lhoutellier. 2017. The effect of origin of the gelatine and ageing on the secondary structure and water dissolution. Food Hydrocolloids 66:378–88. doi: 10.1016/j.foodhyd.2016.12.005
  • Duhoranimana, E., E. Karangwa, L. Lai, X. Xu, J. Yu, S. Xia, X. Zhang, B. Muhoza, and I. Habinshuti. 2017. Effect of sodium carboxymethyl cellulose on complex coacervates formation with gelatin: Coacervates characterization, stabilization and formation mechanism. Food Hydrocolloids 69:111–20. doi: 10.1016/j.foodhyd.2017.01.035
  • Eghbal, N., and R. Choudhary. 2018. Complex coacervation: Encapsulation and controlled release of active agents in food systems. Lwt 90:254–64. doi: 10.1016/j.lwt.2017.12.036
  • El Asbahani, A.,. K. Miladi, W. Badri, M. Sala, E. H. Aït Addi, H. Casabianca, A. El Mousadik, D. Hartmann, A. Jilale, F. N. R. Renaud, et al. 2015. Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics 483 (1-2):220–43. doi: 10.1016/j.ijpharm.2014.12.069.
  • El Knidri, H., R. Belaabed, A. Addaou, A. Laajeb, and A. Lahsini. 2018. Extraction, chemical modification and characterization of chitin and chitosan. International Journal of Biological Macromolecules 120 (Pt A):1181–9. doi: 10.1016/j.ijbiomac.2018.08.139.
  • Elzoghby, A. O. 2013. Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. Journal of Controlled Release : Official Journal of the Controlled Release Society 172 (3):1075–91. doi: 10.1016/j.jconrel.2013.09.019.
  • Eratte, D., K. Dowling, C. J. Barrow, and B. Adhikari. 2018. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review. Trends in Food Science & Technology 71:121–31. doi: 10.1016/j.tifs.2017.10.014
  • Espitia, P. J. P., C. A. Fuenmayor, and C. G. Otoni. 2019. Nanoemulsions: Synthesis, characterization, and application in bio-based active food packaging. Comprehensive Reviews in Food Science and Food Safety 18 (1):264–85. doi: 10.1111/1541-4337.12405
  • Fei, X., H. Zhao, B. Zhang, L. Cao, M. Yu, J. Zhou, and L. Yu. 2015. Microencapsulation mechanism and size control of fragrance microcapsules with melamine resin shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects 469:300–6. doi: 10.1016/j.colsurfa.2015.01.033
  • Gautam, S., B. Sharma, and P. Jain. 2020. Green Natural Protein Isolate based composites and nanocomposites: Areview. Polymer Testing :106626. 2020.106626 doi: 10.1016/j.polymertesting..
  • Ghorbani Gorji, E., A. Waheed, R. Ludwig, J. L. Toca-Herrera, G. Schleining, and S. Ghorbani Gorji. 2018. Complex coacervation of milk proteins with sodium alginate. Journal of Agricultural and Food Chemistry 66 (12):3210–20. doi: 10.1021/acs.jafc.7b03915.
  • Ghorbani Gorji, S., E. Ghorbani Gorji, M. A. Mohammadifar, and A. Zargaraan. 2014. Complexation of sodium caseinate with gum tragacanth: Effect of various species and rheology of coacervates. International Journal of Biological Macromolecules 67:503–11. doi: 10.1016/j.ijbiomac.2014.02.037.
  • Girardi, N. S., D. García, M. A. Passone, A. Nesci, and M. Etcheverry. 2017. Microencapsulation of Lippia turbinata essential oil and its impact on peanut seed quality preservation. International Biodeterioration & Biodegradation 116:227–33. doi: 10.1016/j.ibiod.2016.11.003
  • Girardi, N. S., D. García, S. N. Robledo, M. A. Passone, A. Nesci, and M. Etcheverry. 2016. Microencapsulation of Peumus boldus oil by complex coacervation to provide peanut seeds protection against fungal pathogens. Industrial Crops and Products 92:93–101. doi: 10.1016/j.indcrop.2016.07.045
  • Girardi, N. S., M. A. Passone, D. García, A. Nesci, and M. Etcheverry. 2018. Microencapsulation of Peumus boldus essential oil and its impact on peanut seed quality preservation. Industrial Crops and Products 114:108–14. doi: 10.1016/j.indcrop.2018.01.036
  • Goncalves, N. D., F. L. Pena, A. Sartoratto, C. Derlamelina, M. C. T. Duarte, A. E. C. Antunes, and A. S. Prata. 2017. Encapsulated thyme (Thymus vulgaris) essential oil used as a natural preservative in bakery product. Food Research International (Ottawa, Ont.) 96:154–60. doi: 10.1016/j.foodres.2017.03.006.
  • González-Martínez, D. A., H. Carrillo-Navas, C. E. Barrera-Díaz, S. L. Martínez-Vargas, J. Alvarez-Ramírez, and C. Pérez-Alonso. 2017. Characterization of a novel complex coacervate based on whey protein isolate-tamarind seed mucilage. Food Hydrocolloids 72:115–26. doi: 10.1016/j.foodhyd.2017.05.037
  • Guo, C., M. Zhang, and S. Devahastin. 2021. Color/aroma changes of 3D-Printed buckwheat dough with yellow flesh peach as triggered by microwave heating of gelatin-gum Arabic complex coacervates. Food Hydrocolloids 112:106358. doi: 10.1016/j.foodhyd.2020.106358
  • Hasanvand, E., A. Rafe, and B. Emadzadeh. 2018. Phase separation behavior of flaxseed gum and rice bran protein complex coacervates. Food Hydrocolloids 82:412–23. doi: 10.1016/j.foodhyd.2018.04.015
  • Heckert Bastos, L. P., J. Vicente, C. H. Corrêa dos Santos, M. Geraldo de Carvalho, and E. E. Garcia-Rojas. 2020. Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocolloids 102:105605. doi: 10.1016/j.foodhyd.2019.105605
  • Huang, G.-Q., J.-X. Xiao, L. Jia, and J. Yang. 2016. Characterization of O-carboxymethyl chitosan – gum arabic coacervates as a function of degree of substitution. Journal of Dispersion Science and Technology 37 (9):1368–74. doi: 10.1080/01932691.2015.1101609
  • Huang, G. Q., J. X. Xiao, S. Q. Wang, and H. W. Qiu. 2015. Rheological properties of O-carboxymethyl chitosan – gum arabic coacervates as a function of coacervation pH. Food Hydrocolloids 43:436–41. doi: 10.1016/j.foodhyd.2014.06.015
  • Jain, A., D. Thakur, G. Ghoshal, O. P. Katare, and U. S. Shivhare. 2016. Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth . International Journal of Biological Macromolecules 87:101–13. doi: 10.1016/j.ijbiomac.2016.01.117.
  • Jiajia Rao, B. C., and D. J. McClements. 2019. Improving the efficacy of essential oils as antimicrobials in foods: Mechanisms of action. Annual Review in Food Science and Technology 10(10):365–387.doi: 10.1146/annurev-food-032818121727.
  • Joshi, N., K. Rawat, and H. B. Bohidar. 2018. pH and ionic strength induced complex coacervation of pectin and gelatin A. Food Hydrocolloids 74:132–8. doi: 10.1016/j.foodhyd.2017.08.011
  • Ju, J., Y. Xie, Y. Guo, Y. Cheng, H. Qian, and W. Yao. 2019. Application of edible coating with essential oil in food preservation. Critical Reviews in Food Science and Nutrition 59 (15):2467–80. doi:10.1080/10408398.2018.1456402. PMID: 29580066
  • Ju, J., Y. Xie, Y. Guo, Y. Cheng, H. Qian, and W. Yao. 2020. Application of starch microcapsules containing essential oil in food preservation. Critical Reviews in Food Science and Nutrition 60 (17):2825–36. doi:10.1080/10408398.2018.1503590. PMID: 30040433
  • Karimi Sani, I., M. Alizadeh Khaledabad, S. Pirsa, and E. M. Kia. 2020. Physico‐chemical, organoleptic, antioxidative and release characteristics of flavoured yoghurt enriched with microencapsulated Melissa officinalis essential oil. International Journal of Dairy Technology 73 (3):542–51. doi: 10.1111/1471-0307.12691
  • Kayitmazer, A. B. 2017. Thermodynamics of complex coacervation. Advances in Colloid and Interface Science 239:169–77. doi: 10.1016/j.cis.2016.07.006.
  • Kayitmazer, A. B., E. Seyrek, P. L. Dubin, and B. A. Staggemeier. 2003. Influence of Chain Stiffness on the Interaction of Polyelectrolytes with Oppositely Charged Micelles and Proteins. The Journal of Physical Chemistry B 107 (32):8158–65. doi: 10.1021/jp034065a
  • Kha, T. C., M. H. Nguyen, P. D. Roach, and C. E. Stathopoulos. 2015. A storage study of encapsulated gac (Momordica cochinchinensis) oil powder and its fortification into foods. Food and Bioproducts Processing 96:113–25. doi: 10.1016/j.fbp.2015.07.009
  • Klinkesorn, U. 2013. The role of chitosan in emulsion formation and stabilization. Food Reviews International 29 (4):371–93. doi: 10.1080/87559129.2013.818013
  • Kontogiorgos, V. 2019. Polysaccharides at fluid interfaces of food systems. Advances in Colloid and Interface Science 270:28–37. doi: 10.1016/j.cis.2019.05.008.
  • Koszucka, A., and A. Nowak. 2019. Thermal processing food-related toxicants: A review. Critical Reviews in Food Science and Nutrition 59 (22):3579–96. doi: 10.1080/10408398.2018.1500440.
  • Koupantsis, T., and A. Paraskevopoulou. 2017. Flavour retention in sodium caseinate – Carboxymethylcellulose complex coavervates as a function of storage conditions. Food Hydrocolloids 69:459–65. doi: 10.1016/j.foodhyd.2017.03.006
  • Koupantsis, T., E. Pavlidou, and A. Paraskevopoulou. 2014. Flavour encapsulation in milk proteins – CMC coacervate-type complexes. Food Hydrocolloids 37:134–42. doi: 10.1016/j.foodhyd.2013.10.031
  • Koupantsis, T., E. Pavlidou, and A. Paraskevopoulou. 2016. Glycerol and tannic acid as applied in the preparation of milk proteins – CMC complex coavervates for flavour encapsulation. Food Hydrocolloids 57:62–71. doi: 10.1016/j.foodhyd.2016.01.007
  • Lemos, Y. P., P. H. Mariano Marfil, and V. R. Nicoletti. 2017. Particle size characteristics of buriti oil microcapsules produced by gelatin-sodium alginate complex coacervation: Effect of stirring speed. International Journal of Food Properties 20 : S1438–S1447. doi: 10.1080/10942912.2017.1349139
  • Li, Y., X. Zhang, N. Sun, Y. Wang, and S. Lin. 2018. Formation and evaluation of casein-gum arabic coacervates via pH-dependent complexation using fast acidification. International Journal of Biological Macromolecules 120 (Pt A):783–8. doi: 10.1016/j.ijbiomac.2018.08.145.
  • Liang, Y., L. Matia-Merino, G. Gillies, H. Patel, A. Ye, and M. Golding. 2017. The heat stability of milk protein-stabilized oil-in-water emulsions: A review. Current Opinion in Colloid & Interface Science 28:63–73. doi: 10.1016/j.cocis.2017.03.007
  • Lin, D., W. Lu, A. L. Kelly, L. Zhang, B. Zheng, and S. Miao. 2017. Interactions of vegetable proteins with other polymers: Structure-function relationships and applications in the food industry. Trends in Food Science & Technology 68:130–44. doi: 10.1016/j.tifs.2017.08.006
  • Liu, J., Y. Y. Shim, Y. Wang, and M. J. T. Reaney. 2015. Intermolecular interaction and complex coacervation between bovine serum albumin and gum from whole flaxseed (Linum usitatissimum L.). Food Hydrocolloids. 49:95–103. doi: 10.1016/j.foodhyd.2015.02.035
  • Liu, L.,. Q. Zhao, T. Liu, J. Kong, Z. Long, and M. Zhao. 2012. Sodium caseinate/carboxymethylcellulose interactions at oil–water interface: Relationship to emulsion stability. Food Chemistry 132 (4):1822–9. doi: 10.1016/j.foodchem.2011.12.014
  • Livney, Y. D. 2010. Milk proteins as vehicles for bioactives. Milk Proteins as Vehicles for Bioactives. Current Opinion in Colloid & Interface Science 15 (1-2):73–83. doi: 10.1016/j.cocis.2009.11.002
  • Loi, C. C., G. T. Eyres, and E. J. Birch. 2019. Effect of milk protein composition on physicochemical properties, creaming stability and volatile profile of a protein-stabilised oil-in-water emulsion. Food Research International (Ottawa, Ont.) 120:83–91. doi: 10.1016/j.foodres.2019.02.026.
  • Locali-Pereira, A. R., N. A. Lopes, M. E. C. Menis-Henrique, N. S. Janzantti, and V. R. Nicoletti. 2020. Modulation of volatile release and antimicrobial properties of pink pepper essential oil by microencapsulation in single- and double-layer structured matrices. International Journal of Food Microbiology 335:108890. doi: 10.1016/j.ijfoodmicro.2020.108890.
  • Lv, Y., F. Yang, X. Li, X. Zhang, and S. Abbas. 2014. Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocolloids 35:305–14. doi: 10.1016/j.foodhyd.2013.06.003
  • Ma, T., H. Zhao, J. Wang, and B. Sun. 2019. Effect of processing conditions on the morphology and oxidative stability of lipid microcapsules during complex coacervation. Food Hydrocolloids 87:637–43. doi: 10.1016/j.foodhyd.2018.08.053
  • Mahato, N., K. Sharma, R. Koteswararao, M. Sinha, E. Baral, and M. H. Cho. 2019. Citrus essential oils: Extraction, authentication and application in food preservation. Critical Reviews in Food Science and Nutrition 59 (4):611–25. doi:10.1080/10408398.2017.1384716. PMID: 28956626
  • Mancer, D., E. Allemann, and K. Daoud. 2018. Metformin hydrochloride microencapsulation by complex coacervation: Study of size distribution and encapsulation yield using response surface methodology. Journal of Drug Delivery Science and Technology 45:184–95. doi: 10.1016/j.jddst.2018.03.015
  • Martins, I. M., M. F. Barreiro, M. Coelho, and A. E. Rodrigues. 2014. Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chemical Engineering Journal 245:191–200. doi: 10.1016/j.cej.2014.02.024
  • McClements, D. J. 2017. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects. Advances in Colloid and Interface Science 240:31–59. doi: 10.1016/j.cis.2016.12.005.
  • McClements, D. J. 2018. Delivery by design (DbD): A standardized approach to the development of efficacious nanoparticle- and microparticle-based delivery systems. Comprehensive Reviews in Food Science and Food Safety 17 (1):200–19. doi: 10.1111/1541-4337.12313
  • Mishra, A. P., H. P. Devkota, M. Nigam, C. O. Adetunji, N. Srivastava, S. Saklani, I. Shukla, L. Azmi, M. A. Shariati, H. D. M. Coutinho, et al. 2020. Combination of essential oils in dairy products: A review of their functions and potential benefits. Lwt 133:110116. doi: 10.1016/j.lwt.2020.110116
  • Muhoza, B., S. Xia, J. Cai, X. Zhang, E. Duhoranimana, and J. Su. 2019. Gelatin and pectin complex coacervates as carriers for cinnamaldehyde: Effect of pectin esterification degree on coacervate formation, and enhanced thermal stability. Food Hydrocolloids 87:712–22. doi: 10.1016/j.foodhyd.2018.08.051
  • Muhoza, B., S. Xia, J. Cai, X. Zhang, J. Su, and L. Li. 2017. Time effect on coenzyme Q10 loading and stability of micelles based on glycosylated casein via Maillard reaction. Food Hydrocolloids 72:271–80. doi: 10.1016/j.foodhyd.2017.05.046
  • Muhoza, B., S. Xia, and X. Zhang. 2019. Gelatin and high methyl pectin coacervates crosslinked with tannic acid: The characterization, rheological properties, and application for peppermint oil microencapsulation. Food Hydrocolloids 97:105174. doi: 10.1016/j.foodhyd.2019.105174
  • Oliveira, W. Q. d., N. J. Wurlitzer, A. W. d O. Araújo, T. A. Comunian, M. d S. R. Bastos, A. L. d Oliveira, H. C. R. Magalhães, H. L. Ribeiro, R. W. d Figueiredo, and P. H. M. d Sousa. 2020. Complex coacervates of cashew gum and gelatin as carriers of green coffee oil: The effect of microcapsule application on the rheological and sensorial quality of a fruit juice. Food Research International (Ottawa, Ont.) 131:109047. doi: 10.1016/j.foodres.2020.109047.
  • Ozkan, G., P. Franco, I. De Marco, J. Xiao, and E. Capanoglu. 2019. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry 272:494–506. doi: 10.1016/j.foodchem.2018.07.205.
  • Pathak, J., E. Priyadarshini, K. Rawat, and H. B. Bohidar. 2017. Complex coacervation in charge complementary biopolymers: Electrostatic versus surface patch binding. Advances in Colloid and Interface Science 250:40–53. doi: 10.1016/j.cis.2017.10.006.
  • Phuhongsung, P., M. Zhang, and B. Bhandari. 2020. 4D printing of products based on soy protein isolate via microwave heating for flavor development. Food Research International (137), :109605. doi: 10.1016/j.foodres.2020.109605
  • Peng, C., S. Q. Zhao, J. Zhang, G. Y. Huang, L. Y. Chen, and F. Y. Zhao. 2014. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chemistry 165:560–8. doi: 10.1016/j.foodchem.2014.05.126.
  • Pinto Heckert Bastos, L., C. Henrique Corrêa dos Santos, M. Geraldo de Carvalho, and E. E. Garcia-Rojas. 2020. Encapsulation of the black pepper (Piper nigrum L.) essential oil by lactoferrin-sodium alginate complex coacervates: Structural characterization and simulated gastrointestinal conditions. Food Chemistry 316:126345. doi: 10.1016/j.foodchem.2020.126345
  • Priftis, D., K. Megley, N. Laugel, and M. Tirrell. 2013. Complex coacervation of poly(ethylene-imine)/polypeptide aqueous solutions: Thermodynamic and rheological characterization. Journal of Colloid and Interface Science 398:39–50. doi: 10.1016/j.jcis.2013.01.055.
  • Priftis, D., and M. Tirrell. 2012. Phase behaviour and complex coacervation of aqueous polypeptide solutions. Soft Matter 8 (36):9396–405. doi: 10.1039/c2sm25604e
  • Qi, H., R. Ma, C. Shi, Z. Huang, S. Liu, L. Sun, and T. Hu. 2019. Novel low-cost carboxymethyl cellulose microspheres with excellent fertilizer absorbency and release behavior for saline-alkali soil. International Journal of Biological Macromolecules 131:412–9. doi: 10.1016/j.ijbiomac.2019.03.047.
  • Raksa, A., P. Sawaddee, P. Raksa, and A. K. Aldred. 2017. Microencapsulation, chemical characterization, and antibacterial activity of Citrus hystrix DC (Kaffir Lime) peel essential oil. Monatshefte für Chemie - Chemical Monthly 148 (7):1229–34. doi: 10.1007/s00706-017-2015-8
  • Ribeiro-Santos, R.,. M. Andrade, and A. Sanches-Silva. 2017. Application of encapsulated essential oils as antimicrobial agents in food packaging. Current Opinion in Food Science 14:78–84. doi: 10.1016/j.cofs.2017.01.012
  • Rodríguez Patino, J. M., and A. M. R. Pilosof. 2011. Protein–polysaccharide interactions at fluid interfaces. Food Hydrocolloids 25 (8):1925–37. doi: 10.1016/j.foodhyd.2011.02.023
  • Rojas-Moreno, S., F. Cárdenas-Bailón, G. Osorio-Revilla, T. Gallardo-Velázquez, and J. Proal-Nájera. 2018. Effects of complex coacervation-spray drying and conventional spray drying on the quality of microencapsulated orange essential oil. Journal of Food Measurement and Characterization 12 (1):650–60. doi: 10.1007/s11694-017-9678-z
  • Rojas-Moreno, S., G. Osorio-Revilla, T. Gallardo-Velazquez, F. Cardenas-Bailon, and G. Meza-Marquez. 2018. Effect of the cross-linking agent and drying method on encapsulation efficiency of orange essential oil by complex coacervation using whey protein isolate with different polysaccharides. Journal of Microencapsulation 35 (2):165–80. doi: 10.1080/02652048.2018.1449910.
  • Rousi, Z., C. Malhiac, D. G. Fatouros, and A. Paraskevopoulou. 2019. Complex coacervates formation between gelatin and gum Arabic with different arabinogalactan protein fraction content and their characterization. Food Hydrocolloids 96:577–88. doi: 10.1016/j.foodhyd.2019.06.009
  • Roy, J. C., S. Giraud, A. Ferri, R. Mossotti, J. Guan, and F. Salaün. 2018. Influence of process parameters on microcapsule formation from chitosan-Type B gelatin complex coacervates. Carbohydrate Polymers 198:281–93. doi: 10.1016/j.carbpol.2018.06.087.
  • Roy, P. S., A. Samanta, M. Mukherjee, B. Roy, and A. Mukherjee. 2013. Designing Novel pH-Induced Chitosan–Gum Odina Complex Coacervates for Colon Targeting. Industrial & Engineering Chemistry Research 52 (45):15728–45. doi: 10.1021/ie401681t
  • Rungwasantisuk, A., and S. Raibhu. 2020. Application of encapsulating lavender essential oil in gelatin/gum-arabic complex coacervate and varnish screen-printing in making fragrant gift-wrapping paper. Progress in Organic Coatings 149:105924. doi: 10.1016/j.porgcoat.2020.105924
  • Sá, A. G. A., Y. M. F. Moreno, and B. A. M. Carciofi. 2020. Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology 97:170–84. doi: 10.1016/j.tifs.2020.01.011
  • Santos, M. G., D. A. Carpinteiro, M. Thomazini, G. A. Rocha-Selmi, A. G. da Cruz, C. E. C. Rodrigues, and C. S. Favaro-Trindade. 2014. Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food Research International 66:454–62. doi: 10.1016/j.foodres.2014.10.010
  • Schmitt, C., and S. L. Turgeon. 2011. Protein/polysaccharide complexes and coacervates in food systems. Advances in Colloid and Interface Science 167 (1-2):63–70. doi: 10.1016/j.cis.2010.10.001.
  • Shahgholian, N., and G. Rajabzadeh. 2016. Fabrication and characterization of curcumin-loaded albumin/gum arabic coacervate. Food Hydrocolloids 59:17–25. doi: 10.1016/j.foodhyd.2015.11.031
  • Shariatinia, Z. 2019. Pharmaceutical applications of chitosan. Advances in Colloid and Interface Science 263:131–94. doi: 10.1016/j.cis.2018.11.008.
  • Sharmeen, J. b., S. Shanoon, R. Kannan, and M. M. Fauzi. 2020. Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends in Food Science & Technology 101: 89–105. doi: 10.1016/j.tifs.2020.04.025.
  • Sharkawy, A., M. F. Barreiro, and A. E. Rodrigues. 2020. Chitosan-based Pickering emulsions and their applications: A review. Carbohydrate Polymers 250:116885. doi: 10.1016/j.carbpol.2020.116885.
  • Shen, L., J. Chen, Y. Bai, Z. Ma, J. Huang, and W. Feng. 2016. Physical Properties and Stabilization of microcapsules containing thyme oil by complex coacervation. Journal of Food Science 81 (9):N2258–2262. doi: 10.1111/1750-3841.13397.
  • Souza, C. J. F., and E. E. Garcia-Rojas. 2015. Effects of salt and protein concentrations on the association and dissociation of ovalbumin-pectin complexes. Food Hydrocolloids 47:124–9. doi: 10.1016/j.foodhyd.2015.01.010
  • Sweedman, M. C., M. J. Tizzotti, C. Schafer, and R. G. Gilbert. 2013. Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydrate Polymers 92 (1):905–20. doi: 10.1016/j.carbpol.2012.09.040.
  • Tan, C., B. Feng, X. Zhang, W. Xia, and S. Xia. 2016. Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocolloids 52:774–84. doi: 10.1016/j.foodhyd.2015.08.016
  • Tang, Y., H. B. Scher, and T. Jeoh. 2020. Industrially scalable complex coacervation process to microencapsulate food ingredients. Innovative Food Science & Emerging Technologies 59:102257. doi: 10.1016/j.ifset.2019.102257
  • Tavares, L., and C. P. Zapata Noreña. 2019. Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray drying. Food Hydrocolloids 89:360–9. doi: 10.1016/j.foodhyd.2018.10.052
  • Timilsena, Y. P., T. O. Akanbi, N. Khalid, B. Adhikari, and C. J. Barrow. 2019. Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules 121:1276–86. doi: 10.1016/j.ijbiomac.2018.10.144.
  • Timilsena, Y. P., B. Wang, R. Adhikari, and B. Adhikari. 2017. Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: A review. Food Hydrocolloids 69:369–81. doi: 10.1016/j.foodhyd.2017.03.007
  • Tiwari, A., S. Bindal, and H. B. Bohidar. 2009. Kinetics of Protein-Protein Complex Coacervation and Biphasic Release of Salbutamol Sulfate from Coacervate Matrix. Biomacromolecules 10 (1):184–9. ),doi: 10.1021/bm801160s.
  • Torres-Alvarez, C., A. Núñez González, J. Rodríguez, S. Castillo, C. Leos-Rivas, and J. G. Báez-González. 2016. Chemical composition, antimicrobial, and antioxidant activities of orange essential oil and its concentrated oils. CyTA - Journal of Food 15:129–35. doi: 10.1080/19476337.2016.1220021
  • Turgeon, S. L., C. Schmitt, and C. Sanchez. 2007. Protein–polysaccharide complexes and coacervates. Current Opinion in Colloid & Interface Science 12 (4-5):166–78. doi: 10.1016/j.cocis.2007.07.007
  • Urbas, R., R. Milošević, N. Kašiković, Ž. Pavlović, and U. S. Elesini. 2017. Microcapsules application in graphic arts industry: A review on the state-of-the-art. Iranian Polymer Journal 26 (7):541–61. doi: 10.1007/s13726-017-0541-1
  • Veis, A. 2011. A review of the early development of the thermodynamics of the complex coacervation phase separation. Advances in Colloid and Interface Science 167 (1-2):2–11. doi: 10.1016/j.cis.2011.01.007.
  • Villar-Chavero, M. M., J. C. Domínguez, M. V. Alonso, M. Oliet, and F. Rodriguez. 2018. Thermal and kinetics of the degradation of chitosan with different deacetylation degrees under oxidizing atmosphere. Thermochimica Acta 670:18–26. doi: 10.1016/j.tca.2018.10.004
  • Bungenberg de Jong, V. H. G., and H. R. Kruyt. 1929. Coacervation (Partial miscibility in colloidal systems). Colloid and Polymer Science 50 (1):39–48. doi: 10.1007/BF01422833.
  • Wang, B., E. Blanch, C. J. Barrow, and B. Adhikari. 2017. Preparation and study of digestion behavior of lactoferrin-sodium alginate complex coacervates. Journal of Functional Foods 37:97–106. doi: 10.1016/j.jff.2017.07.044
  • Wang, W., C. Xue, and X. Mao. 2020. Chitosan: Structural modification, biological activity and application. International Journal of Biological Macromolecules 164:4532–46. doi: 10.1016/j.ijbiomac.2020.09.042
  • Wang, Y., W. Bian, X. Ren, X. Song, and S. He. 2018. Microencapsulation of clove essential oil improves its antifungal activity against Penicillium digitatum in vitro and green mould on Navel oranges. The Journal of Horticultural Science and Biotechnology 93 (2):159–66. doi: 10.1080/14620316.2017.1345332
  • Warnakulasuriya, S., P. K. S. Pillai, A. K. Stone, and M. T. Nickerson. 2018. Effect of the degree of esterification and blockiness on the complex coacervation of pea protein isolate and commercial pectic polysaccharides. Food Chemistry 264:180–8. doi: 10.1016/j.foodchem.2018.05.036.
  • Wu, D., L. Zhu, Y. Li, X. Zhang, S. Xu, G. Yang, and T. Delair. 2020. Chitosan-based colloidal polyelectrolyte complexes for drug delivery: A review. Carbohydrate Polymers 238:116126 doi: 10.1016/j.carbpol.2020.116126.
  • Wu, H., N. Xue, C. L. Hou, J. T. Feng, and X. Zhang. 2015. Microcapsule preparation of allyl isothiocyanate and its application on mature green tomato preservation. Food Chemistry 175:344–9. doi: 10.1016/j.foodchem.2014.11.149.
  • Xiao, J. X., L. H. Wang, T. C. Xu, and G. Q. Huang. 2019. Complex coacervation of carboxymethyl konjac glucomannan and chitosan and coacervate characterization. International Journal of Biological Macromolecules 123:436–45. doi: 10.1016/j.ijbiomac.2018.11.086.
  • Xiao, Z., W. Li, and G. Zhu. 2015. Effect of wall materials and core oil on the formation and properties of styralyl acetate microcapsules prepared by complex coacervation. Colloid and Polymer Science 293 (5):1339–48. doi: 10.1007/s00396-015-3515-x
  • Xiao, Z., W. Li, G. Zhu, R. Zhou, and Y. Niu. 2016. Study of production and the stability of styrallyl acetate nanocapsules using complex coacervation. Flavour and Fragrance Journal 31 (4):283–9. doi: 10.1002/ffj.3306
  • Xiao, Z., W. Liu, G. Zhu, R. Zhou, and Y. Niu. 2014a. Production and characterization of multinuclear microcapsules encapsulating lavender oil by complex coacervation. Flavour and Fragrance Journal 29 (3):166–72. doi: 10.1002/ffj.3192
  • Xiao, Z., W. Liu, G. Zhu, R. Zhou, and Y. Niu. 2014b. A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. Journal of the Science of Food and Agriculture 94 (8):1482–94. doi: 10.1002/jsfa.6491.
  • Yang, Z., Z. Peng, J. Li, S. Li, L. Kong, P. Li, and Q. Wang. 2014. Development and evaluation of novel flavour microcapsules containing vanilla oil using complex coacervation approach. Food Chemistry 145:272–7. doi: 10.1016/j.foodchem.2013.08.074.
  • Wang, Y., K. Kimura, Q. Huang, P. L. Dubin, and W. Jaeger. 1999. Effects of salt on polyelectrolyte-micelle coacervation. Macromolecules 32 (21):7128–34. doi: 10.1021/ma990972v.
  • You, G., X. L. Liu, and M. M. Zhao. 2018. Preparation and characterization of hsian-tsao gum and chitosan complex coacervates. Food Hydrocolloids 74:255–66. doi: 10.1016/j.foodhyd.2017.08.004
  • Yuan, Y.,. Z.-Y. Kong, Y.-E. Sun, Q.-Z. Zeng, and X.-Q. Yang. 2017. Complex coacervation of soy protein with chitosan: Constructing antioxidant microcapsule for algal oil delivery. Lwt 75:171–9. doi: 10.1016/j.lwt.2016.08.045
  • Zhao, Y., N. Khalid, G. Shu, M. A. Neves, I. Kobayashi, and M. Nakajima. 2019. Complex coacervates from gelatin and octenyl succinic anhydride modified kudzu starch: Insights of formulation and characterization. Food Hydrocolloids 86:70–7. doi: 10.1016/j.foodhyd.2018.01.040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.