259
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Utilization of synchrotron-based and globar-sourced mid-infrared spectroscopy for faba nutritional research about molecular structural and nutritional interaction

, , , , , , & show all

References

  • Abeysekara, S., and P. Samadi Yu. 2012. Response and sensitivity of lipid related molecular structure to wet and dry heating in Canola tissue. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 90:63–71. doi: 10.1016/j.saa.2011.12.045.
  • Alghamdi, S. S. 2009. Chemical composition of faba bean (Vicia faba L.) genotypes under various water regimes. Pakistan Journal of Nutrition 8:477–82.
  • Allison, G. G., C. Morris, E. Hodgson, J. Jones, M. Kubacki, T. Barraclough, N. Yates, I. Shield, A. V. Bridgwater, and I. S. Donnison. 2009a. Measurement of key compositional parameters in two species of energy grass by Fourier transform infrared spectroscopy. Bioresource Technology 100 (24):6428–33. doi: 10.1016/j.biortech.2009.07.015.
  • Allison, G. G., S. C. Thain, P. Morris, C. Morris, S. Hawkins, B. Hauck, T. Barraclough, N. Yates, I. Shield, A. V. Bridgwater, et al. 2009b. Quantification of hydroxycinnamic acids and lignin in perennial forage and energy grasses by Fourier-transform infrared spectroscopy and partial least squares regression. Bioresource Technology 100 (3):1252–61. doi: 10.1016/j.biortech.2008.07.043.
  • Badhan, A., L. Jin, Y. Wang, S. Han, K. Kowalczys, D. C. Brown, C. J. Ayala, M. Latoszek-Green, B. Miki, A. Tsang, et al. 2014. Expression of a fungal ferulic acid esterase in alfalfa modifies cell wall digestibility. Biotechnology for Biofuels 7 (1):39. doi: 10.1186/1754-6834-7-39.
  • Borreani, G., A. R. Chion, S. Colombini, M. Odoardi, R. Paoletti, and E. Tabacco. 2009. Fermentative profiles of field pea (Pisum sativum), faba bean (Vicia faba) and white lupin (Lupinus albus) silages as affected by wilting and inoculation. Animal Feed Science and Technology 151 (3-4):316–23. doi:10.1016/j.anifeedsci.2009.01.020.
  • Bosco, A. D., S. Ruggeri, S. Mattioli, C. Mugnai, F. Sirri, and C. Castellini. 2013. Effect of Faba Bean Vicia Faba Var. Minor) inclusion in starter and growing diet on performance, carcass and meat characteristics of organic slow-growing chickens. Italian Journal of Animal Science 12 (4):e76. Taylor & Francis. doi:10.4081/ijas.2013.e76.
  • Calsamiglia, S., and M. D. Stern. 1995. A three-step in vitro procedure for estimating intestinal digestion of protein in ruminants. Journal of Animal Science 73 (5):1459–65. doi:10.2527/1995.7351459x.
  • Cherif, C., F. Hassanat, S. Claveau, J. Girard, R. Gervais, and C. Benchaar. 2018. Faba bean (Vicia faba) inclusion in dairy cow diets: Effect on nutrient digestion, rumen fermentation, nitrogen utilization, methane production, and milk performance. Journal of dairy science 101 (10):8916–28. doi: 10.3168/jds.2018-14890.
  • Colthup, N. 2012. Introduction to Infrared and Raman Spectroscopy. New York: Elsevier.
  • Council, N. R., B. o A. Resources, N. Nutrition, C. on A., and N. S. On D.C. 2001. Nutrient requirements of dairy cattle. Seventh Revised Edition.Washington, DC: National Academies Press.
  • Crépon, K., P. Marget, C. Peyronnet, B. Carrouée, P. Arese, and G. Duc. 2010. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Research 115 (3):329–39. doi:10.1016/j.fcr.2009.09.016.
  • Duc, G. 1997. Faba bean (Vicia faba L.). Field Crops Research 53 (1-3):99–109. doi:10.1016/S0378-4290(97)00025-7.
  • Duc, G., P. Marget, R. Esnault, J. Le Guen, and D. Bastianelli. 1999. Genetic variability for feeding value of faba bean seeds (Vicia faba): Comparative chemical composition of isogenics involving zero-tannin and zero-vicine genes. The Journal of Agricultural Science 133 (2):185–96. doi:10.1017/S0021859699006905.
  • Farminfo. 2002. Forages for dairy cattle. [Online] Accessed October 19, 2018.http://www.farminfo.org/dairy/forages.htm.
  • Farrell, D. J., R. A. Perez-Maldonado, and P. F. Mannion. 1999. Optimum inclusion of field peas, faba beans, chick peas and sweet lupins in poultry diets. II. Broiler experiments. British Poultry Science 40 (5):674–80. doi:10.1080/00071669987070.
  • Fox, D. G., C. J. Sniffen, J. D. O'Connor, J. B. Russell, and P. J. Van Soest. 1992. A net carbohydrate and protein system for evaluating cattle diets: III. Cattle requirements and diet adequacy. Journal of Animal Science 70 (11):3578–96. Oxford University Press. doi: 10.2527/1992.70113578x.
  • Fox, D. G., L. O. Tedeschi, T. P. Tylutki, J. B. Russell, M. E. Van Amburgh, L. E. Chase, A. N. Pell, and T. R. Overton. 2004. The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Animal Feed Science and Technology 112 (1-4):29–78. doi:10.1016/j.anifeedsci.2003.10.006.
  • Fraser, M. D., R. Fychan, and R. Jones. 2001. The effect of harvest date and inoculation on the yield, fermentation characteristics and feeding value of forage pea and field bean silages. Grass and Forage Science 56 (3):218–30. doi:10.1046/j.1365-2494.2001.00268.x.
  • Gargallo, S., S. Calsamiglia, and A. Ferret. 2006. Technical note: A modified three-step in vitro procedure to determine intestinal digestion of proteins. Journal of Animal Science 84 (8):2163–7. Oxford Academic. doi:10.2527/jas.2004-704.
  • Gous, R. M. 2011. Evaluation of faba bean (Vicia faba cv. Fiord) as a protein source for broilers. South African Journal of Animal Science 41 (2):71–8. doi:10.4314/sajas.v41i2.71009.
  • Government of Saskatchewan. 2020. Faba Bean: Overview. [Online]. Accessed Feburary 23, 2020. https://www.saskatchewan.ca/business/agriculture-natural-resources-and-industry/agribusiness-farmers-and-ranchers/crops-and-irrigation/field-crops/pulse-crop-bean-chickpea-faba-bean-lentils/faba-bean/markets
  • Grosjean, F., P. Cerneau, A. Bourdillon, D. Bastianelli, C. Peyronnet, and G. Duc. 2001. Valeur alimentaire, pour le porc, de féveroles presque isogéniques contenant ou non des tanins et à forte ou faible teneur en vicine et convicine. Journées de la Recherche Porcine en France 33:205–10.
  • Gutierrez, N., C. M. Avila, G. Duc, P. Marget, M. J. Suso, M. T. Moreno, and A. M. Torres. 2006. CAPs markers to assist selection for low vicine and convicine contents in faba bean (Vicia faba L.). TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 114 (1):59–66. doi: 10.1007/s00122-006-0410-3.
  • Hanelt, P., and D. Mettin. 1989. Biosystematics of the genus Vicia L. (Leguminosae). Annual Review of Ecology and Systematics 20 (1):199–223.
  • He, J., M. E. Torres Lechuga, Y. Lei, B. Refat, L. L. Prates, H. Zhang, and P. Yu. 2019. Protein molecular structural, physicochemical and nutritional characteristics of warm-season adapted genotypes of sorghum grain: Impact of heat-related processing. Journal of Cereal Science 85:182–91. doi:10.1016/j.jcs.2018.11.015.
  • Hekneby, M., M. C. Antolín, and M. Sánchez-Díaz. 2006. Frost resistance and biochemical changes during cold acclimation in different annual legumes. Environmental and Experimental Botany 55 (3):305–14. doi:10.1016/j.envexpbot.2004.11.010.
  • Hell, J., M. Prückler, L. Danner, U. Henniges, S. Apprich, T. Rosenau, W. Kneifel, and S. Böhmdorfer. 2016. A comparison between near-infrared (NIR) and mid-infrared (ATR-FTIR) spectroscopy for the multivariate determination of compositional properties in wheat bran samples. Food Control 60:365–9. doi: 10.1016/j.foodcont.2015.08.003.
  • Higgs, R., L. Chase, D. Ross, and M. Van Amburgh. 2015. Updating the Cornell Net Carbohydrate and Protein System feed library and analyzing model sensitivity to feed inputs. Journal of Dairy Science 98 (9):6340–60. doi: 10.3168/jds.2015-9379.
  • Himmelsbach, D. S., S. Khalili, and D. E. Akin. 1998. FT-IR microspectroscopic imaging of flax (Linum usitatissimum L.) stems. Cell Mol Biol (Noisy-le-grand) 44:99–108.
  • Idris, A. L. Y. 2008. Effect of seed size and plant spacing on yield and yield components of faba bean (Vicia faba L.). Research Journal of Agriculture and Biological Sciences 4:146–8.
  • Jackson, M., and H. H. Mantsch. 1995. The use and misuse of FTIR spectroscopy in the determination of protein structure. Critical Reviews in Biochemistry and Molecular Biology 30 (2):95–120. doi: 10.3109/10409239509085140.
  • Jansman, A. J. M., M. W. A. Verstegen, J. Huisman, and J. W. O. van den Berg. 1995. Effects of hulls of faba beans (Vicia faba L.) with a low or high content of condensed tannins on the apparent ileal and fecal digestibility of nutrients and the excretion of endogenous protein in ileal digesta and feces of pigs. Journal of Animal Science 73 (1):118–27. doi:10.2527/1995.731118x.
  • Jensen, E. S., M. B. Peoples, and H. Hauggaard-Nielsen. 2010. Faba bean in cropping systems. Field Crops Research 115 (3):203–16. doi:10.1016/j.fcr.2009.10.008.
  • Jonker, A., M. Y. Gruber, Y. Wang, B. Coulman, J. J. McKinnon, D. A. Christensen, and P. Yu. 2012. Foam stability of leaves from anthocyanidin-accumulating Lc-alfalfa and relation to molecular structures detected by fourier-transformed infrared-vibration spectroscopy. Grass and Forage Science 67 (3):369–81. doi:10.1111/j.1365-2494.2012.00853.x.
  • Köpke, U., and T. Nemecek. 2010. Ecological services of faba bean. Field Crops Research 115 (3):217–33. doi:10.1016/j.fcr.2009.10.012.
  • Krause, D. O., S. E. Denman, R. I. Mackie, M. Morrison, A. L. Rae, G. T. Attwood, and C. S. Mcsweeney. 2003. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiology Reviews 27 (5):663–93. doi:10.1016/S0168-6445(03)00072-X.
  • Lei, Y., A. Hannoufa, D. Christensen, H. Shi, L. L. Prates, and P. Yu. 2018. Molecular structural changes in alfalfa detected by ATR-FTIR spectroscopy in response to silencing of TT8 and HB12 genes. International Journal of Molecular Sciences 19 (4):1046. doi:10.3390/ijms19041046.
  • Lei, Y., A. Hannoufa, L. L. Prates, D. Christensen, Y. Wang, and P. Yu. 2019. Silencing TT8 and HB12 decreased protein degradation and digestion, microbial synthesis, and metabolic protein in relation to molecular structures of alfalfa (Medicago sativa). Journal of Agricultural and Food Chemistry 67 (28):7898–907. doi: 10.1021/acs.jafc.9b02317.
  • Lei, Y., A. Hannoufa, and P. Yu. 2017. The use of gene modification and advanced molecular structure analyses towards improving alfalfa forage. International Journal of Molecular Sciences 18 (2):298. doi:10.3390/ijms18020298.
  • Li, X., Y. Zhang, and P. Yu. 2016. Association of bio-energy processing-induced protein molecular structure changes with CNCPS-based protein degradation and digestion of co-products in dairy cows. Journal of Agricultural and Food Chemistry 64 (20):4086–94. doi:10.1021/acs.jafc.6b00688.
  • Li-Chan, E., J. M. Chalmers, and P. R. Griffiths. 2010. Applications of vibrational spectroscopy in food science. New Jersey: John Wiley & Sons.
  • Linn, J. G., and C. Kuehn. 1996. The effects of forage quality on milk production. [Online]. Accessed October 19, 2018. http://conservancy.umn.edu/handle/11299/118819
  • Mariscal-Landı́n, G.,. Y. Lebreton, and B. Sève. 2002. Apparent and standardised true ileal digestibility of protein and amino acids from faba bean, lupin and pea, provided as whole seeds, dehulled or extruded in pig diets. Animal Feed Science and Technology 97 (3-4):183–98. doi:10.1016/S0377-8401(01)00354-6.
  • Martínez-Villaluenga, C., J. Frias, and C. Vidal-Valverde. 2008. Alpha-galactosides: Antinutritional factors or functional ingredients? Critical Reviews in Food Science and Nutrition 48 (4):301–16. doi: 10.1080/10408390701326243.
  • McKnight, D. R., and G. K. MacLeod. 1977. Value of whole plant faba bean silage as the sole forage for lactating cows. Canadian Journal of Animal Science 57 (3):601–3. doi:10.4141/cjas77-077.
  • Mendowski, S., P. Chapoutot, G. Chesneau, A. Ferlay, F. Enjalbert, G. Cantalapiedra-Hijar, A. Germain, and P. Nozière. 2019. Effects of replacing soybean meal with raw or extruded blends containing faba bean or lupin seeds on nitrogen metabolism and performance of dairy cows. Journal of Dairy Science 102 (6):5130–47. doi: 10.3168/jds.2018-15416.
  • Minakowski, D., H. Skórko-Sajko, and A. Falkowska. 1996. Nutritive value of faba bean hulls for ruminants. Journal of Animal and Feed Sciences 5 (3):225–33. doi:10.22358/jafs/69602/1996.
  • Morent, R., N. D. Geyter, C. Leys, L. Gengembre, and E. Payen. 2008. Comparison between XPS- and FTIR-analysis of plasma-treated polypropylene film surfaces. Surface and Interface Analysis 40 (3-4):597–600. doi:10.1002/sia.2619.
  • Mustafa, A. F., and P. Seguin. 2003. Characteristics and in situ degradability of whole crop faba bean, pea, and soybean silages. Canadian Journal of Animal Science 83 (4):793–9. doi:10.4141/A03-065.
  • Nikolic, G. 2011. Fourier transforms: New analytical approaches and FTIR strategies. London: BoD – Books on Demand.
  • NRC. 2001. Nutrient requirements of dairy cattle: Seventh revised edition. National Academies Press.
  • O’Kiely, P., M. McGee, and S. Kavanagh. (n.d.). Faba beans as a feed for cattle and sheep. Teagasc, Carlow, Ireland [Online]. Available: https://www.teagasc.ie/media/website/crops/crops/Beans_for_ruminants.pdf
  • O'Connor, J. D., C. J. Sniffen, D. G. Fox, and W. Chalupa. 1993. A net carbohydrate and protein system for evaluating cattle diets: IV. Predicting amino acid adequacy. Journal of Animal Science 71 (5):1298–311. Oxford University Press.
  • Oomah, B. D., G. Luc, C. Leprelle, J. C. G. Drover, J. E. Harrison, and M. Olson. 2011. Phenolics, phytic acid, and phytase in Canadian-grown low-tannin faba bean (Vicia faba L.) genotypes. Journal of Agricultural and Food Chemistry 59 (8):3763–71. doi: 10.1021/jf200338b.
  • Oplinger, E. S., D. H. Putnam, J. D. Doll, and S. M. Combs. 1989. Alternative field crops manual. [Online]. Accessed Feburary 22, 2020. https://hort.purdue.edu/newcrop/afcm/fababean.html
  • Ørskov, E., and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science 92 (2):499–503.
  • Perez-Maldonado, R. A., P. F. Mannion, and D. J. Farrell. 1999. Optimum inclusion of field peas, faba beans, chick peas and sweet lupins in poultry diets. I. Chemical composition and layer experiments. British Poultry Science 40 (5):667–73. Taylor & Francis. doi: 10.1080/00071669987061.
  • Pettolino, F. A., C. Walsh, G. B. Fincher, and A. Bacic. 2012. Determining the polysaccharide composition of plant cell walls. Nature Protocols 7 (9):1590–607. doi: 10.1038/nprot.2012.081.
  • Phelps, S. (2017, February 17). Faba Bean Agronomy. Saskatchewan Pulse Growers. [Online]. Accessed September 20, 2018. https://saskpulse.com/files/general/170217_Faba_Bean_Agronomy.pdf
  • Prati, S., G. Sciutto, R. Mazzeo, C. Torri, and D. Fabbri. 2011. Application of ATR-far-infrared spectroscopy to the analysis of natural resins. Analytical and Bioanalytical Chemistry 399 (9):3081–91. doi: 10.1007/s00216-010-4388-y.
  • Pursiainen, P., and M. Tuori. 2008. Effect of ensiling field bean, field pea and common vetch in different proportions with whole-crop wheat using formic acid or an inoculant on fermentation characteristics. Grass and Forage Science 63 (1):60–78. doi: 10.1111/j.1365-2494.2007.00614.x.
  • Rodríguez-Espinosa, M. E., V. H. Guevara-Oquendo, B. Sun, H. Zhang, and P. Yu. 2020. Recent progress in structural and nutritional characterization of faba legume and use as an environment probe with vibrational spectroscopy sourced by globar and synchrotron. Applied Spectroscopy Reviews: 1–19 55 (4):288–306. doi: 10.1080/05704928.2019.1581622.
  • Russell, J. B., J. D. O'Connor, D. G. Fox, P. J. Van Soest, and C. J. Sniffen. 1992. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science 70 (11):3551–61.
  • Saskatchewan Pulse Growers. 2020. Seeding. [Online]. Accessed Feburary 21, 2020. https://saskpulse.com/growing-pulses/faba-beans/seeding.
  • Sauvant. 2004. Tables of composition and nutritional value of feed materials: pigs, poultry, cattle, sheep, goats, rabbits, horses and fish. [Online]. Accessed September 21, 2018. https://www.cabdirect.org/cabdirect/abstract/20073063703
  • Savelkoul, F. H. M. G., A. F. B. Van Der Poel, and S. Tamminga. 1992. The presence and inactivation of trypsin inhibitors, tannins, lectins and amylase inhibitors in legume seeds during germination. A review. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 42 (1):71–85. doi: 10.1007/BF02196074.
  • Sharma, A., and S. Sehgal. 1992. Effect of processing and cooking on the antinutritional factors of faba bean (Vicia faba). Food Chemistry 43 (5):383–5. doi:10.1016/0308-8146(92)90311-O.
  • Sheaffer, J. O., T. E. Devine, and J. G. Jewett. 2001. (PDF) Yield and Quality of Forage Soybean. doi: 10.2134/agronj2001.93199x.
  • Sherazi, S. T. H., S. A. Mahesar, M. I. Bhanger, F. R. van de Voort, and J. Sedman. 2007. Rapid determination of free fatty acids in poultry feed lipid extracts by SB-ATR FTIR spectroscopy. Journal of Agricultural and Food Chemistry 55 (13):4928–32. doi: 10.1021/jf063554f.
  • Shi, H., and P. Yu. 2017. Comparison of grating-based near-infrared (NIR) and Fourier transform mid-infrared (ATR-FT/MIR) spectroscopy based on spectral preprocessing and wavelength selection for the determination of crude protein and moisture content in wheat. Food Control 82:57–65. doi: 10.1016/j.foodcont.2017.06.015.
  • Sinclair, L. A., P. Garnsworth, J. R. Newbold, and P. J. Buttery. 1993. Effect of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in sheep. The Journal of Agricultural Science 120 (2):251–63.
  • Singh, A. K., R. C. Bharati, N. Ch, R. Manibhushan, and A. Pedpati. 2013. An assessment of faba bean (Vicia faba L.) current status and future prospect. AJAR 8:6634–41. doi: 10.5897/AJAR2013.7335.
  • Sinha, S., and K. Amresh. 2018. Condensed tannin: A major anti-nutritional constituent of faba bean (Vicia faba L.). Horticulture International Journal 2:31–2.
  • Smith, L. A., J. G. M. Houdijk, D. Homer, and I. Kyriazakis. 2013. Effects of dietary inclusion of pea and faba bean as a replacement for soybean meal on grower and finisher pig performance and carcass quality. Journal of Animal Science 91 (8):3733–41. doi:10.2527/jas.2012-6157.
  • Sniffen, C. J., J. D. O'Connor, P. J. Van Soest, D. G. Fox, and J. B. Russell. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science 70 (11):3562–77. doi: 10.2527/1992.70113562x.
  • Stat, F. 2009. Production stat: crops. FAO statistical databases (FAO stat), food and agriculture organization of the United Nations (FAO).
  • Stern, M. D., A. Bach, and S. Calsamiglia. 1997. Alternative techniques for measuring nutrient digestion in ruminants. Journal of Animal Science 75 (8):2256–76. doi: 10.2527/1997.7582256x.
  • Stoddard, F., and D. Bond. 1987. The pollination requirements of the faba bean. Bee World 68:144–52.
  • Stuart, B. 2015. Infrared Spectroscopy. In Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons. doi: 10.1002/0471238961.0914061810151405.a01.pub3.
  • Stuart, B. H. 2004. Infrared Spectroscopy: Fundamentals and Applications.
  • Tamminga, S., W. M. Van Straalen, A. P. J. Subnel, R. G. M. Meijer, A. Steg, C. J. G. Wever, and M. C. Blok. 1994. The Dutch protein evaluation system: The DVE/OEB-system. Livestock Production Science 40 (2):139–55. doi: 10.1016/0301-6226(94)90043-4.
  • Theodoridou, K., and P. Yu. 2013a. Effect of processing conditions on the nutritive value of canola meal and presscake. Comparison of the yellow and brown-seeded canola meal with the brown-seeded canola presscake. Journal of the Science of Food and Agriculture 93 (8):1986–95. doi:10.1002/jsfa.6004.
  • Theodoridou, K., and P. Yu. 2013b. Metabolic characteristics of the proteins in yellow-seeded and brown-seeded canola meal and presscake in dairy cattle: Comparison of three systems (PDI, DVE, and NRC) in nutrient supply and feed milk value (FMV). Journal of Agricultural and Food Chemistry 61 (11):2820–30. doi: 10.1021/jf305171z.
  • Theodoridou, K., and P. Yu. 2013c. Application potential of ATR-FT/IR molecular spectroscopy in animal nutrition: Revelation of protein molecular structures of canola meal and presscake, as affected by heat-processing methods, in relationship with their protein digestive behavior and utilization for dairy cattle. Journal of Agricultural and Food Chemistry 61 (23):5449–58. doi: 10.1021/jf400301y.
  • Undersander, D. 2006. Uses and abuses of NIR for feed analysis.
  • Van Amburgh, M. E., E. A. Collao-Saenz, R. J. Higgs, D. A. Ross, E. B. Recktenwald, E. Raffrenato, L. E. Chase, T. R. Overton, J. K. Mills, and A. Foskolos. 2015. The Cornell net carbohydrate and protein system: Updates to the model and evaluation of version 6.5. Journal of Dairy Science 98 (9):6361–80. doi: 10.3168/jds.2015-9378.
  • van de Voort, F. R. 1992. Fourier transform infrared spectroscopy applied to food analysis. Food Research International 25 (5):397–403. doi:10.1016/0963-9969(92)90115-L.
  • van der Poel, A. F. B., S. Gravendeel, D. J. van Kleef, A. J. M. Jansman, and B. Kemp. 1992. Tannin-containing faba beans (Vicia faba L.): effects of methods of processing on ileal digestibility of protein and starch for growing pigs. Animal Feed Science and Technology 36 (3-4):205–14. doi: 10.1016/0377-8401(92)90057-D.
  • Van Soest, P., J. Robertson. 1979. Systems of analysis for evaluating fibrous feeds. Page in Standardization of analytical methodology for feeds: proceedings. Ottawa, ON: International Development Research Centre.
  • Vilariño, M., J. P. Métayer, K. Crépon, and G. Duc. 2009. Effects of varying vicine, convicine and tannin contents of faba bean seeds (Vicia faba L.) on nutritional values for broiler chicken. Animal Feed Science and Technology 150 (1-2):114–21. doi: 10.1016/j.anifeedsci.2008.08.001.
  • Wang, Z.-Y., and Y. Ge. 2006. Recent advances in genetic transformation of forage and turf grasses. In Vitro Cellular & Developmental Biology - Plant 42 (1):1–18. doi:10.1079/IVP2005726.
  • Wetzel, D. L., A. J. Eilert, L. N. Pietrzak, S. S. Miller, and J. A. Sweat. 1998. Ultraspatially-resolved synchrotron infrared microspectroscopy of plant tissue in situ. Cellular and Molecular Biology (Noisy-le-Grand, France) 44 (1):145–68. Noisy-le-grand)
  • Wetzel, D. L., P. Srivarin, and J. R. Finney. 2003. Revealing protein infrared spectral detail in a heterogeneous matrix dominated by starch. Vibrational Spectroscopy 31 (1):109–14. doi: 10.1016/S0924-2031(02)00100-5.
  • Xin, H., K. C. Falk, and P. Yu. 2013. Studies on Brassica carinata seed. 2. Carbohydrate molecular structure in relation to carbohydrate chemical profile, energy values, and biodegradation characteristics. Journal of Agricultural and Food Chemistry 61 (42):10127–34. doi: 10.1021/jf402077g.
  • Xin, H., and P. Yu. 2014. Detect changes in lipid-related structure of brown- and yellow-seeded Brassica Carinata seed during rumen fermentation in relation to basic chemical profile using ATR-FT/IR molecular spectroscopy with chemometrics. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 133:811–7. doi: 10.1016/j.saa.2014.06.041.
  • Xin, H., Y. Zhang, M. Wang, Z. Li, Z. Wang, and P. Yu. 2014. Characterization of protein and carbohydrate mid-IR spectral features in crop residues. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 129:565–71. doi: 10.1016/j.saa.2014.03.009.
  • Yu, P. 2005a. Protein secondary structures (α-helix and β-sheet) at a cellular level and protein fractions in relation to rumen degradation behaviours of protein: A new approach. British Journal of Nutrition 94 (5):655–65. doi:10.1079/BJN20051532.
  • Yu, P. 2005b. Multicomponent peak modeling of protein secondary structures: Comparison of Gaussian with Lorentzian analytical methods for plant feed and seed molecular biology and chemistry research. Applied Spectroscopy 59 (11):1372–80. doi: 10.1366/000370205774783151.
  • Yu, P. 2007. Protein molecular structures, protein subfractions and protein availability affected by heat processing: A review. American Journal of Biochemistry and Biotechnology 3 (2):66–86. doi: 10.3844/ajbbsp.2007.66.86.
  • Yu, P. 2012. Short communication: Relationship of carbohydrate molecular spectroscopic features to carbohydrate nutrient profiles in co-products from bioethanol production. Journal of Dairy Science 95 (4):2091–6. doi: 10.3168/jds.2011-4885.
  • Yu, P., J. J. McKinnon, C. R. Christensen, and D. A. Christensen. 2004a. Using Synchrotron Transmission FTIR microspectroscopy as a rapid, direct, and nondestructive analytical technique to reveal molecular microstructural-chemical features within tissue in grain barley . Journal of Agricultural and Food Chemistry 52 (6):1484–94. doi: 10.1021/jf035065a.
  • Yu, P., J. J. McKinnon, C. R. Christensen, and D. A. Christensen. 2004b. Using synchrotron-based FTIR microspectroscopy to reveal chemical features of feather protein secondary structure: Comparison with other feed protein sources. Journal of Agricultural and Food Chemistry 52 (24):7353–61. doi: 10.1021/jf0490955.
  • Yu, P., and W. G. Nuez-Ortín. 2010. Relationship of protein molecular structure to metabolisable proteins in different types of dried distillers grains with solubles: A novel approach. British Journal of Nutrition 104 (10):1429–37. doi:10.1017/S0007114510002539.
  • Yu, G. Q., T. Warkentin, Z. Niu, N. A. Khan, and P. Yu. 2015. Molecular basis of processing-induced changes in protein structure in relation to intestinal digestion in yellow and green type pea (Pisum sativum L.): A molecular spectroscopic analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 151:980–8. doi:10.1016/j.saa.2015.06.050.
  • Yu, P. 2004. Application of advanced synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy to animal nutrition and feed science: a novel approach. British Journal of Nutrition. [Online]. Accessed October 9, 2019. https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/application-of-advanced-synchrotron-radiationbased-fourier-transform-infrared-srftir-microspectroscopy-to-animal-nutrition-and-feed-science-a-novel-approach/5BDFC1762D7E78677C44DA23C36875AD.
  • Zijlstra, R. T., K. Lopetinsky, and E. Beltranena. 2008. The nutritional value of zero-tannin faba bean for grower-finisher pigs. Canadian Journal of Animal Science 88:293–302. doi:10.4141/CJAS07146.
  • Zohary, D., and M. Hopf. 1973. Domestication of pulses in the old world: Legumes were companions of wheat and barley when agriculture began in the Near East. Science (New York, N.Y.) 182 (4115):887–94. doi: 10.1126/science.182.4115.887.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.