1,836
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Revisiting phytate-element interactions: implications for iron, zinc and calcium bioavailability, with emphasis on legumes

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdulwaliyu, I., S. O. Arekemase, J. A. Adudu, M. L. Batari, M. N. Egbule, and S. I. R. Okoduwa. 2019. Investigation of the medicinal significance of phytic acid as an indispensable anti-nutrient in diseases. Clinical Nutrition Experimental 28:42–61. doi: 10.1016/j.yclnex.2019.10.002.
  • Abizari, A.-R., D. Moretti, S. Schuth, M. B. Zimmermann, M. Armar-Klemesu, and I. D. Brouwer. 2012. Phytic acid-to-iron molar ratio rather than polyphenol concentration determines iron bioavailability in whole-cowpea meal among young women. The Journal of Nutrition 142 (11):1950–5. doi:10.3945/jn.112.164095
  • Ahmed, A., M. A. Randhawa, and M. W. Sajid. 2014. Chapter 6 - Bioavailability of calcium, iron, and zinc in whole wheat flour. In Wheat and rice in disease prevention and health, eds. R. R. Watson, V. R. Preedy, and S. Zibadi, 67–80. San Diego: Academic Press.
  • Allred, J. B., F. H. Kratzer, and J. W. G. Porter. 1964. Some factors affecting the in vitro binding of zinc by isolated soya-bean protein and by α-casein. British Journal of Nutrition 18 (1):575–82. doi:10.1079/BJN19640050
  • Andrews, M., L. Briones, A. Jaramillo, F. Pizarro, and M. Arredondo. 2014. Effect of calcium, tannic acid, phytic acid and pectin over iron uptake in an in vitro Caco-2 cell model. Biological Trace Element Research 158 (1):122–7. doi:10.1007/s12011-014-9911-0
  • Bailey, R. L., K. P. West, and R. E. Black. 2015. The epidemiology of global micronutrient deficiencies. Annals of Nutrition & Metabolism 66 (S2):55–66.
  • Balk, E. M., G. P. Adam, V. N. Langberg, A. Earley, P. Clark, P. R. Ebeling, A. Mithal, R. Rizzoli, C. A. F. Zerbini, D. D. Pierroz, et al. 2017. Global dietary calcium intake among adults: A systematic review. Osteoporosis International: A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 28 (12):3315–24.,doi: 10.1007/s00198-017-4230-x.
  • Bangar, P., R. P. Glahn, Y. Liu, G. C. Arganosa, S. Whiting, and T. D. Warkentin. 2017. Iron bioavailability in field pea seeds: Correlations with iron, phytate, and carotenoids. Crop Science 57 (2):891–902. doi:10.2135/cropsci2016.08.0682.
  • Bauman, A. T., G. M. Chateauneuf, B. R. Boyd, R. E. Brown, and P. P. N. Murthy. 1999. Conformational inversion processes in phytic acid: NMR spectroscopic and molecular modeling studies. Tetrahedron Letters 40 (24):4489–92. doi: 10.1016/S0040-4039(99)00816-3.
  • Bebot-Brigaud, A., C. Dange, N. Fauconnier, and C. Gérard. 1999. 31P NMR, potentiometric and spectrophotometric studies of phytic acid ionization and complexation properties toward Co2+, Ni2+, Cu2+, Zn2+ and Cd2+. Journal of Inorganic Biochemistry 75 (1):71–8. doi:10.1016/S0162-0134(99)00041-0.
  • Blank, G. E., J. Pletcher, and M. Sax. 1971. The structure of myo-inositol hexaphosphate dodecasodium salt octatriacontahydrate: A single crystal X-ray analysis. Biochemical and Biophysical Research Communications 44 (2):319–25. doi: 10.1016/0006-291x(71)90602-4.
  • Bohn, L., A. S. Meyer, and S. K. Rasmussen. 2008. Phytate: Impact on environment and human nutrition. A challenge for molecular breeding. Journal of Zhejiang University. Science. B 9 (3):165–91. doi:10.1631/jzus.B0710640.
  • Brejnholt, S. M., G. Dionisio, V. Glitsoe, L. K. Skov, and H. Brinch-Pedersen. 2011. The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin. Journal of the Science of Food and Agriculture 91 (8):1398–405. doi:10.1002/jsfa.4324.
  • Bretti, C., R. M. Cigala, G. Lando, D. Milea, and S. Sammartano. 2012. Sequestering ability of phytate toward biologically and environmentally relevant trivalent metal cations. Journal of Agricultural and Food Chemistry 60 (33):8075–82. doi:10.1021/jf302007v
  • Bronner, F., R. S. Harris, C. J. Maletskos, and C. E. Benda. 1954. Studies in calcium metabolism: Effect of food phytates on calcium 45 uptake in children on low-calcium breakfasts. The Journal of Nutrition 54 (4):523–42. doi:10.1093/jn/54.4.523.
  • Brown, K., J. Rivera, Z. Bhutta, R. Gibson, J. King, B. Lonnerdal, and C. Hotz. 2004. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin 25:S99–S203. doi:10.4067/S0717-75182010000200014.
  • Bullock, J. I., P. A. Duffin, K. B. Nolan, and T. K. Smith. 1995. Effect of phytate on the in‐vitro solubility of Al+, Ca2+, Hg2+ and Pb2+ as a function of pH at 37° C. Journal of the Science of Food and Agriculture 67 (4):507–9. doi:10.1002/jsfa.2740670413.
  • Bye, J. W., N. P. Cowieson, A. J. Cowieson, P. H. Selle, and R. J. Falconer. 2013. Dual effects of sodium phytate on the structural stability and solubility of proteins. Journal of Agricultural and Food Chemistry 61 (2):290–5. doi:10.1021/jf303926v.
  • Byrd, C. A., and G. Matrone. 1965. Investigations of chemical basis of zinc-calcium-phytate interaction in biological systems. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.) 119 (2):347–9. doi:10.3181/00379727-119-30176.
  • Cai, K., F. Sun, X. Liang, C. Liu, N. Zhao, X. Zou, and G. Zhu. 2017. An acid-stable hexaphosphate ester based metal–organic framework and its polymer composite as proton exchange membrane. Journal of Materials Chemistry A 5 (25):12943–50. doi:10.1039/C7TA00169J
  • Carbonaro, M., P. Maselli, and A. Nucara. 2015. Structural aspects of legume proteins and nutraceutical properties. Food Research International 76:19–30. doi:10.1016/j.foodres.2014.11.007.
  • Carnovale, E., E. Lugaro, and G. Lombardi-Boccia. 1988. Phytic acid in faba bean and pea: Effect on protein availability. Cereal Chemistry 65 (2):114–7.
  • Champagne, E. T. 1987. Effects of Ca(II) ions on Cu(II) ion-phytic acid interactions. Journal of Inorganic Biochemistry 31 (1):29–42. doi:10.1016/0162-0134. (87)85003-1
  • Champagne, E. T., and M. S. Fisher. 1990. Binding differences of Zn(II) and Cu(II) ions with phytate. Journal of Inorganic Biochemistry 38 (3):217–23. doi: 10.1016/0162-0134(90)84014-G.
  • Champagne, E. T., M. S. Fisher, and O. Hinojosa. 1990. NMR and ESR studies of interactions among divalent cations, phytic acid, and N-acetyl-amino acids. Journal of Inorganic Biochemistry 38 (3):199–215. doi: 10.1016/0162-0134(90)84013-F.
  • Champagne, E. T., and O. Hinojosa. 1987. Independent and mutual interactions of copper(II) and zinc(II) ions with phytic acid. Journal of Inorganic Biochemistry 30 (1):15–33. doi: 10.1016/0162-0134(87)80041-7.
  • Cheryan, M., and J. J. Rackis. 1980. Phytic acid interactions in food systems. Critical Reviews in Food Science and Nutrition 13 (4):297–335. doi:10.1080/10408398009527293.
  • Chitra, U., U. Singh, and P. V. Rao. 1996. Phytic acid, in vitro protein digestibility, dietary fiber, and minerals of pulses as influenced by processing methods. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 49 (4):307–16. doi:10.1007/BF01091980.
  • Chitra, U., V. Vimala, U. Singh, and P. Geervani. 1995. Variability in phytic acid content and protein digestibility of grain legumes. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 47 (2):163–72. doi:10.1007/BF01089266.
  • Cominelli, E., M. Galimberti, P. Pongrac, M. Landoni, A. Losa, D. Paolo, M. G. Daminati, R. Bollini, K. A. Cichy, K. Vogel-Mikuš, et al. 2020. Calcium redistribution contributes to the hard-to-cook phenotype and increases PHA-L lectin thermal stability in common bean low phytic acid 1 mutant seeds. Food Chemistry 321:126680. doi:10.1016/j.foodchem.2020.126680.
  • Cook, J. D., M. A. Juillerat, R. F. Hurrell, S. A. Dassenko, and S. R. Lynch. 1994. Inhibitory effect of a soybean-protein-related moiety on iron absorption in humans. The American Journal of Clinical Nutrition60 (4):567–72. doi:10.1093/ajcn/60.4.567.
  • Cook, J. D., V. Minnich, C. V. Moore, A. Rasmussen, W. B. Bradley, and C. A. Finch. 1973. Absorption of fortification iron in bread. The American Journal of Clinical Nutrition 26 (8):861–72. doi:10.1093/ajcn/26.8.861.
  • Crea, F., C. De Stefano, D. Milea, and S. Sammartano. 2008. Formation and stability of phytate complexes in solution. Coordination Chemistry Reviews 252 (10-11):1108–20. doi:10.1016/j.ccr.2007.09.008.
  • Crea, F., C. De Stefano, D. Milea, and S. Sammartano. 2009. Speciation of phytate ion in aqueous solution. thermodynamic parameters for zinc(II) sequestration at different ionic strengths and temperatures. Journal of Solution Chemistry 38 (1):115–34. doi:10.1007/s10953-008-9357-0
  • Crea, P., A. de Robertis, C. de Stefano, and S. Sammartano. 2006. Speciation of phytate ion in aqueous solution. Sequestration of magnesium and calcium by phytate at different temperatures and ionic strengths. Biophysical Chemistry 124 (1):18–26. doi:10.1016/j.bpc.2006.05.027.
  • Crea, P., C. De Stefano, D. Milea, N. Porcino, and S. Sammartano. 2007. Speciation of phytate ion in aqueous solution. Protonation constants and copper(II) interactions in NaNO3aq at different ionic strengths. Biophysical Chemistry 128 (2-3):176–84. doi:10.1016/j.bpc.2007.04.003.
  • Dahdouh, S., F. Grande, S. N. Espinosa, A. Vincent, R. Gibson, K. Bailey, J. King, D. Rittenschober, and U. R. Charrondière. 2019. Development of the FAO/INFOODS/IZINCG global food composition database for phytate. Journal of Food Composition and Analysis: An Official Publication of the United Nations University, International Network of Food Data Systems 78:42–8. doi:10.1016/j.jfca.2019.01.023.
  • Darby, S. J., L. Platts, M. S. Daniel, A. J. Cowieson, and R. J. Falconer. 2017. An isothermal titration calorimetry study of phytate binding to lysozyme. Journal of Thermal Analysis and Calorimetry 127 (2):1201–8. doi:10.1007/s10973-016-5487-6
  • Dary, O., and R. Hurrell. 2006. Guidelines on food fortification with micronutrients. World Health Organization, Food and Agricultural Organization of the United Nations: Geneva, Switzerland.
  • Davies, N., and S. Olpin. 1979. Studies on the phytate: Zinc molar contents in diets as a determinant of Zn availability to young rats. British Journal of Nutrition 41 (3):591–603. doi:10.1079/BJN19790074.
  • de Almeida Siqueira, E. M., J. F. R. Mendes, and S. F. Arruda. 2007. Mineral bioavailability in vegetarian and omnivorous meals served in a university restaurant. Brazilian Journal of Nutrition 20 (3):229–37.
  • de Souza Ferreira, E., J. Capraro, F. Sessa, C. Magni, A. Demonte, A. Consonni, V. Augusto Neves, E. Maffud Cilli, M. Duranti, and A. Scarafoni. 2018. New molecular features of cowpea bean (Vigna unguiculata, l. Walp) β-vignin. Bioscience, Biotechnology, and Biochemistry 82 (2):285–91. doi:10.1080/09168451.2017.1419855.
  • De Stefano, C., D. Milea, A. Pettignano, and S. Sammartano. 2003. Speciation of phytate ion in aqueous solution. Alkali metal complex formation in different ionic media. Analytical and Bioanalytical Chemistry 376 (7):1030–40. doi:10.1007/s00216-003-2056-1.
  • De Stefano, C., D. Milea, and S. Sammartano. 2004. Speciation of phytate ion in aqueous solution: Thermodynamic parameters for protonation in NaCl. Thermochimica Acta 423 (1-2):63–9. doi:10.1016/j.tca.2004.04.017.
  • DellaValle, D. M., and R. P. Glahn. 2014. Differences in relative iron bioavailability in traditional Bangladeshi meal plans. Food and Nutrition Bulletin 35 (4):431–9. doi:10.1177/156482651403500405
  • DellaValle, D. M., R. P. Glahn, J. E. Shaff, and K. O. O'Brien. 2015. Iron absorption from an intrinsically labeled lentil meal is low but upregulated in women with poor Iron status. The Journal of Nutrition 145 (10):2253–7. doi:10.3945/jn.115.217273.
  • Dendougui, F., and G. Schwedt. 2004. In vitro analysis of binding capacities of calcium to phytic acid in different food samples. European Food Research and Technology 219 (4):409–15. doi:10.1007/s00217-004-0912-7.
  • Deshpande, S. S., and S. Damodaran. 1989. Effect of phytate on solubility, activity and conformation of trypsin and chymotrypsin. Journal of Food Science 54 (3):695–9. doi:10.1111/j.1365-2621.1989.tb04684.x
  • Dietterich, L. H., A. Zanobetti, I. Kloog, P. Huybers, A. D. B. Leakey, A. J. Bloom, E. Carlisle, N. Fernando, G. Fitzgerald, T. Hasegawa, et al. 2015. Impacts of elevated atmospheric CO2 on nutrient content of important food crops. Scientific Data 2:150036 doi:10.1038/sdata.2015.36.
  • Dold, S., M. B. Zimmermann, F. Jeroense, C. Zeder, E. Habeych, N. Galaffu, D. Grathwohl, J. Tajeri Foman, S. Merinat, B. Rey, et al. 2020. Iron bioavailability from bouillon fortified with a novel ferric phytate compound: A stable iron isotope study in healthy women (part II)). Sci Rep 10 (1):5339 doi:10.1038/s41598-020-62307-1.
  • Egli, I., L. Davidsson, C. Zeder, T. Walczyk, and R. Hurrell. 2004. Dephytinization of a complementary food based on wheat and soy increases zinc, but not copper, apparent absorption in adults. The Journal of Nutrition 134 (5):1077–80. doi:10.1093/jn/134.5.1077
  • Engle-Stone, R., A. Yeung, R. Welch, and R. Glahn. 2005. Meat and ascorbic acid can promote Fe availability from Fe − phytate but not from Fe − tannic acid complexes. Journal of Agricultural and Food Chemistry 53 (26):10276–84. doi:10.1021/jf0518453.
  • Erba, D., F. Manini, E. Meroni, and M. C. Casiraghi. 2017. Phytate/calcium molar ratio does not predict accessibility of calcium in ready‐to‐eat dishes. Journal of the Science of Food and Agriculture 97 (10):3189–94. doi:10.1002/jsfa.8163.
  • Erdman, J. W., and A. Poneros-Schneier. 1989. Phytic acid interactions with divalent cations in foods and in the gastrointestinal tract. In Mineral absorption in the monogastric GI tract, eds. F. R. Dintzis and J. A. Laszlo, 161–71. Boston, MA: Springer US.
  • Feitosa, S., R. Greiner, A.-K. Meinhardt, A. Müller, D. T. Almeida, and C. Posten. 2018. Effect of traditional household processes on iron, zinc and copper bioaccessibility in black bean (Phaseolus vulgaris L.). Foods (Basel, Switzerland) 7 (8):123. doi:10.3390/foods7080123
  • Fredlund, K., M. Isaksson, L. Rossander-Hulthén, A. Almgren, and A.-S. Sandberg. 2006. Absorption of zinc and retention of calcium: Dose-dependent inhibition by phytate. J Trace Elem Med Biol 20 (1):49–57. doi:10.1016/j.jtemb.2006.01.003.
  • Gabaza, M., M. Muchuweti, P. Vandamme, and K. Raes. 2017. Can fermentation be used as a sustainable strategy to reduce iron and zinc binders in traditional African fermented cereal porridges or gruels? Food Reviews International 33 (6):561–86. doi:10.1080/87559129.2016.1196491.
  • Gad, S. S., M. S. Mohamed, M. E. El-Zalaki, and S. Z. Mohasseb. 1982. Effect of processing on phosphorus and phytic acid contents of some Egyptian varieties of legumes. Food Chemistry 8 (1):11–9. doi: 10.1016/0308-8146(82)90052-8.
  • García-Casal, M. N., I. Leets, and M. Layrisse. 2000. Beta-carotene and inhibitors of iron absorption modify iron uptake by Caco-2 cells . The Journal of Nutrition 130 (1):5–9. doi:10.1093/jn/130.1.5.
  • Gibson, R. S. 2006. Zinc: The missing link in combating micronutrient malnutrition in developing countries. The Proceedings of the Nutrition Society 65 (1):51–60. doi:10.1079/pns2005474.
  • Gibson, R. S., K. B. Bailey, M. Gibbs, and E. L. Ferguson. 2010. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food and Nutrition Bulletin 31 (2_suppl2):S134–S146. doi:10.1177/15648265100312S206.
  • Gifford-Steffen, S. R., and F. M. Clydesdale. 1993. Effect of varying concentrations of phytate, calcium, and zinc on the solubility of protein, calcium, zinc, and phytate in soy protein concentrate. Journal of Food Protection 56 (1):42–6. doi:10.4315/0362-028X-56.1.42
  • Gilani, G. S., C. W. Xiao, and K. A. Cockell. 2012. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. British Journal of Nutrition 108 (S2):S315–S332.
  • Glahn, R., E. Tako, J. Hart, J. Haas, M. Lung’aho, and S. Beebe. 2017. Iron bioavailability studies of the first generation of iron-biofortified beans released in Rwanda. Nutrients 9 (7):787. doi:10.3390/nu9070787.
  • Glahn, R. P., E. Tako, K. Cichy, and J. Wiesinger. 2016. The cotyledon cell wall and intracellular matrix are factors that limit iron bioavailability of the common bean (Phaseolus vulgaris). Food & Function 7 (7):3193–200. doi:10.1039/c6fo00490c.
  • Glahn, R. P., G. M. Wortley, P. K. South, and D. D. Miller. 2002. Inhibition of iron uptake by phytic acid, tannic acid, and ZnCl2: Studies using an in vitro digestion/Caco-2 cell model. Journal of Agricultural and Food Chemistry 50 (2):390–5. doi:10.1021/jf011046u.
  • González-Pérez, S., and J. B. Arellano. 2009. 15 - Vegetable protein isolates. In Handbook of Hydrocolloids, eds. G. O. Phillips and P. A. Williams, 2nd ed., 383–419. Woodhead Publishing.
  • Graf, E. 1983. Calcium binding to phytic acid. Journal of Agricultural and Food Chemistry 31 (4):851–5. doi:10.1021/jf00118a045
  • Graf, E., and J. W. Eaton. 1984. Effects of phytate on mineral bioavailability in mice. The Journal of Nutrition 114 (7):1192–8. doi:10.1093/jn/114.7.1192.
  • Graf, E., K. L. Empson, and J. W. Eaton. 1987. Phytic acid. A natural antioxidant. The Journal of Biological Chemistry 262 (24):11647–50.
  • Grases, F., A. Costa-Bauza, and R. Prieto. 2005. Intracellular and extracellular myo-inositol hexakisphosphate (InsP6), from rats to humans. Anticancer Research 25 (3C):2593–7.
  • Greiner, R., and U. Konietzny. 2006. Phytase for food application. Food Technology & Biotechnology 44 (2)
  • Grynspan, F., and M. Cheryan. 1983. Calcium phytate: Effect of ph and molar ratio on in vitro solubility. Journal of the American Oil Chemists’ Society 60 (10):1761–4. doi:10.1007/BF02680350
  • Grynspan, F., and M. Cheryan. 1989. Phytate‐calcium interactions with soy protein. Journal of the American Oil Chemists' Society 66 (1):93–7. doi:10.1007/BF02661792.
  • Gupta, R. K., S. S. Gangoliya, and N. K. Singh. 2015. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology 52 (2):676–84. doi:10.1007/s13197-013-0978-y.
  • Gupta, S., E. Habeych, N. Scheers, S. Merinat, B. Rey, N. Galaffu, and A.-S. Sandberg. 2020. The development of a novel ferric phytate compound for iron fortification of bouillons (part I). Scientific Reports 10 (1):5340. doi:10.1038/s41598-020-61833-2.
  • Hallberg, L., M. Brune, and L. Rossander. 1989. Iron absorption in man: Ascorbic acid and dose-dependent inhibition by phytate. The American Journal of Clinical Nutrition 49 (1):140–4. doi:10.1093/ajcn/49.1.140.
  • Hallberg, L., L. Rossander, and A. B. Skånberg. 1987. Phytates and the inhibitory effect of bran on iron absorption in man. The American Journal of Clinical Nutrition 45 (5):988–96. doi:10.1093/ajcn/45.5.988.
  • Hambidge, K. M., L. V. Miller, J. E. Westcott, and N. F. Krebs. 2008. Dietary reference intakes for zinc may require adjustment for phytate intake based upon model predictions. The Journal of Nutrition 138 (12):2363–6. doi:10.3945/jn.108.093823.
  • Han, O., M. L. Failla, A. D. Hill, E. R. Morris, and J. C. Smith. Jr, 1994. Inositol phosphates inhibit uptake and transport of iron and zinc by a human intestinal cell line. The Journal of Nutrition 124 (4):580–7. doi:10.1093/jn/124.4.580.
  • He, W.-L., Y. Feng, X.-L. Li, and X.-E. Yang. 2008. Comparison of iron uptake from reduced iron powder and FeSO4 using the Caco-2 cell model: Effects of ascorbic acid, phytic acid, and pH. Journal of Agricultural and Food Chemistry 56 (8):2637–42. doi:10.1021/jf0730946.
  • Heaney, R. P., C. M. Weaver, and M. L. Fitzsimmons. 1991. Soybean phytate content: Effect on calcium absorption. The American Journal of Clinical Nutrition 53 (3):745–7. doi:10.1093/ajcn/53.3.745.
  • Hemalatha, S., K. Platel, and K. Srinivasan. 2007. Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains. European Journal of Clinical Nutrition 61 (3):342–8. doi:10.1038/sj.ejcn.1602524.
  • Hull, S. R., J. S. S. Gray, and R. Montgomery. 1999. Autohydrolysis of phytic acid. Analytical Biochemistry 273 (2):252–60. doi:10.1006/abio.1999.4220.
  • Humer, E., C. Schwarz, and K. Schedle. 2015. Phytate in pig and poultry nutrition. Journal of Animal Physiology and Animal Nutrition 99 (4):605–25. doi:10.1111/jpn.12258.
  • Hummel, M., E. F. Talsma, V. Taleon, L. Londoño, G. Brychkova, S. Gallego, B. Raatz, and C. Spillane. 2020. Iron, zinc and phytic acid retention of biofortified, low phytic acid, and conventional bean varieties when preparing common household recipes. Nutrients 12 (3):658. doi:10.3390/nu12030658
  • Hunt, J. R., and J. M. Beiseigel. 2009. Dietary calcium does not exacerbate phytate inhibition of zinc absorption by women from conventional diets. The American Journal of Clinical Nutrition 89 (3):839–43. doi:10.3945/ajcn.2008.27175.
  • Hunt, J. R., L. K. Johnson, and Z. Fariba Roughead. 2009. Dietary protein and calcium interact to influence calcium retention: A controlled feeding study. The American Journal of Clinical Nutrition 89 (5):1357–65. doi:10.3945/ajcn.2008.27238.
  • Hurrell, R., and I. Egli. 2010. Iron bioavailability and dietary reference values. The American Journal of Clinical Nutrition 91 (5):1461S–7S. doi:10.3945/ajcn.2010.28674f.
  • Hurrell, R. F., M.-A. Juillerat, M. B. Reddy, S. R. Lynch, S. A. Dassenko, and J. D. Cook. 1992. Soy protein, phytate, and iron absorption in humans. The American Journal of Clinical Nutrition 56 (3):573–8. doi:10.1093/ajcn/56.3.573.
  • Hurrell, R. F., M. B. Reddy, J. Burri, and J. D. Cook. 2002. Phytate degradation determines the effect of industrial processing and home cooking on iron absorption from cereal-based foods. British Journal of Nutrition 88 (2):117–23. doi:10.1079/BJN2002594
  • Hurrell, R. F., M. B. Reddy, M.-A. Juillerat, and J. D. Cook. 2003. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. The American Journal of Clinical Nutrition 77 (5):1213–9. doi:10.1093/ajcn/77.5.1213
  • Iqbal, T. H., K. O. Lewis, and B. T. Cooper. 1994. Phytase activity in the human and rat small intestine. Gut 35 (9):1233–6. doi:10.1136/gut.35.9.1233.
  • Israelachvili, J. N. 2015. Intermolecular and surface forces. Waltham, USA: Elsevier Science.
  • Jin, F., C. Frohman, T. W. Thannhauser, R. M. Welch, and R. P. Glahn. 2008. Effects of ascorbic acid, phytic acid and tannic acid on iron bioavailability from reconstituted ferritin measured by an in vitro digestion–Caco-2 cell model. British Journal of Nutrition 101 (7):972–81. doi:10.1017/S0007114508055621.
  • Junqueira-Franco, M. V. M., J. E. Dutra de Oliveira, M. R. Nutti, H. S. Pereira, J. L. V. d Carvalho, S. A. Abrams, C. F. C. Brandão, and J. S. Marchini. 2018. Iron absorption from beans with different contents of iron, evaluated by stable isotopes. Clinical Nutrition ESPEN 25:121–5. doi:10.1016/j.clnesp.2018.03.120.
  • Kaur, P., G. Kunze, and T. Satyanarayana. 2007. Yeast phytases: Present scenario and future perspectives. Critical Reviews in Biotechnology 27 (2):93–109. doi:10.1080/07388550701334519.
  • Kiela, P. R., and F. K. Ghishan. 2016. Physiology of intestinal absorption and secretion. Best Practice & Research. Clinical Gastroenterology 30 (2):145–59. doi:10.1016/j.bpg.2016.02.007.
  • Kim, J., H. Y. Paik, H. Joung, L. R. Woodhouse, S. Li, and J. C. King. 2007. Effect of dietary phytate on zinc homeostasis in young and elderly Korean women. Journal of the American College of Nutrition 26 (1):1–9. doi:10.1080/07315724.2007.10719579.
  • Kim, J., L. R. Woodhouse, J. C. King, R. M. Welch, S. J. Li, H. Y. Paik, and H. Joung. 2009. Relationships between faecal phytate and mineral excretion depend on dietary phytate and age. British Journal of Nutrition 102 (6):835–41. doi:10.1017/S0007114509289057.
  • Knuckles, B., D. Kuzmicky, M. Gumbmann, and A. Betschart. 1989. Effect of myoinositol phosphate esters on in vitro and in vivo digestion of protein. Journal of Food Science 54 (5):1348–50. doi:10.1111/j.1365-2621.1989.tb05989.x.
  • Kong, F., and R. Singh. 2008. Disintegration of solid foods in human stomach. Journal of Food Science 73 (5):R67–R80. doi:10.1111/j.1750-3841.2008.00766.x.]
  • Konietzny, U., and R. Greiner. 2002. Molecular and catalytic properties of phytate‐degrading enzymes (phytases. ). International Journal of Food Science & Technology 37 (7):791–812.
  • Krężel, A., and W. Maret. 2016. The biological inorganic chemistry of zinc ions. Archives of Biochemistry and Biophysics 611:3–19. doi:10.1016/j.abb.2016.04.010.
  • Kumar, V., A. K. Sinha, H. P. Makkar, and K. Becker. 2010. Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry 120 (4):945–59. doi:10.1016/j.foodchem.2009.11.052.
  • Lathia, D., G. Hoch, and Y. Kievernagel. 1987. Influence of phytate on in vitro digestibility of casein under physiological conditions. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 37 (3):229–35. doi:10.1007/BF01091787.
  • Lee, G., D. Williams, G. Cartwright, A. Prasad, and D. Oberleas. 1976. Trace elements in human health and disease vol. 1 Zinc and Copper. New York: Academic press.
  • Liu, N., and A. Cowieson. 2011. Effect of Phytic acid and pH value on the activation of chicken pepsinogen in vitro. Paper Presented at the Australian Poultry Science Symposium.
  • Loladze, I. 2014. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 3:e02245. doi:10.7554/eLife.02245.
  • Lombardi-Boccia, G., M. Carbonaro, G. D. Lullo, and E. Carnovale. 1994. Influence of protein components (G1, G2 and albumin) on Fe and Zn dialysability from bean (Phaseolus vulgaris L.). International Journal of Food Sciences and Nutrition 45 (3):183–90. doi:10.3109/09637489409166157
  • Lombardi-Boccia, G., S. Ruggeri, A. Aguzzi, and M. Cappelloni. 2003. Globulins enhance in vitro iron but not zinc dialysability: A study on six legume species. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS) 17 (1):1–5. doi:10.1016/S0946-672X(03)80037-8.
  • Lombardi-Boccia, G., U. Schlemmer, M. Cappelloni, and G. D. Lullo. 1998. The inhibitory effect of albumin extracts from white beans (Phaseolus vulgaris L.) on in vitro iron and zinc dialysability: Role of phytic acid. Food Chemistry 63 (1):1–7. doi:10.1016/S0308-8146. (97)00244-6
  • Lonnerdal, B. (1998). Iron-zinc-copper interactions, in micronutrient interactions: impact on child health and nutrition, Washington, DC, July 29-30. 1996. ILSI Press.
  • Lönnerdal, B. 2002. Phytic acid–trace element (Zn, Cu, Mn) interactions. International Journal of Food Science & Technology 37 (7):749–58. doi:10.1046/j.1365-2621.2002.00640.x.
  • Lönnerdal, B., A.-S. Sandberg, B. Sandström, and C. Kunz. 1989. Inhibitory effects of phytic acid and other inositol phosphates on zinc and calcium absorption in suckling rats. The Journal of Nutrition 119 (2):211–4. doi:10.1093/jn/119.2.211.
  • Lopez, H. W., F. Leenhardt, C. Coudray, and C. Remesy. 2002. Minerals and phytic acid interactions: Is it a real problem for human nutrition? International Journal of Food Science and Technology 37 (7):727–39. doi:10.1046/j.1365-2621.2002.00618.x
  • Lott, J. N., I. Ockenden, V. Raboy, and G. D. Batten. 2000. Phytic acid and phosphorus in crop seeds and fruits: A global estimate. Seed Science Research 10 (1):11–33.
  • Luo, Y.-W., and W.-H. Xie. 2013. Effect of different processing methods on certain antinutritional factors and protein digestibility in green and white faba bean (Vicia faba L.). CyTA - Journal of Food 11 (1):43–9. doi:10.1080/19476337.2012.681705
  • Luo, Y., Z. Gu, Y. Han, and Z. Chen. 2009. The impact of processing on phytic acid, in vitro soluble iron and Phy/Fe molar ratio of faba bean (Vicia faba L.). Journal of the Science of Food and Agriculture 89 (5):861–6. doi:10.1002/jsfa.3525
  • Lv, Y., X. L. Bao, B. C. Yang, C. G. Ren, and S. T. Guo. 2008. Effect of soluble soybean protein hydrolysate-calcium complexes on calcium uptake by Caco-2 cells . Journal of Food Science 73 (7):H168–H173. doi:10.1111/j.1750-3841.2008.00873.x.
  • Lyon, D. B. 1984. Studies on the solubility of Ca, Mg, Zn, and Cu in cereal products. The American Journal of Clinical Nutrition 39 (2):190–5. doi:10.1093/ajcn/39.2.190.
  • Ma, G., Y. Li, Y. Jin, F. Zhai, F. J. Kok, and X. Yang. 2007. Phytate intake and molar ratios of phytate to zinc, iron and calcium in the diets of people in China. European Journal of Clinical Nutrition 61 (3):368–74. doi:10.1038/sj.ejcn.1602513.
  • Maddaiah, V., A. Kurnick, and B. Reid. 1964. Phytic acid studies. Experimental Biology and Medicine 115 (2):391–3. doi:10.3181/00379727-115-28922.
  • Maenz, D. D., C. M. Engele-Schaan, R. W. Newkirk, and H. L. Classen. 1999. The effect of minerals and mineral chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and in a slurry of canola meal. Animal Feed Science and Technology 81 (3-4):177–92. doi: 10.1016/S0377-8401(99)00085-1.
  • Mahgoub, S. E. O., and S. A. Elhag. 1998. Effect of milling, soaking, malting, heat-treatment and fermentation on phytate level of four Sudanese sorghum cultivars. Food Chemistry 61 (1-2):77–80. doi:10.1016/s0308-8146(97)00109-x
  • Mansell, D., N. Veiga, J. Torres, L. L. Etchells, R. A. Bryce, C. Kremer, and S. Freeman. 2010. Conformational study of the natural iron chelator myo-inositol 1, 2, 3-trisphosphate using restrained/flexible analogues and computational analysis. Tetrahedron 66 (46):8949–57.
  • Marcus, Y. 2009. Effect of ions on the structure of water: Structure making and breaking. Chemical Reviews 109 (3):1346–70. doi:10.1021/cr8003828.
  • Markiewicz, L. H., J. Honke, M. Haros, D. Świątecka, and B. Wróblewska. 2013. Diet shapes the ability of human intestinal microbiota to degrade phytate-in vitro studies. Journal of Applied Microbiology 115 (1):247–59. doi:10.1111/jam.12204.
  • Marolt, G., and B. Pihlar. 2015. Potentiometric determination of phytic acid and investigations of phytate interactions with some metal ions. Acta Chimica Slovenica 62 (2):319–27. doi:10.17344/acsi.2014.1127.
  • Martell, A. E., and R. D. Hancock. 2013. Metal complexes in aqueous solutions. New York, USA: Springer Science & Business Media.
  • Martin, C. J., and W. J. Evans. 1986. Phytic acid-metal ion interactions. II. The effect of pH on ca(II) binding. Journal of Inorganic Biochemistry 27 (1):17–30. doi: 10.1016/0162-0134(86)80105-2.
  • Miller, L. V., K. M. Hambidge, and N. F. Krebs. 2015. Zinc absorption is not related to dietary phytate intake in infants and young children based on modeling combined data from multiple studies. The Journal of Nutrition 145 (8):1763–9.
  • Miller, L. V., N. F. Krebs, and K. M. Hambidge. 2013. Mathematical model of zinc absorption: Effects of dietary calcium, protein and iron on zinc absorption. The British Journal of Nutrition 109 (4):695–700. doi:10.1017/S000711451200195X.
  • Mitsuda, H., and T. Mitsunaga. 1974. Evaluation and elimination of the interference by starch in the biuret determination of wheat protein. Agricultural and Biological Chemistry 38 (9):1649–55.
  • Moore, K. L., I. Rodríguez-Ramiro, E. R. Jones, E. J. Jones, J. Rodríguez-Celma, K. Halsey, C. Domoney, P. R. Shewry, S. Fairweather-Tait, and J. Balk. 2018. The stage of seed development influences iron bioavailability in pea (Pisum sativum L.). Scientific Reports 8 (1):6865 doi:10.1038/s41598-018-25130-3.
  • Morris, E. R., and R. Ellis. 1989. Usefulness of the dietary phytic acid/zinc molar ratio as an index of zinc bioavailability to rats and humans. Biol Trace Elem Res 19 (1-2):107–17. doi:10.1007/BF02925452.
  • Mudie, D. M., G. L. Amidon, and G. E. Amidon. 2010. Physiological Parameters for Oral Delivery and in Vitro Testing. Molecular Pharmaceutics 7 (5):1388–405. doi:10.1021/mp100149j.
  • Oatway, L., T. Vasanthan, and J. H. Helm. 2001. Phytic acid. Food Reviews International 17 (4):419–31. doi:10.1081/FRI-100108531.
  • Odani, A., R. Takamido, and O. Yamauchi. 1997. Phytate, an environmental phosphate from grain source. Metal complex formation and degradation by phytase. Journal of Inorganic Biochemistry 67 (1-4):378. doi: 10.1016/S0162-0134(97)80244-9.
  • Oomah, B. D., G. Luc, C. Leprelle, J. C. Drover, J. E. Harrison, and M. Olson. 2011. Phenolics, phytic acid, and phytase in Canadian-grown low-tannin faba bean (Vicia faba L.) genotypes. Journal of Agricultural and Food Chemistry 59 (8):3763–71. doi:10.1021/jf200338b.
  • Panzeri, D., E. Cassani, E. Doria, G. Tagliabue, L. Forti, B. Campion, R. Bollini, C. A. Brearley, R. Pilu, E. Nielsen, et al. 2011. A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity . The New Phytologist 191 (1):70–83. doi:10.1111/j.1469-8137.2011.03666.x.
  • Paton, G., M. Noailly, and J. Mossoyan. 1999. Conformational preferences and intramolecular interactions of myo‐inositol hexakisphosphoric acid by 1H and 31P NMR studies. Journal of Physical Organic Chemistry 12 (5):401–7. doi:10.1002/(SICI)1099-1395(199905)12:5<401::AID-POC140>3.0.CO;2-5.
  • Persson, H., M. Türk, M. Nyman, and A.-S. Sandberg. 1998. Binding of Cu2+, Zn2+, and Cd2+ to Inositol Tri-, Tetra-, Penta-, and Hexaphosphates. Journal of Agricultural and Food Chemistry 46 (8):3194–200. doi:10.1021/jf971055w
  • Petry, N., I. Egli, B. Campion, E. Nielsen, and R. Hurrell. 2013. Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women. The Journal of Nutrition 143 (8):1219–24. doi:10.3945/jn.113.175067
  • Petry, N., I. Egli, C. Zeder, T. Walczyk, and R. Hurrell. 2010. Polyphenols and Phytic acid contribute to the low iron bioavailability from common beans in young women. The Journal of Nutrition 140 (11):1977–82. doi:10.3945/jn.110.125369
  • Petry, N., F. Rohner, J. B. Gahutu, B. Campion, E. Boy, P. L. Tugirimana, M. B. Zimmerman, C. Zwahlen, J. P. Wirth, and D. Moretti. 2016. In Rwandese women with low iron status. The Journal of Nutrition 146 (5):970–5. doi:10.3945/jn.115.223693
  • Pierce, A. G. 1985. Structure studies of phytate-zinc ion complexes: X-Ray diffraction and thermal analysis. Inorganica Chimica Acta 106 (2):L9–L12.
  • Prasad, A. 2013. Trace elements and iron in human metabolism. New York, USA: Springer.
  • Prattley, C. A., and D. W. Stanley. 1982. protein-phytate interactions in soybeans. i. Localization of phytate in protein bodies and globoids. Journal of Food Biochemistry 6 (4):243–54. doi:10.1111/j.1745-4514.1982.tb00305.x
  • Raboy, V. 2020. Low phytic acid crops: Observations based on four decades of research. Plants 9 (2):140.
  • Reddy, N., M. D. Pierson, S. K. Sathe, and D. Salunkhe. 1989. Phytates in cereals and legumes. Boca Raton, USA: CRC Press.
  • Reddy, N. R., and D. K. Salunkhe. 1981. Interactions between phytate, protein, and minerals in whey fractions of black gram. Journal of Food Science 46 (2):564–7. doi:10.1111/j.1365-2621.1981.tb04911.x
  • Reinhold, J. G., B. Faradji, P. Abadi, and F. Ismail-Beigi. 1976. Decreased absorption of calcium, magnesium, zinc and phosphorus by humans due to increased fiber and phosphorus consumption as wheat bread. The Journal of Nutrition 106 (4):493–503. doi:10.1093/jn/106.4.493.
  • Reinhold, J. G., A. Lahimgarzadeh, K. Nasr, and H. Hedayati. 1973. Effects of purified phytate and phytate-rich bread upon metabolism of zinc, calcium, phosphorus, and nitrogen in man. The Lancet 301 (7798):283–8. doi: 10.1016/S0140-6736(73)91538-9.
  • Reinmuth, M., S. Pramanik, J. T. Douglas, V. W. Day, and K. Bowman-James. 2019. Structural impact of chelation on phytate, a highly phosphorylated biomolecule. European Journal of Inorganic Chemistry 2019 (14):1870–4. doi:10.1002/ejic.201900091
  • Riethorst, D., J. Brouwers, J. Motmans, and P. Augustijns. 2018. Human intestinal fluid factors affecting intestinal drug permeation in vitro. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 121:338–46. doi:10.1016/j.ejps.2018.06.007.
  • Rimbach, G., J. Pallauf, K. Brandt, and E. Most. 1995. Effect of phytic acid and microbial phytase on Cd accumulation, Zn status, and apparent absorption of Ca, P, Mg, Fe, Zn, Cu, and Mn in growing rats. Annals of Nutrition & Metabolism 39 (6):361–70. doi:10.1159/000177886.
  • Rodrigues-Filho, U. P., S. Vaz, M. P. Felicissimo, M. Scarpellini, D. R. Cardoso, R. C. J. Vinhas, R. Landers, J. F. Schneider, B. R. McGarvey, M. L. Andersen, et al. 2005. Heterometallic manganese/zinc-phytate complex as a model compound for metal storage in wheat grains. Journal of Inorganic Biochemistry 99 (10):1973–82. doi:10.1016/j.jinorgbio.2005.06.014.
  • Roohani, N., R. Hurrell, R. Kelishadi, and R. Schulin. 2013. Zinc and its importance for human health: An integrative review. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences 18 (2):144–57.
  • Rosa-Sibakov, N., M. Re, A. Karsma, A. Laitila, and E. Nordlund. 2018. Phytic acid reduction by bioprocessing as a tool to improve. Journal of Agricultural and Food Chemistry 66 (40):10394–9. doi:10.1021/acs.jafc.8b02948.
  • Rousseau, S., C. Kyomugasho, M. Celus, M. E. G. Hendrickx, and T. Grauwet. 2020. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Critical Reviews in Food Science and Nutrition, 1-18 60 (5):826–43. doi:10.1080/10408398.2018.1552243
  • Rubio, L. A., G. Grant, P. Dewey, I. Bremner, and A. Pusztai. 1994. The intestinal true absorption of 65zn in rats is adversely affected by diets containing a faba bean (Vicia faba L.) nonstarch polysaccharide fraction. The Journal of Nutrition 124 (11):2204–11. doi:10.1093/jn/124.11.2204.
  • Rubio, L. A., Pérez, A. Ruiz, R. Guzmán, M. Á. Aranda, ‐Olmedo, I. Clemente. and A. 2014. Characterization of pea (Pisum sativum) seed protein fractions. Journal of the Science of Food and Agriculture 94 (2):280–7. doi:10.1002/jsfa.6250.
  • Ruel, M. T., and C. E. Levin. 2002. Food-based approaches for alleviating micronutrient malnutrition: An overview. Journal of Crop Production 6 (1-2):31–53. doi:10.1300/J144v06n01_05
  • Saiardi, A. 2017. Has inositol played any role in the origin of life? Life 7 (2):24.
  • Sakai, H., T. Iwai, C. Matsubara, Y. Usui, M. Okamura, O. Yatou, Y. Terada, N. Aoki, S. Nishida, and K. T. Yoshida. 2015. A decrease in phytic acid content substantially affects the distribution of mineral elements within rice seeds. Plant Science: An International Journal of Experimental Plant Biology 238:170–7. doi:10.1016/j.plantsci.2015.06.006.
  • Šala, M., D. Makuc, J. Kolar, J. Plavec, and B. Pihlar. 2011. Potentiometric and 31P NMR studies on inositol phosphates and their interaction with iron(III) ions. Carbohydrate Research 346 (4):488–94. doi:10.1016/j.carres.2010.12.021.
  • Sandberg, A.-S. 1991. The effect of food processing on phytate hydrolysis and availability of iron and zinc. In Nutritional and toxicological consequences of food processing, 499–508. New York, USA: Springer.
  • Sandberg, A.-S. 2002. Bioavailability of minerals in legumes. British Journal of Nutrition 88 (S3):281–5.
  • Sandberg, A.-S., M. Brune, N.-G. Carlsson, L. Hallberg, E. Skoglund, and L. Rossander-Hulthén. 1999. Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. The American Journal of Clinical Nutrition 70 (2):240–6. doi:10.1093/ajcn.70.2.240.
  • Sandberg, A.-S., and U. Svanberg. 1991. Phytate hydrolysis by phytase in cereals; effects on in vitro estimation of iron availability. Journal of Food Science 56 (5):1330–3. doi:10.1111/j.1365-2621.1991.tb04765.x
  • Sandberg, A. S., N. G. Carlsson, and U. Svanberg. 1989. Effects of inositol tri-, tetra-, penta-, and hexaphosphates on in vitro estimation of iron availability. Journal of Food Science 54 (1):159–61. doi:10.1111/j.1365-2621.1989.tb08591.x
  • Sandberg, A. S., and N. Scheers. 2016. Phytic acid: Properties, uses, and determination. In Encyclopedia of food and health, eds. B. Caballero, P. M. Finglas, and F. Toldrá, 365–8. Oxford: Academic Press.
  • Sandström, B., A. Almgren, B. Kivistö, and A. Cederblad. Å. 1987. Zinc absorption in humans from meals based on rye, barley, oatmeal, triticale and whole wheat. The Journal of Nutrition 117 (11):1898–902. doi:10.1093/jn/117.11.1898.
  • Sandström, B., and A.-S. Sandberg. 1992. Inhibitory effects of isolated inositol phosphates on zinc absorption in humans. Journal of Trace Elements and Electrolytes in Health and Disease 6 (2):99–103.
  • Schachtman, D. P., R. J. Reid, and S. M. Ayling. 1998. Phosphorus uptake by plants: From soil to cell. Plant Physiology 116 (2):447–53. doi:10.1104/pp.116.2.447.
  • Selle, P. H., A. J. Cowieson, N. P. Cowieson, and V. Ravindran. 2012. Protein-phytate interactions in pig and poultry nutrition: A reappraisal. Nutrition Research Reviews 25 (1):1–17. doi:10.1017/S0954422411000151.
  • Sellin, J. H. 2016. A breath of fresh air. Clinical Gastroenterology and Hepatology : The Official Clinical Practice Journal of the American Gastroenterological Association 14 (2):209–11. doi:10.1016/j.cgh.2015.10.027.
  • Shi, L., S. D. Arntfield, and M. Nickerson. 2018. Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of Canadian pulses. Food Research International (Ottawa, Ont.) 107:660–8. doi:10.1016/j.foodres.2018.02.056.
  • Shockravi, S., M. Mohammad Shirazi, A. Abadi, M. Seyedain Ardebili, and M. Kimiagar. 2012. Effect of Phytase Supplementation on Zinc, Iron and Calcium Status in Rats Fed with Diet Containing Iranian High Phytate Bread (Sangak). Iranian Journal of Endocrinology and Metabolism 13 (5):514–23.
  • Siegenberg, D., R. D. Baynes, T. H. Bothwell, B. J. Macfarlane, R. D. Lamparelli, N. G. Car, P. MacPhail, U. Schmidt, A. Tal, and F. Mayet. 1991. Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. The American Journal of Clinical Nutrition 53 (2):537–41. doi:10.1093/ajcn/53.2.537.
  • Siener, R., H. Heynck, and A. Hesse. 2001. Calcium-binding capacities of different brans under simulated gastrointestinal pH conditions. In vitro study with 45Ca. Journal of Agricultural and Food Chemistry 49 (9):4397–401. doi:10.1021/jf010381f.
  • Silva, E. O., and A. P. F. R. L. Bracarense. 2016. Phytic Acid: From Antinutritional to Multiple Protection Factor of Organic Systems. Journal of Food Science 81 (6):R1357–R1362. doi:10.1111/1750-3841.13320.
  • Simpson, K. M., E. R. Morris, and J. D. Cook. 1981. The inhibitory effect of bran on iron absorption in man. The American Journal of Clinical Nutrition 34 (8):1469–78. doi:10.1093/ajcn/34.8.1469.
  • Skoglund, E., N.-G. Carlsson, and A.-S. Sandberg. 2009. Chapter 11 - Phytate. In Healthgrain methods, eds. P. R. Shewry and J. L. Ward, 129–39. St Paul, USA: AACC International Press.
  • Sözen, T., L. Özışık, and N. Ç. Başaran. 2017. An overview and management of osteoporosis. European Journal of Rheumatology 4 (1):46–56. doi:10.5152/eurjrheum.2016.048.
  • Tako, E., S. E. Beebe, S. Reed, J. J. Hart, and R. P. Glahn. 2014. Polyphenolic compounds appear to limit the nutritional benefit of biofortified higher iron black bean (Phaseolus vulgaris L.). Nutrition Journal 13 (1):28. doi:10.1186/1475-2891-13-28.
  • Tako, E., M. W. Blair, and R. P. Glahn. 2011. Biofortified red mottled beans (Phaseolus vulgaris L.) in a maize and bean diet provide more bioavailable iron than standard red mottled beans: Studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model. Nutrition Journal 10 (1):113. doi:10.1186/1475-2891-10-113
  • Tamim, N. M., and R. Angel. 2003. Phytate phosphorus hydrolysis as influenced by dietary calcium and micro-mineral source in broiler diets. Journal of Agricultural and Food Chemistry 51 (16):4687–4693. doi:10.1021/jf034122x
  • Thacher, T. D., O. Aliu, I. J. Griffin, S. D. Pam, K. O. O'Brien, G. E. Imade, and S. A. Abrams. 2009. Meals and dephytinization affect calcium and zinc absorption in Nigerian children with rickets. The Journal of Nutrition 139 (5):926–932. doi:10.3945/jn.108.101030
  • Torres-Fuentes, C., M. Alaiz, and J. Vioque. 2012. Iron-chelating activity of chickpea protein hydrolysate peptides. Food Chemistry 134 (3):1585–1588. doi:10.1016/j.foodchem.2012.03.112.
  • Torres, J., S. Domínguez, M. F. Cerdá, G. Obal, A. Mederos, R. F. Irvine, A. Díaz, and C. Kremer. 2005. Solution behaviour of myo-inositol hexakisphosphate in the presence of multivalent cations. Prediction of a neutral pentamagnesium species under cytosolic/nuclear conditions. Journal of Inorganic Biochemistry 99 (3):828–840. doi:10.1016/j.jinorgbio.2004.12.011.
  • Troesch, B., H. Jing, A. Laillou, and A. Fowler. 2013. Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods. Food and Nutrition Bulletin 34 (2 Suppl):S90–S101. doi:10.1177/15648265130342S111.
  • Turnlund, J., J. King, W. Keyes, B. Gong, and M. Michel. 1984. A stable isotope study of zinc absorption in young men: Effects of phytate and a-cellulose. The American Journal of Clinical Nutrition 40 (5):1071–1077. doi:10.1093/ajcn/40.5.1071.
  • United Nations & FAO. 2019. FAO/INFOODS/IZiNCG Global food composition database for phytate - version 1.0 (PhyFoodComp1.0): User guide. Food & Agriculture Org.
  • Urbano, G., M. López-Jurado, P. Aranda, C. Vidal-Valverde, E. Tenorio, and J. Porres. 2000. The role of phytic acid in legumes: Antinutrient or beneficial function? Journal of Physiology and Biochemistry 56 (3):283–294. doi:10.1007/bf03179796.
  • Vaintraub, I. A., and V. P. Bulmaga. 1991. Effect of phytate on the in vitro activity of digestive proteinases. Journal of Agricultural and Food Chemistry 39 (5):859–861. doi:10.1021/jf00005a008.
  • Vasca, E., S. Materazzi, T. Caruso, O. Milano, C. Fontanella, and C. Manfredi. 2002. Complex formation between phytic acid and divalent metal ions: A solution equilibria and solid state investigation. Analytical and Bioanalytical Chemistry 374 (1):173–178. doi:10.1007/s00216-002-1469-6.
  • Vaz-Tostes, M. d G., T. A. Verediano, E. G. de Mejia, and N. M. Brunoro Costa. 2016. Evaluation of iron and zinc bioavailability of beans targeted for biofortification using in vitro and in vivo models and their effect on the nutritional status of preschool children. Journal of the Science of Food and Agriculture 96 (4):1326–1332. doi:10.1002/jsfa.7226.
  • Veiga, N., I. Macho, K. Gómez, G. González, C. Kremer, and J. Torres. 2015. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate. Journal of Molecular Structure 1098:55–65. doi:10.1016/j.molstruc.2015.05.034.
  • Veiga, N., J. Torres, H. Y. Godage, A. M. Riley, S. Domínguez, B. V. L. Potter, A. Díaz, and C. Kremer. 2009. The behaviour of inositol 1,3,4,5,6-pentakisphosphate in the presence of the major biological metal cations. Journal of Biological Inorganic Chemistry: JBIC : a Publication of the Society of Biological Inorganic Chemistry 14 (7):1001–1013. doi:10.1007/s00775-009-0510-z.
  • Veiga, N., J. Torres, D. Mansell, S. Freeman, S. Domínguez, C. J. Barker, A. Díaz, and C. Kremer. 2009. "Chelatable iron pool": inositol 1,2,3-trisphosphate fulfils the conditions required to be a safe cellular iron ligand.” Journal of Biological Inorganic Chemistry: JBIC: A Publication of the Society of Biological Inorganic Chemistry 14 (1):51–59. doi:10.1007/s00775-008-0423-2.
  • Vohra, P., G. A. Gray, and F. H. Kratzer. 1965. Phytic acid-metal complexes. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.) 120 (2):447–449. doi:10.3181/00379727-120-30559.
  • Volkmann, C. J., G. M. Chateauneuf, J. Pradhan, A. T. Bauman, R. E. Brown, and P. P. N. Murthy. 2002. Conformational flexibility of inositol phosphates: Influence of structural characteristics. Tetrahedron Letters 43 (27):4853–4856. doi:10.1016/S0040-4039(02)00875-4.
  • Walters, M. E., R. Esfandi, and A. Tsopmo. 2018. Potential of food hydrolyzed proteins and peptides to chelate iron or calcium and enhance their absorption. Foods (Basel, Switzerland ), 7 (10):172. doi:10.3390/foods7100172
  • Wcislo, G., and K. Szarlej-Wcislo. 2014. Chapter 8 - Colorectal cancer prevention by wheat consumption: A three-valued logic – true, false, or otherwise?. In Wheat and rice in disease prevention and health, eds. R. R. Watson, V. R. Preedy, and S. Zibadi, 91–111. San Diego: Academic Press.
  • Weaver, C. M., R. P. Heaney, B. R. Martin, and M. L. Fitzsimmons. 1991. Human Calcium Absorption from Whole-Wheat Products. The Journal of Nutrition 121 (11):1769–1775. doi:10.1093/jn/121.11.1769.
  • Weaver, C. M., and S. Kannan. 2002. Phytate and mineral bioavailability. In Food phytates, eds. N. R. Reddy and S. K. Sathe, Vol. 2002, 211–23. Cleveland: CRC Press.
  • Weinborn, V., F. Pizarro, M. Olivares, A. Brito, M. Arredondo, S. Flores, and C. Valenzuela. 2015. The effect of plant proteins derived from cereals and legumes on heme iron absorption. Nutrients 7 (11):8977–8986. doi:10.3390/nu7115446
  • Wiesinger, J. A., K. A. Cichy, E. Tako, and R. P. Glahn. 2018. The fast cooking and enhanced iron bioavailability properties of the manteca yellow Bean (Phaseolus vulgaris L.). Nutrients 10 (11):1609. doi:10.3390/nu10111609
  • Williams, R. 2002. The fundamental nature of life as a chemical system: The part played by inorganic elements. Journal of Inorganic Biochemistry 88 (3-4):241–250.
  • Wise, A. 1983. Dietary factors determining the biological activities of phytate. Paper presented at the Nutrition Abstracts and Reviews (series A).
  • Wise, A. 1995. Phytate and zinc bioavailability. International Journal of Food Sciences and Nutrition 46 (1):53–63. doi:10.3109/09637489509003386.
  • Yu, S., A. Cowieson, C. Gilbert, P. Plumstead, and S. Dalsgaard. 2012. Interactions of phytate and myo-inositol phosphate esters (IP1-5) including IP5 isomers with dietary protein and iron and inhibition of pepsin1. Journal of Animal Science 90 (6):1824–1832. doi:10.2527/jas.2011-3866.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.