3,082
Views
64
CrossRef citations to date
0
Altmetric
Reviews

Biopolymer-based nanocomposite films and coatings: recent advances in shelf-life improvement of fruits and vegetables

, , & ORCID Icon

References

  • Abdelraof, M., M. S. Hasanin, M. M. Farag, and H. Y. Ahmed. 2019. Green synthesis of bacterial cellulose/bioactive glass nanocomposites: Effect of glass nanoparticles on cellulose yield, biocompatibility and antimicrobial activity. International Journal of Biological Macromolecules 138:975–85. doi: 10.1016/j.ijbiomac.2019.07.144.
  • Adame, D., and G. W. Beall. 2009. Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Applied Clay Science 42 (3-4):545–52. doi: 10.1016/j.clay.2008.03.005.
  • Al-Naamani, L., J. Dutta, and S. Dobretsov. 2018. Nanocomposite zinc oxide-chitosan coatings on polyethylene films for extending storage life of okra (Abelmoschus esculentus). Nanomaterials 8 (7):479. doi: 10.3390/nano8070479.
  • Alizadeh-Sani, M., A. Ehsani, E. Moghaddas Kia, and A. Khezerlou. 2019. Microbial gums: Introducing a novel functional component of edible coatings and packaging. Applied Microbiology and Biotechnology 103 (17):6853–66. doi: 10.1007/s00253-019-09966-x.
  • Alves, M. M., M. P. Gonçalves, and C. M. R. Rocha. 2017. Effect of ferulic acid on the performance of soy protein isolate-based edible coatings applied to fresh-cut apples. LWT 80:409–15. doi: 10.1016/j.lwt.2017.03.013.
  • Antunes, M. D. C., and A. M. Cavaco. 2010. The use of essential oils for postharvest decay control. A review. Flavour and Fragrance Journal 25 (5):351–66. doi: 10.1002/ffj.1986.
  • Arfat, Y. A., J. Ahmed, and H. Jacob. 2017. Preparation and characterization of agar-based nanocomposite films reinforced with bimetallic (Ag-Cu) alloy nanoparticles. Carbohydrate Polymers 155:382–90. doi: 10.1016/j.carbpol.2016.08.097.
  • Arora, A., and G. W. Padua. 2010. Review: Nanocomposites in food packaging. Journal of Food Science 75 (1):R43–R49. doi: 10.1111/j.1750-3841.2009.01456.x.
  • Arrieta, M. P., M. d M. Castro-López, E. Rayón, L. F. Barral-Losada, J. M. López-Vilariño, J. López, and M. V. González-Rodríguez. 2014. Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications . Journal of Agricultural and Food Chemistry 62 (41):10170–80. doi: 10.1021/jf5029812.
  • Avella, M., J. J. De Vlieger, M. E. Errico, S. Fischer, P. Vacca, and M. G. Volpe. 2005. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry 93 (3):467–74. doi: 10.1016/j.foodchem.2004.10.024.
  • Azeredo, H. M. C., and K. W. Waldron. 2016. Crosslinking in polysaccharide and protein films and coatings for food contact – A review. Trends in Food Science & Technology 52:109–22. doi: 10.1016/j.tifs.2016.04.008.
  • Balakrishnan, P., M. S. Sreekala, V. G. Geethamma, N. Kalarikkal, V. Kokol, T. Volova, and S. Thomas. 2019. Physicochemical, mechanical, barrier and antibacterial properties of starch nanocomposites crosslinked with pre-oxidised sucrose. Industrial Crops and Products 130:398–408. doi: 10.1016/j.indcrop.2019.01.007.
  • Balasubramanian, R., S. S. Kim, J. Lee, and J. Lee. 2019. Effect of TiO2 on highly elastic, stretchable UV protective nanocomposite films formed by using a combination of k-Carrageenan, xanthan gum and gellan gum. International Journal of Biological Macromolecules 123:1020–7. doi: 10.1016/j.ijbiomac.2018.11.151.
  • Barber, E. A., H. Turasan, P. G. Gezer, D. Devina, G. L. Liu, and J. Kokini. 2019. Effect of plasticizing and crosslinking at room temperature on microstructure replication using soft lithography on zein films. Journal of Food Engineering 250:55–64. doi: 10.1016/j.jfoodeng.2019.01.018.
  • Basumatary, K., P. Daimary, S. K. Das, M. Thapa, M. Singh, A. Mukherjee, and S. Kumar. 2018. Lagerstroemia speciosa fruit-mediated synthesis of silver nanoparticles and its application as filler in agar based nanocomposite films for antimicrobial food packaging. Food Packaging and Shelf Life 17:99–106. doi: 10.1016/j.fpsl.2018.06.003.
  • Batista Silva, W., G. M. Cosme Silva, D. B. Santana, A. R. Salvador, D. B. Medeiros, I. Belghith, N. M. da Silva, M. H. M. Cordeiro, and G. P. Misobutsi. 2018. Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chemistry 242:232–8. doi: 10.1016/j.foodchem.2017.09.052.
  • Benítez, S., I. Achaerandio, F. Sepulcre, and M. Pujolà. 2013. Aloe vera based edible coatings improve the quality of minimally processed ‘Hayward’ kiwifruit. Postharvest Biology and Technology 81:29–36. doi: 10.1016/j.postharvbio.2013.02.009.
  • Carvalho, R. L., M. F. Cabral, T. A. Germano, W. M. de Carvalho, I. M. Brasil, M. I. Gallão, C. F. H. Moura, M. M. A. Lopes, and M. R. A. de Miranda. 2016. Chitosan coating with trans-cinnamaldehyde improves structural integrity and antioxidant metabolism of fresh-cut melon. Postharvest Biology and Technology 113:29–39. doi: 10.1016/j.postharvbio.2015.11.004.
  • Castro-Mayorga, L. J., J. M. Fabra, L. Cabedo, and M. J. Lagaron. 2016. On the use of the electrospinning coating technique to produce antimicrobial polyhydroxyalkanoate materials containing in situ-stabilized silver nanoparticles. Nanomaterials 7 (1):4. doi: 10.3390/nano7010004.
  • Chanprateep, S. 2010. Current trends in biodegradable polyhydroxyalkanoates. Journal of Bioscience and Bioengineering 110 (6):621–32. doi: 10.1016/j.jbiosc.2010.07.014.
  • Chaple, S., C. Vishwasrao, and L. Ananthanarayan. 2017. Edible composite coating of methyl cellulose for post-harvest extension of shelf-life of finger hot Indian pepper (Pusa jwala). Journal of Food Processing and Preservation 41 (2):e12807. doi: 10.1111/jfpp.12807.
  • Chavoshizadeh, S., S. Pirsa, and F. Mohtarami. 2020. Conducting/smart color film based on wheat gluten/chlorophyll/polypyrrole nanocomposite. Food Packaging and Shelf Life 24:100501. doi: 10.1016/j.fpsl.2020.100501.
  • Chen, H., Z. Sun, and H. Yang. 2019. Effect of carnauba wax-based coating containing glycerol monolaurate on the quality maintenance and shelf-life of Indian jujube (Zizyphus mauritiana Lamk.) fruit during storage. Scientia Horticulturae 244:157–64. doi: 10.1016/j.scienta.2018.09.039.
  • Chen, H., J. Wang, Y. Cheng, C. Wang, H. Liu, H. Bian, Y. Pan, J. Sun, and W. Han. 2019. Application of protein-based films and coatings for food packaging: A review. Polymers 11 (12):2039. doi: 10.3390/polym11122039.
  • Chen, S., and A. Nussinovitch. 2000. The role of xanthan gum in traditional coatings of easy peelers. Food Hydrocolloids 14 (4):319–26. doi: 10.1016/S0268-005X(00)00008-4.
  • Chevalier, E., A. Chaabani, G. Assezat, F. Prochazka, and N. Oulahal. 2018. Casein/wax blend extrusion for production of edible films as carriers of potassium sorbate—A comparative study of waxes and potassium sorbate effect. Food Packaging and Shelf Life 16:41–50. doi: 10.1016/j.fpsl.2018.01.005.
  • Chick, J., and Z. Ustunol. 2006. Mechanical and barrier properties of lactic acid and rennet precipitated casein-based edible films. Journal of Food Science 63 (6):1024–7. doi: 10.1111/j.1365-2621.1998.tb15846.x.
  • Chinma, C. E., C. C. Ariahu, and J. O. Abu. 2012. Development and characterization of cassava starch and soy protein concentrate based edible films. International Journal of Food Science & Technology 47 (2):383–9. doi: 10.1111/j.1365-2621.2011.02851.x.
  • Cisneros-Zevallos, L., and J. M. Krochta. 2003. Whey protein coatings for fresh fruits and relative humidity effects. Journal of Food Science 68 (1):176–81. doi: 10.1111/j.1365-2621.2003.tb14136.x.
  • Cyras, V. P., L. B. Manfredi, M.-T. Ton-That, and A. Vázquez. 2008. Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydrate Polymers 73 (1):55–63. doi: 10.1016/j.carbpol.2007.11.014.
  • Dangaran, K., P. M. Tomasula, and P. Qi. 2009. Structure and function of protein-based edible films and coatings. In Edible films and coatings for food applications, eds. K. C. Huber and M. E. Embuscado, 25–56. New York, NY: Springer New York.
  • Dave, R. K., T. V. Ramana Rao, and A. S. Nandane. 2017. Improvement of post-harvest quality of pear fruit with optimized composite edible coating formulations. Journal of Food Science and Technology 54 (12):3917–27. doi: 10.1007/s13197-017-2850-y.
  • Davidović, S., M. Miljković, M. Tomić, M. Gordić, A. Nešić, and S. Dimitrijević. 2018. Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3. Carbohydrate Polymers 184:207–13. doi: 10.1016/j.carbpol.2017.12.061.
  • Castro e Silva, P., A. C. S. Oliveira, L. A. S. Pereira, M. Valquíria, G. R. Carvalho, K. W. E. Miranda, J. M. Marconcini, and J. E. Oliveira. 2020. Development of bionanocomposites of pectin and nanoemulsions of carnauba wax and neem oil pectin/carnauba wax/neem oil composites. Polymer Composites 41 (3):858–70. doi: 10.1002/pc.25416.
  • Dhall, R. K. 2013. Advances in edible coatings for fresh fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition 53 (5):435–50. doi: 10.1080/10408398.2010.541568.
  • Diab, T., C. G. Biliaderis, D. Gerasopoulos, and E. Sfakiotakis. 2001. Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. Journal of the Science of Food and Agriculture 81 (10):988–1000. doi: 10.1002/jsfa.883.
  • Diao, C., H. Xia, I. Noshadi, B. Kanjilal, and R. S. Parnas. 2014. Wheat gluten blends with a macromolecular cross-linker for improved mechanical properties and reduced water absorption. ACS Sustainable Chemistry & Engineering 2 (11):2554–61. doi: 10.1021/sc500425h.
  • Dufresne, A., and J. Castaño. 2017. Polysaccharide nanomaterial reinforced starch nanocomposites: A review. Starch - Stärke 69 (1-2):1500307. doi: 10.1002/star.201500307.
  • Echeverría, I., M. E. López-Caballero, M. C. Gómez-Guillén, A. N. Mauri, and M. P. Montero. 2018. Active nanocomposite films based on soy proteins-montmorillonite- clove essential oil for the preservation of refrigerated bluefin tuna (Thunnus thynnus) fillets. International Journal of Food Microbiology 266:142–9. doi: 10.1016/j.ijfoodmicro.2017.10.003.
  • El-Wakil, N. A., E. A. Hassan, R. E. Abou-Zeid, and A. Dufresne. 2015. Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydrate Polymers 124:337–46. doi: 10.1016/j.carbpol.2015.01.076.
  • Esa, F., S. M. Tasirin, and N. A. Rahman. 2014. Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia 2:113–9. doi: 10.1016/j.aaspro.2014.11.017.
  • Etxabide, A., J. Uranga, P. Guerrero, and K. de la Caba. 2017. Development of active gelatin films by means of valorisation of food processing waste: A review. Food Hydrocolloids 68:192–8. doi: 10.1016/j.foodhyd.2016.08.021.
  • Fabra, M. J., A. López-Rubio, J. Ambrosio-Martín, and J. M. Lagaron. 2016. Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocolloids 61:261–8. doi: 10.1016/j.foodhyd.2016.05.025.
  • Fabra, M. J., P. Talens, and A. Chiralt. 2008. Tensile properties and water vapor permeability of sodium caseinate films containing oleic acid–beeswax mixtures. Journal of Food Engineering 85 (3):393–400. doi: 10.1016/j.jfoodeng.2007.07.022.
  • Fabra, M. J., P. Talens, R. Gavara, and A. Chiralt. 2012. Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering 109 (3):372–9. doi: 10.1016/j.jfoodeng.2011.11.019.
  • Fagundes, C., L. Palou, A. R. Monteiro, and M. B. Pérez-Gago. 2014. Effect of antifungal hydroxypropyl methylcellulose-beeswax edible coatings on gray mold development and quality attributes of cold-stored cherry tomato fruit. Postharvest Biology and Technology 92:1–8. doi: 10.1016/j.postharvbio.2014.01.006.
  • Fagundes, C., L. Palou, A. R. Monteiro, and M. B. Pérez-Gago. 2015. Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored cherry tomatoes. Scientia Horticulturae 193:249–57. doi: 10.1016/j.scienta.2015.07.027.
  • Fakhouri, F. M., S. M. Martelli, T. Caon, J. I. Velasco, and L. H. I. Mei. 2015. Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology 109:57–64. doi: 10.1016/j.postharvbio.2015.05.015.
  • Fan, K., M. Zhang, D. Fan, and F. Jiang. 2019. Effect of carbon dots with chitosan coating on microorganisms and storage quality of modified-atmosphere-packaged fresh-cut cucumber. Journal of the Science of Food and Agriculture 99 (13):6032–41. doi: 10.1002/jsfa.9879.
  • Farina, V., R. Passafiume, I. Tinebra, E. Palazzolo, and G. Sortino. 2020. Use of aloe vera gel-based edible coating with natural anti-browning and anti-oxidant additives to improve post-harvest quality of fresh-cut ‘fuji’ apple. Agronomy 10 (4):515. doi: 10.3390/agronomy10040515.
  • Farina, V., R. Passafiume, I. Tinebra, D. Scuderi, F. Saletta, G. Gugliuzza, A. Gallotta, and G. Sortino. 2020. Postharvest application of Aloe vera gel-based edible coating to improve the quality and storage stability of fresh-cut papaya. Journal of Food Quality 2020:1–10. doi: 10.1155/2020/8303140.
  • Farris, S., I. U. Unalan, L. Introzzi, J. M. Fuentes-Alventosa, and C. A. Cozzolino. 2014. Pullulan-based films and coatings for food packaging: Present applications, emerging opportunities, and future challenges. Journal of Applied Polymer Science 131 (13):n/a–/a. doi: 10.1002/app.40539.
  • Fei, T., and T. Wang. 2017. A review of recent development of sustainable waxes derived from vegetable oils. Current Opinion in Food Science 16:7–14. doi: 10.1016/j.cofs.2017.06.006.
  • Fernández, A., P. Picouet, and E. Lloret. 2010. Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. International Journal of Food Microbiology 142 (1-2):222–8. doi: 10.1016/j.ijfoodmicro.2010.07.001.
  • Fonseca, S. C., F. A. R. Oliveira, and J. K. Brecht. 2002. Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review. Journal of Food Engineering 52 (2):99–119. doi: 10.1016/S0260-8774(01)00106-6.
  • Galus, S., and J. Kadzińska. 2015. Food applications of emulsion-based edible films and coatings. Trends in Food Science & Technology 45 (2):273–83. doi: 10.1016/j.tifs.2015.07.011.
  • Gan, I., and W. S. Chow. 2018. Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: A review. Food Packaging and Shelf Life 17:150–61. doi: 10.1016/j.fpsl.2018.06.012.
  • Ganduri, V. S. R. 2020. Evaluation of pullulan-based edible active coating methods on Rastali and Chakkarakeli bananas and their shelf-life extension parameters studies. Journal of Food Processing and Preservation 44 (4):e14378. doi: 10.1111/jfpp.14378.
  • Gemili, S., A. Yemenicioğlu, and S. A. Altınkaya. 2009. Development of cellulose acetate based antimicrobial food packaging materials for controlled release of lysozyme. Journal of Food Engineering 90 (4):453–62. doi: 10.1016/j.jfoodeng.2008.07.014.
  • George, J. Siddaramaiah. 2012. High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydrate Polymers 87:2031–7. doi: 10.1016/j.carbpol.2011.10.019.
  • Ghaderi, M., M. Mousavi, H. Yousefi, and M. Labbafi. 2014. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydrate Polymers 104:59–65. doi: 10.1016/j.carbpol.2014.01.013.
  • Guerreiro, A. C., C. M. L. Gago, M. G. C. Miguel, M. L. Faleiro, and M. D. C. Antunes. 2016. The influence of edible coatings enriched with citral and eugenol on the raspberry storage ability, nutritional and sensory quality. Food Packaging and Shelf Life 9:20–8. doi: 10.1016/j.fpsl.2016.05.004.
  • Guerrero, P., P. M. Stefani, R. A. Ruseckaite, and K. de la Caba. 2011. Functional properties of films based on soy protein isolate and gelatin processed by compression molding. Journal of Food Engineering 105 (1):65–72. doi: 10.1016/j.jfoodeng.2011.02.003.
  • Gunaratne, A., and H. Corke. 2007. Functional properties of hydroxypropylated, cross-linked, and hydroxypropylated cross-linked tuber and root starches. Cereal Chemistry Journal 84 (1):30–7. doi: 10.1094/CCHEM-84-1-0030.
  • Harper, B. A., S. Barbut, L. T. Lim, and M. F. Marcone. 2013. Characterization of ‘wet’ alginate and composite films containing gelatin, whey or soy protein. Food Research International 52 (2):452–9. doi: 10.1016/j.foodres.2012.12.041.
  • Hasheminejad, N., and F. Khodaiyan. 2020. The effect of clove essential oil loaded chitosan nanoparticles on the shelf life and quality of pomegranate arils. Food Chemistry 309:125520. doi: 10.1016/j.foodchem.2019.125520.
  • Hassannia-Kolaee, M., F. Khodaiyan, R. Pourahmad, and I. Shahabi-Ghahfarrokhi. 2016. Development of ecofriendly bionanocomposite: Whey protein isolate/pullulan films with nano-SiO2. International Journal of Biological Macromolecules 86:139–44. doi: 10.1016/j.ijbiomac.2016.01.032.
  • Huo, W., D. Wei, W. Zhu, Z. Li, and Y. Jiang. 2018. High-elongation zein films for flexible packaging by synergistic plasticization: Preparation, structure and properties. Journal of Cereal Science 79:354–61. doi: 10.1016/j.jcs.2017.11.021.
  • Indumathi, M. P., K. Saral Sarojini, and G. R. Rajarajeswari. 2019. Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. International Journal of Biological Macromolecules 132:1112–20. doi: 10.1016/j.ijbiomac.2019.03.171.
  • Ingrao, C., C. Tricase, A. Cholewa-Wójcik, A. Kawecka, R. Rana, and V. Siracusa. 2015. Polylactic acid trays for fresh-food packaging: A Carbon Footprint assessment. The Science of the Total Environment 537:385–98. doi: 10.1016/j.scitotenv.2015.08.023.
  • Israni, N., and S. Shivakumar. 2019. Polyhydroxyalkanoates in packaging. In Biotechnological applications of polyhydroxyalkanoates, ed. V. C. Kalia. 363–88. Springer Singapore, Singapore
  • Jin, T. Z., W. Chen, J. B. Gurtler, and X. Fan. 2020. Effectiveness of edible coatings to inhibit browning and inactivate foodborne pathogens on fresh-cut apples. Journal of Food Safety 40 (4):e12802. n/a: doi: 10.1111/jfs.12802.
  • Jin, T. Z., M. Huang, B. A. Niemira, and L. Cheng. 2016. Shelf life extension of fresh ginseng roots using sanitiser washing, edible antimicrobial coating and modified atmosphere packaging. International Journal of Food Science & Technology 51 (9):2132–9. doi: 10.1111/ijfs.13201.
  • Jinhe, B., A. B. Elizabeth, and H. H. Robert. 2002. Alternatives to shellac coatings provide comparable gloss, internal gas modification, and quality for 'delicious' apple fruit. HortScience HortSci 37:559–63. doi: 10.21273/HORTSCI.37.3.559.
  • Jo, W.-S., H.-Y. Song, N.-B. Song, J.-H. Lee, S. C. Min, and K. B. Song. 2014. Quality and microbial safety of ‘Fuji’ apples coated with carnauba-shellac wax containing lemongrass oil. LWT - Food Science and Technology 55 (2):490–7. doi: 10.1016/j.lwt.2013.10.034.
  • Ju, J.,. Y. Xie, Y. Guo, Y. Cheng, H. Qian, and W. Yao. 2019. Application of edible coating with essential oil in food preservation. Critical Reviews in Food Science and Nutrition 59 (15):2467–80. doi: 10.1080/10408398.2018.1456402.
  • Kanatt, S. R., R. Chander, and A. Sharma. 2010. Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. International Journal of Food Science & Technology 45 (2):216–22. doi: 10.1111/j.1365-2621.2009.02124.x.
  • Kanikireddy, V., K. Kanny, Y. Padma, R. Velchuri, G. Ravi, B. Jagan Mohan Reddy, and M. Vithal. 2019. Development of alginate-gum acacia-Ag0 nanocomposites via green process for inactivation of foodborne bacteria and impact on shelf life of black grapes (Vitis vinifera). Journal of Applied Polymer Science 136 (15):47331. doi: 10.1002/app.47331.
  • Kargarzadeh, H., J. Huang, N. Lin, I. Ahmad, M. Mariano, A. Dufresne, S. Thomas, and A. Gałęski. 2018. Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Progress in Polymer Science 87:197–227. doi: 10.1016/j.progpolymsci.2018.07.008.
  • Karimi, N., A. Alizadeh, H. Almasi, and S. Hanifian. 2020. Preparation and characterization of whey protein isolate/polydextrose-based nanocomposite film incorporated with cellulose nanofiber and L. plantarum: A new probiotic active packaging system. LWT 121:108978. doi: 10.1016/j.lwt.2019.108978.
  • Karolina, K., P. Katarzyna, and G. Małgorzata. 2019. Pullulan – Biopolymer with potential for use as food packaging. International Journal of Food Engineering 15:20190030. doi: 10.1515/ijfe-2019-0030.
  • Kasaai, M. R. 2018. Zein and zein -based nano-materials for food and nutrition applications: A review. Trends in Food Science & Technology 79:184–97. doi: 10.1016/j.tifs.2018.07.015.
  • Kashiri, M., J. P. Cerisuelo, I. Domínguez, G. López-Carballo, V. Muriel-Gallet, R. Gavara, and P. Hernández-Muñoz. 2017. Zein films and coatings as carriers and release systems of Zataria multiflora Boiss. essential oil for antimicrobial food packaging. Food Hydrocolloids 70:260–8. doi: 10.1016/j.foodhyd.2017.02.021.
  • Kavoosi, G., M. Derakhshan, M. Salehi, and L. Rahmati. 2018. Microencapsulation of zataria essential oil in agar, alginate and carrageenan. Innovative Food Science & Emerging Technologies 45:418–25. doi: 10.1016/j.ifset.2017.12.010.
  • Khalifa, I., H. Barakat, H. A. El-Mansy, and S. A. Soliman. 2016. Effect of chitosan–olive oil processing residues coatings on keeping quality of cold-storage strawberry (Fragaria ananassa. Var. Festival). Journal of Food Quality 39 (5):504–15. doi: 10.1111/jfq.12213.
  • Khan, B., M. Bilal Khan Niazi, G. Samin, and Z. Jahan. 2017. Thermoplastic starch: A possible biodegradable food packaging material—A review. Journal of Food Process Engineering 40 (3):e12447. doi: 10.1111/jfpe.12447.
  • Khanna, S., and A. K. Srivastava. 2005. Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry 40 (2):607–19. doi: 10.1016/j.procbio.2004.01.053.
  • Khanzadi, M., S. M. Jafari, H. Mirzaei, F. K. Chegini, Y. Maghsoudlou, and D. Dehnad. 2015. Physical and mechanical properties in biodegradable films of whey protein concentrate-pullulan by application of beeswax. Carbohydrate Polymers 118:24–9. doi: 10.1016/j.carbpol.2014.11.015.
  • Khatri, D., J. Panigrahi, A. Prajapati, and H. Bariya. 2020. Attributes of Aloe vera gel and chitosan treatments on the quality and biochemical traits of post-harvest tomatoes. Scientia Horticulturae 259:108837. doi: 10.1016/j.scienta.2019.108837.
  • Klangmuang, P., and R. Sothornvit. 2016. Barrier properties, mechanical properties and antimicrobial activity of hydroxypropyl methylcellulose-based nanocomposite films incorporated with Thai essential oils. Food Hydrocolloids 61:609–16. doi: 10.1016/j.foodhyd.2016.06.018.
  • Koh, P. C., M. A. Noranizan, R. Karim, Z. A. Nur Hanani, and M. Lasik-Kurdyś. 2018. Combination of alginate coating and repetitive pulsed light for shelf life extension of fresh-cut cantaloupe (Cucumis melo L. reticulatus cv. Glamour). Journal of Food Processing and Preservation 42 (11):e13786. doi: 10.1111/jfpp.13786.
  • Koshy, R. R., S. K. Mary, S. Thomas, and L. A. Pothan. 2015. Environment friendly green composites based on soy protein isolate – A review. Food Hydrocolloids 50:174–92. doi: 10.1016/j.foodhyd.2015.04.023.
  • Kothari, D., D. Das, S. Patel, and A. Goyal. 2015. Dextran and food application. In Polysaccharides: Bioactivity and biotechnology, eds. K. G. Ramawat and J.-M. Mérillon, 735–52. Cham: Springer International Publishing.
  • Kothari, D., D. Das, S. Patel, and A. Goyal. 2021. Dextran and food application. In Polysaccharides: Bioactivity and biotechnology, eds. K. G. Ramawat and J.-M. Mérillon, 1–16. Cham: Springer International Publishing.
  • Kristo, E., C. G. Biliaderis, and A. Zampraka. 2007. Water vapour barrier and tensile properties of composite caseinate-pullulan films: Biopolymer composition effects and impact of beeswax lamination. Food Chemistry 101 (2):753–64. doi: 10.1016/j.foodchem.2006.02.030.
  • Kumar, N., P. Kaur, K. Devgan, and A. K. Attkan. 2020. Shelf life prolongation of cherry tomato using magnesium hydroxide reinforced bio-nanocomposite and conventional plastic films. Journal of Food Processing and Preservation 44 (4):e14379. doi: 10.1111/jfpp.14379.
  • Kumar, P., S. Sethi, R. R. Sharma, M. Srivastav, and E. Varghese. 2017. Effect of chitosan coating on postharvest life and quality of plum during storage at low temperature. Scientia Horticulturae 226:104–9. doi: 10.1016/j.scienta.2017.08.037.
  • Kumar, S., J. C. Boro, D. Ray, A. Mukherjee, and J. Dutta. 2019. Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon 5 (6):e01867. doi: 10.1016/j.heliyon.2019.e01867.
  • Kumar, S., A. Mitra, and D. Halder. 2017. Centella asiatica leaf mediated synthesis of silver nanocolloid and its application as filler in gelatin based antimicrobial nanocomposite film. LWT 75:293–300. doi: 10.1016/j.lwt.2016.06.061.
  • Kumar, S., A. Mukherjee, and J. Dutta. 2020. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science & Technology 97:196–209. doi: 10.1016/j.tifs.2020.01.002.
  • Kumar, S., A. Shukla, P. P. Baul, A. Mitra, and D. Halder. 2018. Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packaging and Shelf Life 16:178–84. doi: 10.1016/j.fpsl.2018.03.008.
  • Kumar, S., F. Ye, S. Dobretsov, and J. Dutta. 2019. Chitosan nanocomposite coatings for food, paints, and water treatment applications. Applied Sciences 9 (12):2409. doi: 10.3390/app9122409.
  • Kuorwel, K. K., M. J. Cran, J. D. Orbell, S. Buddhadasa, and S. W. Bigger. 2015. Review of mechanical properties, migration, and potential applications in active food packaging systems containing nanoclays and nanosilver. Comprehensive Reviews in Food Science and Food Safety 14 (4):411–30. doi: 10.1111/1541-4337.12139.
  • Lacroix, M., and K. D. Vu. 2014. Chapter 11 - Edible coating and film materials: Proteins. In Innovations in food packaging, ed. J. H. Han, 2nd ed., 277–304. San Diego: Academic Press.
  • Langstraat, T., P. Van Puyvelde, J. Delcour, I. Verpoest, and B. Goderis. 2018. Effect of adding a reactive plasticizer on the mechanical, thermal, and morphology properties of nylon toughened wheat gluten materials. Journal of Applied Polymer Science 135 (9):45931. doi: 10.1002/app.45931.
  • Lee, H., B. Rukmanikrishnan, and J. Lee. 2019. Rheological, morphological, mechanical, and water-barrier properties of agar/gellan gum/montmorillonite clay composite films. International Journal of Biological Macromolecules 141:538–44. doi: 10.1016/j.ijbiomac.2019.09.021.
  • Lemos Machado Abreu, A. S., I. G. de Moura, A. V. de Sá, and A. V. Alves Machado. 2017. 10 - Biodegradable polymernanocomposites for packaging applications. In Food packaging, ed. A. M. Grumezescu, 329–63. Oxford: Academic Press.
  • Li, J., Q. Sun, Y. Sun, B. Chen, X. Wu, and T. Le. 2019. Improvement of banana postharvest quality using a novel soybean protein isolate/cinnamaldehyde/zinc oxide bionanocomposite coating strategy. Scientia Horticulturae 258:108786. doi: 10.1016/j.scienta.2019.108786.
  • Li, J., M. Zhou, G. Cheng, F. Cheng, Y. Lin, and P.-X. Zhu. 2019. Fabrication and characterization of starch-based nanocomposites reinforced with montmorillonite and cellulose nanofibers. Carbohydrate Polymers 210:429–36. doi: 10.1016/j.carbpol.2019.01.051.
  • Li, K., S. Jin, Y. Han, J. Li, and H. Chen. 2017. Improvement in functional properties of soy protein isolate-based film by cellulose nanocrystal–graphene artificial nacre nanocomposite. Polymers 9 (12):321. doi: 10.3390/polym9080.
  • Li, S., L. Zhang, M. Liu, X. Wang, G. Zhao, and W. Zong. 2017. Effect of poly-ε-lysine incorporated into alginate-based edible coatings on microbial and physicochemical properties of fresh-cut kiwifruit. Postharvest Biology and Technology 134:114–21. doi: 10.1016/j.postharvbio.2017.08.014.
  • Li, X., X. Yang, H. Deng, Y. Guo, and J. Xue. 2020. Gelatin films incorporated with thymol nanoemulsions: Physical properties and antimicrobial activities. International Journal of Biological Macromolecules 150:161–8. doi: 10.1016/j.ijbiomac.2020.02.066.
  • Lin, D., and Y. Zhao. 2007. Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety 6 (3):60–75. doi: 10.1111/j.1541-4337.2007.00018.x.
  • Lin, S.-P., I. Loira Calvar, J. M. Catchmark, J.-R. Liu, A. Demirci, and K.-C. Cheng. 2013. Biosynthesis, production and applications of bacterial cellulose. Cellulose 20 (5):2191–219. doi: 10.1007/s10570-013-9994-3.
  • Loo, C. P. Y., and N. M. Sarbon. 2020. Chicken skin gelatin films with tapioca starch. Food Bioscience 35:100589. doi: 10.1016/j.fbio.2020.100589.
  • López-Córdoba, A., C. Medina-Jaramillo, D. Piñeros-Hernandez, and S. Goyanes. 2017. Cassava starch films containing rosemary nanoparticles produced by solvent displacement method. Food Hydrocolloids 71:26–34. doi: 10.1016/j.foodhyd.2017.04.028.
  • Lule, V. K., Singh, R. S. D.Pophaly, Poonam, and S. K. Tomar. 2016. Production and structural characterisation of dextran from an indigenous strain of Leuconostoc mesenteroides BA08 in Whey. International Journal of Dairy Technology 69:520–31. doi: 10.1111/1471-0307.12271.
  • Ma, L., M. Zhang, B. Bhandari, and Z. Gao. 2017. Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science & Technology 64:23–38. doi: 10.1016/j.tifs.2017.03.005.
  • Mabeau, S., and J. Fleurence. 1993. Seaweed in food products: Biochemical and nutritional aspects. Trends in Food Science & Technology 4 (4):103–7. doi: 10.1016/0924-2244(93)90091-N.
  • Maia, J., M. Evangelista, H. Gil, and L. Ferreira. 2014. Dextran-based materials for biomedical applications. Carbohydrates Applications in Medicine 31–53.doi: 10.1002/jbm.a.36580.
  • Malagurski, I., S. Levic, A. Nesic, M. Mitric, V. Pavlovic, and S. Dimitrijevic-Brankovic. 2017. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties. Carbohydrate Polymers 175:55–62. doi: 10.1016/j.carbpol.2017.07.064.
  • Malmir, S., A. Karbalaei, M. Pourmadadi, J. Hamedi, F. Yazdian, and M. Navaee. 2020. Antibacterial properties of a bacterial cellulose CQD-TiO2 nanocomposite. Carbohydrate Polymers 234:115835. doi: 10.1016/j.carbpol.2020.115835.
  • Maringgal, B., N. Hashim, I. S. Mohamed Amin Tawakkal, and M. T. Muda Mohamed. 2020. Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends in Food Science & Technology 96:253–67. doi: 10.1016/j.tifs.2019.12.024.
  • Meindrawan, B., N. E. Suyatma, A. A. Wardana, and V. Y. Pamela. 2018. Nanocomposite coating based on carrageenan and ZnO nanoparticles to maintain the storage quality of mango. Food Packaging and Shelf Life 18:140–6. doi: 10.1016/j.fpsl.2018.10.006.
  • Melo, C. d., P. S. Garcia, M. V. E. Grossmann, F. Yamashita, L. H. Dall'Antônia, and S. Mali. 2011. Properties of extruded xanthan-starch-clay nanocomposite films. Brazilian Archives of Biology and Technology 54 (6):1223–333. doi: 10.1590/S1516-89132011000600019.
  • Molamohammadi, H., Z. Pakkish, H.-R. Akhavan, and V. R. Saffari. 2020. Effect of salicylic acid incorporated chitosan coating on shelf life extension of fresh in-hull pistachio fruit. Food and Bioprocess Technology 13 (1):121–31. doi: 10.1007/s11947-019-02383-y.
  • Moradian, S., H. Almasi, and S. Moini. 2018. Development of bacterial cellulose-based active membranes containing herbal extracts for shelf life extension of button mushrooms (Agaricus bisporus). Journal of Food Processing and Preservation 42 (3):e13537. doi: 10.1111/jfpp.13537.
  • Motamedi, E., J. Nasiri, T. R. Malidarreh, S. Kalantari, M. R. Naghavi, and M. Safari. 2018. Performance of carnauba wax-nanoclay emulsion coatings on postharvest quality of ‘Valencia’ orange fruit. Scientia Horticulturae 240:170–8. doi: 10.1016/j.scienta.2018.06.002.
  • Naskar, A., H. Khan, R. Sarkar, S. Kumar, D. Halder, and S. Jana. 2018. Anti-biofilm activity and food packaging application of room temperature solution process based polyethylene glycol capped Ag-ZnO-graphene nanocomposite. Materials Science & Engineering. C, Materials for Biological Applications 91:743–53. doi: 10.1016/j.msec.2018.06.009.
  • Nasrin, T. A. A., M. A. Rahman, M. S. Arfin, M. N. Islam, and M. A. Ullah. 2020. Effect of novel coconut oil and beeswax edible coating on postharvest quality of lemon at ambient storage. Journal of Agriculture and Food Research 2:100019. doi: 10.1016/j.jafr.2019.100019.
  • Naushad Emmambux, M., and M. Stading. 2007. In situ tensile deformation of zein films with plasticizers and filler materials. Food Hydrocolloids 21 (8):1245–55. doi: 10.1016/j.foodhyd.2006.09.013.
  • Navarro-Tarazaga, M. L., M. A. Del Río, J. M. Krochta, and M. B. Pérez-Gago. 2008. Fatty acid effect on hydroxypropyl methylcellulose-beeswax edible film properties and postharvest quality of coated 'Ortanique' mandarins . Journal of Agricultural and Food Chemistry 56 (22):10689–96. doi: 10.1021/jf801967q.
  • Navarro-Tarazaga, M. L., A. Massa, and M. B. Pérez-Gago. 2011. Effect of beeswax content on hydroxypropyl methylcellulose-based edible film properties and postharvest quality of coated plums (Cv. Angeleno). LWT - Food Science and Technology 44 (10):2328–34. doi: 10.1016/j.lwt.2011.03.011.
  • Navarro-Tarazaga, M. L., M. Pérez-Gago, K. Goodner, and A. Plotto. 2007. A new composite coating containing HPMC, beeswax, and shellac for 'Valencia' oranges and 'Marisol' tangerines. Proceedings of the Florida State Horticultural Society 120:1–7.
  • Noorbakhsh-Soltani, S. M., M. M. Zerafat, and S. Sabbaghi. 2018. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydrate Polymers 189:48–55. doi: 10.1016/j.carbpol.2018.02.012.
  • Nouri, A., M. T. Yaraki, M. Ghorbanpour, S. Agarwal, and V. K. Gupta. 2018. Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite. International Journal of Biological Macromolecules 109:1219–31. doi: 10.1016/j.ijbiomac.2017.11.119.
  • Nur Hazirah, M. A. S. P., M. I. N. Isa, and N. M. Sarbon. 2016. Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends. Food Packaging and Shelf Life 9:55–63. doi: 10.1016/j.fpsl.2016.05.008.
  • Olawuyi, I. F., J. J. Park, J. J. Lee, and W. Y. Lee. 2019. Combined effect of chitosan coating and modified atmosphere packaging on fresh-cut cucumber. Food Science & Nutrition 7 (3):1043–52. doi: 10.1002/fsn3.937.
  • Oliveira, M. A., R. F. Furtado, M. S. R. Bastos, R. C. Leitão, S. D. Benevides, C. R. Muniz, H. N. Cheng, and A. Biswas. 2018. Performance evaluation of cashew gum and gelatin blend for food packaging. Food Packaging and Shelf Life 17:57–64. doi: 10.1016/j.fpsl.2018.05.003.
  • Oliveira, V. R. L., F. K. G. Santos, R. H. L. Leite, E. M. M. Aroucha, and K. N. O. Silva. 2018. Use of biopolymeric coating hydrophobized with beeswax in post-harvest conservation of guavas. Food Chemistry 259:55–64. doi: 10.1016/j.foodchem.2018.03.101.
  • Oliviero, M., L. Verdolotti, E. D. Maio, M. Aurilia, and S. Iannace. 2011. Effect of supramolecular structures on thermoplastic zein-lignin bionanocomposites. Journal of Agricultural and Food Chemistry 59 (18):10062–70. doi: 10.1021/jf201728p.
  • Ortega, F., M. A. García, and V. B. Arce. 2019. Nanocomposite films with silver nanoparticles synthesized in situ: Effect of corn starch content. Food Hydrocolloids 97:105200. doi: 10.1016/j.foodhyd.2019.105200.
  • Ortiz-Duarte, G., L. E. Pérez-Cabrera, F. Artés-Hernández, and G. B. Martínez-Hernández. 2019. Ag-chitosan nanocomposites in edible coatings affect the quality of fresh-cut melon. Postharvest Biology and Technology 147:174–84. doi: 10.1016/j.postharvbio.2018.09.021.
  • Oun, A. A., and J.-W. Rhim. 2017. Carrageenan-based hydrogels and films: Effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocolloids 67:45–53. doi: 10.1016/j.foodhyd.2016.12.040.
  • Ozer, B. B. P., M. Uz, P. Oymaci, and S. A. Altinkaya. 2016. Development of a novel strategy for controlled release of lysozyme from whey protein isolate based active food packaging films. Food Hydrocolloids 61:877–86. doi: 10.1016/j.foodhyd.2016.07.001.
  • Palou, L., S. A. Valencia-Chamorro, and M. B. Pérez-Gago. 2015. Antifungal edible coatings for fresh citrus fruit: A review. Coatings 5 (4):962–86. doi: 10.3390/coatings5040962.
  • Pandey, J. K., S. H. Ahn, C. S. Lee, A. K. Mohanty, and M. Misra. 2010. Recent advances in the application of natural fiber based composites. Macromolecular Materials and Engineering 295 (11):975–89. doi: 10.1002/mame.201000095.
  • Pandey, J. K., A. N. Nakagaito, and H. Takagi. 2013. Fabrication and applications of cellulose nanoparticle-based polymer composites. Polymer Engineering & Science 53 (1):1–8. doi: 10.1002/pen.23242.
  • Parris, N., and L. C. Dickey. 2001. Extraction and solubility characteristics of zein proteins from dry-milled corn. Journal of Agricultural and Food Chemistry 49 (8):3757–60. doi: 10.1021/jf0011790.
  • Pelissari, F. M., M. M. Andrade-Mahecha, P. J. A. Sobral, and F. C. Menegalli. 2017. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. Journal of Colloid and Interface Science 505:154–67. doi: 10.1016/j.jcis.2017.05.106.
  • Pellá, M. C. G., O. A. Silva, M. G. Pellá, A. G. Beneton, J. Caetano, M. R. Simões, and D. C. Dragunski. 2020. Effect of gelatin and casein additions on starch edible biodegradable films for fruit surface coating. Food Chemistry 309:125764. doi: 10.1016/j.foodchem.2019.125764.
  • Perez-Gago, M. B., M. Serra, M. Alonso, M. Mateos, and M. A. D. Río. 2003. Effect of Solid Content and Lipid Content of Whey Protein Isolate-Beeswax Edible Coatings on Color Change of Fresh-cut Apples. Journal of Food Science 68 (7):2186–91. doi: 10.1111/j.1365-2621.2003.tb05744.x.
  • Pérez-Gallardo, A., B. García-Almendárez, G. Barbosa-Cánovas, D. Pimentel-González, L. R. Reyes-González, and C. Regalado. 2015. Effect of starch-beeswax coatings on quality parameters of blackberries (Rubus spp.). Journal of Food Science and Technology 52 (9):5601–10. doi: 10.1007/s13197-014-1665-3.
  • Phanthong, P.,. P. Reubroycharoen, X. Hao, G. Xu, A. Abudula, and G. Guan. 2018. Nanocellulose: Extraction and application. Carbon Resources Conversion 1 (1):32–43. doi: 10.1016/j.crcon.2018.05.004.
  • Ponnusami, V., and V. Gunasekar. 2021. Production of pullulan by microbial fermentation. In Polysaccharides: Bioactivity and biotechnology, eds. K. G. Ramawat and J.-M. Mérillon, 1–13. Cham: Springer International Publishing,.
  • Priyadarshi, R., Sauraj, B. Kumar, and Y. S. Negi. 2018. Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. Carbohydrate Polymers 195:329–38. doi: 10.1016/j.carbpol.2018.04.089.
  • Quintero, R. I., F. Rodriguez, J. Bruna, A. Guarda, and M. J. Galotto. 2013. Cellulose acetate butyrate nanocomposites with antimicrobial properties for food packaging. Packaging Technology and Science 26 (5):249–65. doi: 10.1002/pts.1981.
  • Radovanović, N., I. Malagurski, S. Lević, M. Gordić, J. Petrović, V. Pavlović, M. Mitrić, A. Nešić, and S. Dimitrijević-Branković. 2019. Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase. European Polymer Journal 119:352–8. doi: 10.1016/j.eurpolymj.2019.08.004.
  • Ranjan, S., R. Chandrasekaran, G. Paliyath, L.-T. Lim, and J. Subramanian. 2020. Effect of hexanal loaded electrospun fiber in fruit packaging to enhance the post harvest quality of peach. Food Packaging and Shelf Life 23:100447. doi: 10.1016/j.fpsl.2019.100447.
  • Ranjitha, K., D. V. Sudhakar Rao, K. S. Shivashankara, H. S. Oberoi, T. K. Roy, and H. Bharathamma. 2017. Shelf-life extension and quality retention in fresh-cut carrots coated with pectin. Innovative Food Science & Emerging Technologies 42:91–100. doi: 10.1016/j.ifset.2017.05.013.
  • Rastegar, S., H. Hassanzadeh Khankahdani, and M. Rahimzadeh. 2019. Effectiveness of alginate coating on antioxidant enzymes and biochemical changes during storage of mango fruit. Journal of Food Biochemistry 43 (11):e12990. doi: 10.1111/jfbc.12990.
  • Reddy, J. P., and J.-W. Rhim. 2014. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers 110:480–8. doi: 10.1016/j.carbpol.2014.04.056.
  • Reinoso, E., G. S. Mittal, and L.-T. Lim. 2008. Influence of whey protein composite coatings on plum (Prunus domaestica L.) fruit quality. Food and Bioprocess Technology 1 (4):314–25. doi: 10.1007/s11947-007-0014-1.
  • Rhim, J.-W. 2011. Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydrate Polymers 86 (2):691–9. doi: 10.1016/j.carbpol.2011.05.010.
  • Rizzo, G., and L. Baroni. 2018. Soy, soy foods and their role in vegetarian diets. Nutrients 10 (1):43. doi: 10.3390/nu10010043.
  • Rodríguez, F. J., A. Torres, Á. Peñaloza, H. Sepúlveda, M. J. Galotto, A. Guarda, and J. Bruna. 2014. Development of an antimicrobial material based on a nanocomposite cellulose acetate film for active food packaging. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 31 (3):342–53. doi: 10.1080/19440049.2013.876105.
  • Rukmanikrishnan, B., F. R. M. Ismail, R. K. Manoharan, S. S. Kim, and J. Lee. 2020. Blends of gellan gum/xanthan gum/zinc oxide based nanocomposites for packaging application: Rheological and antimicrobial properties. International Journal of Biological Macromolecules 148:1182–9. doi: 10.1016/j.ijbiomac.2019.11.155.
  • Salari, M., M. Sowti Khiabani, R. Rezaei Mokarram, B. Ghanbarzadeh, and H. Samadi Kafil. 2018. Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocolloids 84:414–23. doi: 10.1016/j.foodhyd.2018.05.037.
  • Salinas-Roca, B., A. Guerreiro, J. Welti-Chanes, M. D. C. Antunes, and O. Martín-Belloso. 2018. Improving quality of fresh-cut mango using polysaccharide-based edible coatings. International Journal of Food Science & Technology 53 (4):938–45. doi: 10.1111/ijfs.13666.
  • Saliu, O. D., G. A. Olatunji, A. I. Olosho, A. G. Adeniyi, Y. Azeh, F. T. Samo, D. O. Adebayo, and O. O. Ajetomobi. 2019. Barrier property enhancement of starch citrate bioplastic film by an ammonium-thiourea complex modification. Journal of Saudi Chemical Society 23 (2):141–9. doi: 10.1016/j.jscs.2018.06.004.
  • Sánchez-Machado, D. I., J. López-Cervantes, R. Sendón, and A. Sanches-Silva. 2017. Aloe vera: Ancient knowledge with new frontiers. Trends in Food Science & Technology 61:94–102. doi: 10.1016/j.tifs.2016.12.005.
  • Sanchez-Vazquez, S. A., H. C. Hailes, and J. R. G. Evans. 2013. Hydrophobic polymers from food waste: Resources and synthesis. Polymer Reviews 53 (4):627–94. doi: 10.1080/15583724.2013.834933.
  • Santagata, G., S. Mallardo, G. Fasulo, P. Lavermicocca, F. Valerio, M. Di Biase, M. Di Stasio, M. Malinconico, and M. G. Volpe. 2018. Pectin-honey coating as novel dehydrating bioactive agent for cut fruit: Enhancement of the functional properties of coated dried fruits. Food Chemistry 258:104–10. doi: 10.1016/j.foodchem.2018.03.064.
  • Sarengaowa, W., Hu, A. Jiang, Z. Xiu, and K. Feng. 2018. Effect of thyme oil–alginate-based coating on quality and microbial safety of fresh-cut apples. Journal of the Science of Food and Agriculture 98:2302–11. doi: 10.1002/jsfa.8720.
  • Saurabh, C. K., S. Gupta, P. S. Variyar, and A. Sharma. 2016. Effect of addition of nanoclay, beeswax, tween-80 and glycerol on physicochemical properties of guar gum films. Industrial Crops and Products 89:109–18. doi: 10.1016/j.indcrop.2016.05.003.
  • Scramin, J. A., D. de Britto, L. A. Forato, R. Bernardes-Filho, L. A. Colnago, and O. B. G. Assis. 2011. Characterisation of zein–oleic acid films and applications in fruit coating. International Journal of Food Science & Technology 46 (10):2145–52. doi: 10.1111/j.1365-2621.2011.02729.x.
  • Shabanpour, B., M. Kazemi, S. M. Ojagh, and P. Pourashouri. 2018. Bacterial cellulose nanofibers as reinforce in edible fish myofibrillar protein nanocomposite films. International Journal of Biological Macromolecules 117:742–51. doi: 10.1016/j.ijbiomac.2018.05.038.
  • Shahmohammadi Jebel, F., and H. Almasi. 2016. Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydrate Polymers 149:8–19. doi: 10.1016/j.carbpol.2016.04.089.
  • Shankar, S., L.-F. Wang, and J.-W. Rhim. 2018. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Materials Science & Engineering. C, Materials for Biological Applications 93:289–98. doi: 10.1016/j.msec.2018.08.002.
  • Sharma, B., P. Malik, and P. Jain. 2018. Biopolymer reinforced nanocomposites: A comprehensive review. Materials Today Communications 16:353–63. doi: 10.1016/j.mtcomm.2018.07.004.
  • Sharma, L., C. S. Saini, H. K. Sharma, and K. S. Sandhu. 2019. Biocomposite edible coatings based on cross linked-sesame protein and mango puree for the shelf life stability of fresh-cut mango fruit. Journal of Food Process Engineering 42 (1):e12938. doi: 10.1111/jfpe.12938.
  • Sharma, R., S. M. Jafari, and S. Sharma. 2020. Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control 112:107086. doi: 10.1016/j.foodcont.2020.107086.
  • Singh, J., S. Kumar, and A. S. Dhaliwal. 2020. Controlled release of amoxicillin and antioxidant potential of gold nanoparticles-xanthan gum/poly (Acrylic acid) biodegradable nanocomposite. Journal of Drug Delivery Science and Technology 55:101384. doi: 10.1016/j.jddst.2019.101384.
  • Singh, R. S., N. Kaur, and J. F. Kennedy. 2019. Pullulan production from agro-industrial waste and its applications in food industry: A review. Carbohydrate Polymers 217:46–57. doi: 10.1016/j.carbpol.2019.04.050.
  • Singh, R. S., G. K. Saini, and J. F. Kennedy. 2008. Pullulan: Microbial sources, production and applications. Carbohydrate Polymers 73 (4):515–31. doi: 10.1016/j.carbpol.2008.01.003.
  • Singh, S.,. P. Khemariya, A. Rai, A. C. Rai, T. K. Koley, and B. Singh. 2016. Carnauba wax-based edible coating enhances shelf-life and retain quality of eggplant (Solanum melongena) fruits. LWT 74:420–6. doi: 10.1016/j.lwt.2016.08.004.
  • Song, J. H., R. J. Murphy, R. Narayan, and G. B. H. Davies. 2009. Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364 (1526):2127–39. doi: 10.1098/rstb.2008.0289.
  • Sousa, A. M. M., and M. P. Gonçalves. 2015. Strategies to improve the mechanical strength and water resistance of agar films for food packaging applications. Carbohydrate Polymers 132:196–204. doi: 10.1016/j.carbpol.2015.06.022.
  • Sun, J., J. Shen, S. Chen, M. Cooper, H. Fu, D. Wu, and Z. Yang. 2018. Nanofiller reinforced biodegradable PLA/PHA composites: Current status and future trends. Polymers 10 (5):505. doi: 10.3390/polym10050505.
  • Sureshkumar, M., D. Y. Siswanto, and C.-K. Lee. 2010. Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. Journal of Materials Chemistry 20 (33):6948–55. doi: 10.1039/c0jm00565g.
  • Swaroop, C., and M. Shukla. 2018. Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. International Journal of Biological Macromolecules 113:729–36. doi: 10.1016/j.ijbiomac.2018.02.156.
  • Swaroop, C., and M. Shukla. 2019. Development of blown polylactic acid-MgO nanocomposite films for food packaging. Composites Part A: Applied Science and Manufacturing 124:105482. doi: 10.1016/j.compositesa.2019.105482.
  • Szakiel, A., C. Pączkowski, F. Pensec, and C. Bertsch. 2012. Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochemistry Reviews: Proceedings of the Phytochemical Society of Europe 11 (2-3):263–84. doi: 10.1007/s11101-012-9241-9.
  • Tabassum, N., and M. A. Khan. 2020. Modified atmosphere packaging of fresh-cut papaya using alginate based edible coating: Quality evaluation and shelf life study. Scientia Horticulturae 259:108853. doi: 10.1016/j.scienta.2019.108853.
  • Thakur, R., P. Pristijono, C. J. Scarlett, M. Bowyer, S. P. Singh, and Q. V. Vuong. 2019. Starch-based edible coating formulation: Optimization and its application to improve the postharvest quality of “Cripps pink” apple under different temperature regimes. Food Packaging and Shelf Life 22:100409. doi: 10.1016/j.fpsl.2019.100409.
  • Tian, F., W. Chen, C. E. Wu, X. Kou, G. Fan, T. Li, and Z. Wu. 2019. Preservation of Ginkgo biloba seeds by coating with chitosan/nano-TiO2 and chitosan/nano-SiO2 films. International Journal of Biological Macromolecules 126:917–25. doi: 10.1016/j.ijbiomac.2018.12.177.
  • Tian, H., G. Guo, X. Fu, Y. Yao, L. Yuan, and A. Xiang. 2018. Fabrication, properties and applications of soy-protein-based materials: A review. International Journal of Biological Macromolecules 120 (Pt A):475–90. doi: 10.1016/j.ijbiomac.2018.08.110.
  • Tian, S., Y. Chen, Z. Chen, Y. Yang, and Y. Wang. 2018. Preparation and characteristics of starch esters and its effects on dough physicochemical properties. Journal of Food Quality 2018:1–7. doi: 10.1155/2018/1395978.
  • Tibolla, H., F. M. Pelissari, J. T. Martins, E. M. Lanzoni, A. A. Vicente, F. C. Menegalli, and R. L. Cunha. 2019. Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment. Carbohydrate Polymers 207:169–79. doi: 10.1016/j.carbpol.2018.11.079.
  • Tomadoni, B., M. R. Moreira, M. Pereda, and A. G. Ponce. 2018. Gellan-based coatings incorporated with natural antimicrobials in fresh-cut strawberries: Microbiological and sensory evaluation through refrigerated storage. LWT 97:384–9. doi: 10.1016/j.lwt.2018.07.029.
  • Treviño-Garza, M. Z., S. García, M. del Socorro Flores-González, and K. Arévalo-Niño. 2015. Edible active coatings based on pectin, pullulan, and chitosan increase quality and shelf life of strawberries (Fragaria ananassa). Journal of Food Science 80 (8):M1823–M1830. doi: 10.1111/1750-3841.12938.
  • Tunc, S., H. Angellier, Y. Cahyana, P. Chalier, N. Gontard, and E. Gastaldi. 2007. Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. Journal of Membrane Science 289 (1-2):159–68. doi: 10.1016/j.memsci.2006.11.050.
  • Turasan, H., E. A. Barber, M. Malm, and J. L. Kokini. 2018. Mechanical and spectroscopic characterization of crosslinked zein films cast from solutions of acetic acid leading to a new mechanism for the crosslinking of oleic acid plasticized zein films. Food Research International (Ottawa, Ont.) 108:357–67. doi: 10.1016/j.foodres.2018.03.063.
  • Uysal Unalan, I., G. Cerri, E. Marcuzzo, C. A. Cozzolino, and S. Farris. 2014. Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): Current applications and future opportunities in the food packaging sector. RSC Adv. 4 (56):29393–428. doi: 10.1039/C4RA01778A.
  • Valencia-Chamorro, S. A., L. Palou, M. A. Del Río, and M. B. Pérez-Gago. 2011. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review. Critical Reviews in Food Science and Nutrition 51 (9):872–900. doi:10.1080/10408398.2010.485705. PMC: 21888536
  • Velickova, E., E. Winkelhausen, S. Kuzmanova, V. D. Alves, and M. Moldão-Martins. 2013. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT - Food Science and Technology 52 (2):80–92. doi: 10.1016/j.lwt.2013.02.004.
  • Verlinden, R. A. J., D. J. Hill, M. A. Kenward, C. D. Williams, and I. Radecka. 2007. Bacterial synthesis of biodegradable polyhydroxyalkanoates. Journal of Applied Microbiology 102 (6):1437–49. doi: 10.1111/j.1365-2672.2007.03335.x.
  • Vieira, J. M., M. L. Flores-López, D. J. de Rodríguez, M. C. Sousa, A. A. Vicente, and J. T. Martins. 2016. Effect of chitosan–Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biology and Technology 116:88–97. doi: 10.1016/j.postharvbio.2016.01.011.
  • Vimala Bharathi, S. K., M. Maria Leena, J. A. Moses, and C. Anandharamakrishnan. 2020. Zein-based anti-browning cling wraps for fresh-cut apple slices. International Journal of Food Science & Technology 55 (3):1238–45. doi: 10.1111/ijfs.14401.
  • Wang, L.-F., and J.-W. Rhim. 2015. Preparation and application of agar/alginate/collagen ternary blend functional food packaging films. International Journal of Biological Macromolecules 80:460–8. doi: 10.1016/j.ijbiomac.2015.07.007.
  • Wang, L., R.-J. Mu, Y. Li, L. Lin, Z. Lin, and J. Pang. 2019. Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nanofibril films. LWT 113:108293. doi: 10.1016/j.lwt.2019.108293.
  • Wang, W., H. Zhang, R. Jia, Y. Dai, H. Dong, H. Hou, and Q. Guo. 2018. High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films. Food Hydrocolloids 79:534–43. doi: 10.1016/j.foodhyd.2017.12.013.
  • Wang, Y., J. Ma, Q. Xu, and J. Zhang. 2017. Fabrication of antibacterial casein-based ZnO nanocomposite for flexible coatings. Materials & Design 113:240–5. doi: 10.1016/j.matdes.2016.09.082.
  • Weizman, O., A. Dotan, Y. Nir, and A. Ophir. 2017. Modified whey protein coatings for improved gas barrier properties of biodegradable films. Polymers for Advanced Technologies 28 (2):261–70. doi: 10.1002/pat.3882.
  • Wu, L., and H. Yang. 2016. Combined application of carboxymethyl chitosan coating and brassinolide maintains the postharvest quality and shelf life of green asparagus. Journal of Food Processing and Preservation 40 (2):154–65. doi: 10.1111/jfpp.12592.
  • Wu, T., S. Dai, X. Cong, R. Liu, and M. Zhang. 2017. Succinylated soy protein film coating extended the shelf life of apple fruit. Journal of Food Processing and Preservation 41 (4):e13024. doi: 10.1111/jfpp.13024.
  • Xiao, Y., Y. Liu, S. Kang, K. Wang, and H. Xu. 2020. Development and evaluation of soy protein isolate-based antibacterial nanocomposite films containing cellulose nanocrystals and zinc oxide nanoparticles. Food Hydrocolloids 106:105898. doi: 10.1016/j.foodhyd.2020.105898.
  • Xie, Y.-Y., X.-H. Hu, Y.-W. Zhang, F. Wahid, L.-Q. Chu, S.-R. Jia, and C. Zhong. 2020. Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films. Carbohydrate Polymers 229:115456. doi: 10.1016/j.carbpol.2019.115456.
  • Xing, Y., H. Yang, X. Guo, X. Bi, X. Liu, Q. Xu, Q. Wang, W. Li, X. Li, Y. Shui, et al. 2020. Effect of chitosan/Nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits. Scientia Horticulturae 263:109135. doi: 10.1016/j.scienta.2019.109135.
  • Xiong, R., A. M. Grant, R. Ma, S. Zhang, and V. V. Tsukruk. 2018. Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering: R: Reports 125:1–41. doi: 10.1016/j.mser.2018.01.002.
  • Xu, D., H. Qin, and D. Ren. 2018. Prolonged preservation of tangerine fruits using chitosan/montmorillonite composite coating. Postharvest Biology and Technology 143:50–7. doi: 10.1016/j.postharvbio.2018.04.013.
  • Xu, H., J. Li, X. Yang, J. Li, and J. Cai. 2020. A novel approach of curcumin loaded chitosan/dextran nanocomposite for the management of complicated abdominal wound dehiscence. Journal of Cluster Science 31 (4):823–30. doi: 10.1007/s10876-019-01689-3.
  • Yıldırım, E., and I. Barutçu Mazı. 2017. Effect of zein coating enriched by addition of functional constituents on the lipid oxidation of roasted hazelnuts. Journal of Food Process Engineering 40 (4):e12515. doi: 10.1111/jfpe.12515.
  • Yildirim, S., B. Röcker, M. K. Pettersen, J. Nilsen-Nygaard, Z. Ayhan, R. Rutkaite, T. Radusin, P. Suminska, B. Marcos, V. Coma, et al. 2018. Active packaging applications for food. Comprehensive Reviews in Food Science and Food Safety 17 (1):165–99. doi: 10.1111/1541-4337.12322.
  • Youssef, K., A. G. de Oliveira, C. A. Tischer, I. Hussain, and S. R. Roberto. 2019. Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. International Journal of Biological Macromolecules 141:247–58. doi: 10.1016/j.ijbiomac.2019.08.249.
  • Yousuf, B., and A. K. Srivastava. 2019. Impact of honey treatments and soy protein isolate-based coating on fresh-cut pineapple during storage at 4°C. Food Packaging and Shelf Life 21:100361. doi: 10.1016/j.fpsl.2019.100361.
  • Yousuf, B., A. K. Srivastava, and S. Ahmad. 2020. Application of natural fruit extract and hydrocolloid-based coating to retain quality of fresh-cut melon. Journal of Food Science and Technology 57 (10):3647–58. doi: 10.1007/s13197-020-04397-3.
  • Yu, J., J. Yang, B. Liu, and X. Ma. 2009. Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulose sodium nanocomposites. Bioresource Technology 100 (11):2832–41. doi: 10.1016/j.biortech.2008.12.045.
  • Yuan, Q., W. Lu, and Y. Pan. 2010. Structure and properties of biodegradable wheat gluten/attapulgite nanocomposite sheets. Polymer Degradation and Stability 95 (9):1581–7. doi: 10.1016/j.polymdegradstab.2010.06.005.
  • Zambrano-Zaragoza, M. L., E. Mercado-Silva, A. Del Real L, E. Gutiérrez-Cortez, M. A. Cornejo-Villegas, and D. Quintanar-Guerrero. 2014. The effect of nano-coatings with α-tocopherol and xanthan gum on shelf-life and browning index of fresh-cut “Red Delicious” apples. Innovative Food Science & Emerging Technologies 22:188–96. doi: 10.1016/j.ifset.2013.09.008.
  • Zhai, X., D. Lin, W. Li, and X. Yang. 2020. Improved characterization of nanofibers from bacterial cellulose and its potential application in fresh-cut apples. International Journal of Biological Macromolecules 149:178–86. doi: 10.1016/j.ijbiomac.2020.01.230.
  • Zhang, L., C. Huang, and H. Zhao. 2019. Application of pullulan and chitosan multilayer coatings in fresh papayas. Coatings 9 (11):745. doi: 10.3390/coatings9110745.
  • Zhang, L., Z. Liu, Y. Sun, X. Wang, and L. Li. 2020. Combined antioxidant and sensory effects of active chitosan/zein film containing α-tocopherol on Agaricus bisporus. Food Packaging and Shelf Life 24:100470. doi: 10.1016/j.fpsl.2020.100470.
  • Zhang, W., H. Xiao, and L. Qian. 2014. Beeswax–chitosan emulsion coated paper with enhanced water vapor barrier efficiency. Applied Surface Science 300:80–5. doi: 10.1016/j.apsusc.2014.02.005.
  • Zhao, Q., M. Zhao, J. Wang, C. Wang, and B. Yang. 2008. Effects of sodium caseinate and whey proteins on whipping properties and texture characteristics of whipped cream. Journal of Food Process Engineering 31 (5):671–83. doi: 10.1111/j.1745-4530.2007.00174.x.
  • Zhu, Y., D. Li, T. Belwal, L. Li, H. Chen, T. Xu, and Z. Luo. 2019. Effect of nano-SiOx/chitosan complex coating on the physicochemical characteristics and preservation performance of green Tomato. Molecules 24 (24):4552. doi: 10.3390/molecules24244552.
  • Zolfi, M., F. Khodaiyan, M. Mousavi, and M. Hashemi. 2014. The improvement of characteristics of biodegradable films made from kefiran-whey protein by nanoparticle incorporation. Carbohydrate Polymers 109:118–25. doi: 10.1016/j.carbpol.2014.03.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.