2,233
Views
36
CrossRef citations to date
0
Altmetric
Reviews

Comprehensive study on applications of artificial neural network in food process modeling

&

References

  • Abdullah, S., R. C. Pradhan, M. Aflah, and S. Mishra. 2020. Efficiency of tannase enzyme for degradation of tannin from cashew apple juice: Modeling and optimization of process using artificial neural network and response surface methodology. Journal of Food Process Engineering 43 (10):e13499. doi: 10.1111/jfpe.13499.
  • Acquarelli, J., T. van Laarhoven, J. Gerretzen, T. N. Tran, L. M. C. Buydens, and E. Marchiori. 2017. Convolutional neural networks for vibrational spectroscopic data analysis. Analytica Chimica Acta 954:22–31. doi: 10.1016/j.aca.2016.12.010.
  • Aghbashlo, M., S. Hosseinpour, and A. S. Mujumdar. 2015. Application of artificial neural networks (ANNs) in drying technology: A comprehensive review. Drying Technology 33 (12):1397–462. doi: 10.1080/07373937.2015.1036288.
  • Ahmad, F., N. A. Mat-Isa, Z. Hussain, R. Boudville, and M. K. Osman. 2010. Genetic algorithm–artificial neural network (GA-ANN) hybrid intelligence for cancer diagnosis. Proceedings of the 2nd International Conference on Computational Intelligence, Communication Systems and Networks, CICSyN 2010. doi: 10.1109/CICSyN.2010.46.
  • Al-Mahasneh, M., M. Aljarrah, T. Rababah, and M. Alu’datt. 2016. Application of hybrid neural fuzzy system (ANFIS) in food processing and technology. Food Engineering Reviews 8:351–66. doi: 10.1007/s12393-016-9141-7.
  • Alam, M. A., C. K. Saha, M. M. Alam, M. A. Ashraf, B. K. Bala, and J. Harvey. 2018. Neural network modeling of drying of rice in BAU-STR dryer. Heat and Mass Transfer 54 (11):3297–305. doi: 10.1007/s00231-018-2368-5.
  • Aliakbarian, B., F. C. Sampaio, J. T. de Faria, C. G. Pitangui, F. Lovaglio, A. A. Casazza, A. Converti, and P. Perego. 2018. Optimization of spray drying microencapsulation of olive pomace polyphenols using response surface methodology and artificial neural network. LWT - Food Science and Technology 93:220–8. doi: 10.1016/j.lwt.2018.03.048.
  • Alkronz, E. S., K. A. Moghayer, M. Meimeh, M. Gazzaz, B. S. Abu-Nasser, and S. S. Abu-Naser. 2019. Prediction of whether mushroom is edible or poisonous using back-propagation neural network. International Journal of Academic and Applied Research 3 (2):1–8.
  • Alloghani, M., D. Al-Jumeily, J. Mustafina, A. Hussain, and A. J. Aljaaf. 2020. A systematic review on supervised and unsupervised machine learning algorithms for data science. In Supervised and unsupervised learning for data science. Unsupervised and semi-supervised learning, eds. M. Berry, A. Mohamed, and B. Yap, 3–21. Cham, Switzerland: Springer. doi: 10.1007/978-3-030-22475-2_1.
  • Alsmadi, M. K. 2019. Hybrid genetic algorithm with tabu search with back-propagation algorithm for fish classification: determining the appropriate feature set. International Journal of Applied Engineering Research 14 (23):4387–96.
  • Alves, R., D. Gomes, and W. Gramacho. 2016. Use of artificial neural network to optimize osmotic dehydration process of cashew from cerrado (Anacardium occidentale). International Journal of Computer Applications 156 (7):1–7. doi: 10.5120/ijca2016912467.
  • Ameer, K., S.-W. Bae, Y. Jo, H.-G. Lee, A. Ameer, and J.-H. Kwon. 2017. Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling. Food Chemistry 229:198–207. doi: 10.1016/j.foodchem.2017.01.121.
  • Ansari, H. R., M. J. Zarei, S. Sabbaghi, and P. Keshavarz. 2018. A new comprehensive model for relative viscosity of various nanofluids using feed-forward back-propagation MLP neural networks. International Communications in Heat and Mass Transfer 91:158–64. doi: 10.1016/j.icheatmasstransfer.2017.12.012.
  • Arjona-Román, J. L., R. P. Hernández-García, I. Navarro-Limón, J. Coria-Hernández, M. E. Rosas-Mendoza, and R. Meléndez-Pérez. 2017. Heat capacity prediction during pork meat thawing: Application of artificial neural network. Journal of Food Process Engineering 40 (2):e12399. doi: 10.1111/jfpe.12399.
  • Arsenovic, M., M. Karanovic, S. Sladojevic, A. Anderla, and D. Stefanovic. 2019. Solving current limitations of deep learning based approaches for plant disease detection. Symmetry 11 (7):939. doi: 10.3390/sym11070939.
  • Bahram-Parvar, M., F. Salehi, and S. M. A. Razavi. 2017. Adaptive neuro-fuzzy inference system (ANFIS) simulation for predicting overall acceptability of ice cream. Engineering in Agriculture, Environment and Food 10 (2):79–86. doi: 10.1016/j.eaef.2016.11.001.
  • Bas, D., and I. H. Boyaci. 2007. Modeling and optimization II: Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. Journal of Food Engineering 78 (3):846–54.
  • Bellos, E., and C. Tzivanidis. 2018. Development of an analytical model for the daily performance of solar thermal systems with experimental validation. Sustainable Energy Technologies and Assessments 28:22–9. doi: 10.1016/j.seta.2018.05.003.
  • Betiku, E., and A. E. Taiwo. 2015. Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-à-vis response surface methodology and artificial neural network. Renewable Energy. 74:87–94. doi: 10.1016/j.renene.2014.07.054.
  • Bhagya Raj, G. V. S., and K. K. Dash. 2020a. Microwave vacuum drying of dragon fruit slice: Artificial neural network modelling, genetic algorithm optimization, and kinetics study. Computers and Electronics in Agriculture 178:105814. doi: 10.1016/j.compag.2020.105814.
  • Bhagya Raj, G. V. S., and K. K. Dash. 2020b. Ultrasound-assisted extraction of phytocompounds from dragon fruit peel: Optimization, kinetics and thermodynamic studies. Ultrasonics Sonochemistry 68:105180. doi: 10.1016/j.ultsonch.2020.105180.
  • Boger, D. V., and C. Tiu. 1974. Rheological properties of food products and their use in the design of flow systems. Food Technology in Australia 26, 325–335.
  • Bontempi, G., S. Ben Taieb, and Y. A. Le Borgne. 2013. Machine learning strategies for time series forecasting. In eBISS 2012: Business intelligence. Lecture Notes in Business Information Processing, eds. M. A. Aufaure and E. Zimányi, 62–77. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-36318-4_3.
  • Boyaci, I. H., G. Sumnu, and O. Sakiyan. 2009. Estimation of dielectric properties of cakes based on porosity, moisture content, and formulations using statistical methods and artificial neural networks. Food and Bioprocess Technology 2 (4):353–60. doi: 10.1007/s11947-008-0064-z.
  • Buciński, A., H. Zieliński, and H. Kozłowska. 2004. Artificial neural networks for prediction of antioxidant capacity of cruciferous sprouts. Trends in Food Science & Technology 15 (3–4):161–9. doi: 10.1016/j.tifs.2003.09.015.
  • Carr, J. 2014. An introduction to genetic algorithms. Senior Project 1 (40):7.
  • Chasiotis, V. K., D. A. Tzempelikos, A. E. Filios, and K. P. Moustris. 2020. Artificial neural network modelling of moisture content evolution for convective drying of cylindrical quince slices. Computers and Electronics in Agriculture 172:105074. doi: 10.1016/j.compag.2019.105074.
  • Chen, H., H. Sun, X. Yi, and X. Chen. 2011. Artificial neural network in food processing. Proceedings of the 30th Chinese Control Conference, CCC 2011, 2687–92. https://www.scopus.com/inward/record.uri?eid=2-s2.0-80053060499&partnerID=40&md5=13c748f174b587ca9eac428c11e139a1.
  • Cheok, C. Y., N. L. Chin, Y. A. Yusof, R. A. Talib, and C. L. Law. 2012. Optimization of total phenolic content extracted from Garcinia mangostana Linn. hull using response surface methodology versus artificial neural network. Industrial Crops and Products 40:247–53. doi: 10.1016/j.indcrop.2012.03.019.
  • Chokphoemphun, S., and S. Chokphoemphun. 2018. Moisture content prediction of paddy drying in a fluidized-bed drier with a vortex flow generator using an artificial neural network. Applied Thermal Engineering 145:630–6. doi: 10.1016/j.applthermaleng.2018.09.087.
  • Chokr, M., and S. Elbassuoni. 2017. Calories prediction from food images. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.
  • Christodoulidis, S., M. Anthimopoulos, and S. Mougiakakou. 2015. Food recognition for dietary assessment using deep convolutional neural networks. In ICIAP 2015: New trends in image analysis and processing: ICIAP 2015 Workshops. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 458–65. Cham, Switzerland: Springer. doi: 10.1007/978-3-319-23222-5_56.
  • Concepcion, R. S., E. Sybingco, S. C. Lauguico, and E. P. Dadios. 2019. Implementation of multilayer perceptron neural network on quality assessment of tomato puree in aerobic storage using electronic nose. Proceedings of the IEEE 2019 9th International Conference on Cybernetics and Intelligent Systems and Robotics, Automation and Mechatronics, CIS and RAM 2019. doi: 10.1109/CIS-RAM47153.2019.9095783.
  • da Silva Veloso, Y. M., M. M. de Almeida, O. L. S. de Alsina, and M. S. Leite. 2020. Artificial neural network model for the flow regime recognition in the drying of guava pieces in the spouted bed. Chemical Engineering Communications 207 (4):549–58. doi: 10.1080/00986445.2019.1608192.
  • Dash, K. K., G. Raj, and M. A. Gayary. 2020. Application of neural networks in optimizing different food processes. In Mathematical and statistical applications in food engineering, eds. S. Sevda and A. Singh. Boca Raton, FL: CRC Press.
  • Demertzis, K., and L. Iliadis. 2015. Intelligent bio-inspired detection of food borne pathogen by DNA barcodes: The case of invasive fish species Lagocephalus sceleratus. International Conference on Engineering Applications of Neural Networks, 89–99.
  • Desai, K. M., S. A. Survase, P. S. Saudagar, S. S. Lele, and R. S. Singhal. 2008. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan. Biochemical Engineering Journal 41 (3):266–73. doi: 10.1016/j.bej.2008.05.009.
  • Di Scala, K., G. Meschino, A. Vega-Gálvez, R. Lemus-Mondaca, S. Roura, and R. Mascheroni. 2013. An artificial neural network model for prediction of quality characteristics of apples during convective dehydration. Food Science and Technology, 33 (3):411–6. doi: 10.1590/S0101-20612013005000064.
  • Dietterich, T. G. 2002. Ensemble learning. The Handbook of Brain Theory and Neural Networks 2:110–25.
  • Dimatira, J. B. U., E. P. Dadios, F. Culibrina, J. A. Magsumbol, J. Dela Cruz, K. Sumage, M. T. Tan, and M. Gomez. 2017. Application of fuzzy logic in recognition of tomato fruit maturity in smart farming. IEEE Region 10 Annual International Conference, Proceedings/TENCON. doi: 10.1109/TENCON.2016.7848382.
  • DiPietro, R., and G. D. Hager. 2020. Deep learning: RNNs and LSTM. In Handbook of medical image computing and computer assisted intervention, 503–19. Amsterdam, the Netherlands: Elsevier.
  • Dolatabadi, Z., A. H. Elhami Rad, V. Farzaneh, S. H. Akhlaghi Feizabad, S. H. Estiri, and H. Bakhshabadi. 2016. Modeling of the lycopene extraction from tomato pulps. Food Chemistry 190:968–73. doi: 10.1016/j.foodchem.2015.06.069.
  • Dorofki, M., A. H. Elshafie, O. Jaafar, O. A. Karim, and S. Mastura. 2012. Comparison of artificial neural network transfer functions abilities to simulate extreme runoff data. 2012 International Conference on Environment, Energy and Biotechnology.
  • Durant, T. J. S., E. M. Olson, W. L. Schulz, and R. Torres. 2017. Very deep convolutional neural networks for morphologic classification of erythrocytes. Clinical Chemistry 63 (12):1847–55. doi: 10.1373/clinchem.2017.276345.
  • Eerikäinen, T., P. Linko, S. Linko, T. Siimes, and Y. H. Zhu. 1993. Fuzzy logic and neural network applications in food science and technology. Trends in Food Science & Technology 4 (8):237–42. (93)90137-Y doi: 10.1016/0924-2244.
  • Ekici, L., Z. Simsek, I. Ozturk, O. Sagdic, and H. Yetim. 2014. Effects of temperature, time, and pH on the stability of anthocyanin extracts: Prediction of total anthocyanin content using nonlinear models. Food Analytical Methods 7 (6):1328–36. doi: 10.1007/s12161-013-9753-y.
  • Elavarasan, D., and P. M. Durairaj Vincent. 2020. Crop yield prediction using deep reinforcement learning model for sustainable agrarian applications. IEEE Access. 8:86886–901. doi: 10.1109/ACCESS.2020.2992480.
  • Elsheikh, A. H., J. Guo, Y. Huang, J. Ji, and K. M. Lee. 2018. Temperature field sensing of a thin-wall component during machining: Numerical and experimental investigations. International Journal of Heat and Mass Transfer 126:935–45. doi: 10.1016/j.ijheatmasstransfer.2018.06.006.
  • Elsheikh, A. H., S. W. Sharshir, M. Abd Elaziz, A. E. Kabeel, W. Guilan, and Z. Haiou. 2019. Modeling of solar energy systems using artificial neural network: A comprehensive review. Solar Energy 180:622–39. doi: 10.1016/j.solener.2019.01.037.
  • Engels, C., M. Hendrickx, S. De Samblanx, I. De Gryze, and P. Tobback. 1986. Modelling water diffusion during long-grain rice soaking. Journal of Food Engineering 5 (1):55–73. doi: 10.1016/0260-8774(86)90019-1.
  • Enujiugha, V. N., and C. T. Akanbi. 2005. Optimization of canning process conditions for fermented African oil bean (Pentaclethra macrophylla Benth) seeds in three different media. Agricultural Engineering International 12 (2):1–11.
  • Erenturk, S., and K. Erenturk. 2007. Comparison of genetic algorithm and neural network approaches for the drying process of carrot. Journal of Food Engineering 78 (3):905–12. doi: 10.1016/j.jfoodeng.2005.11.031.
  • Fan, F. H., Q. Ma, J. Ge, Q. Y. Peng, W. W. Riley, and S. Z. Tang. 2013. Prediction of texture characteristics from extrusion food surface images using a computer vision system and artificial neural networks. Journal of Food Engineering 118 (4):426–33. doi: 10.1016/j.jfoodeng.2013.04.015.
  • Fathi, M., M. Mohebbi, and S. M. A. Razavi. 2011. Application of image analysis and artificial neural network to predict mass transfer kinetics and color changes of osmotically dehydrated kiwifruit. Food and Bioprocess Technology 4 (8):1357–66. doi: 10.1007/s11947-009-0222-y.
  • Federico, M. 2009. Artificial neural networks in foodstuff analyses: Trends and perspectives. A review. Analytica Chimica Acta 635 (2):121–31. doi: 10.1016/j.aca.2009.01.009.
  • Ge, Y., Y. Ni, H. Yan, Y. Chen, and T. Cai. 2002. Optimization of the supercritical fluid extraction of natural vitamin E from wheat germ using response surface methodology. Journal of Food Science 67 (1):239–43. doi: 10.1111/j.1365-2621.2002.tb11391.x.
  • Gehring, J., Y. Miao, F. Metze, and A. Waibel. 2013. Extracting deep bottleneck features using stacked auto-encoders. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. doi: 10.1109/ICASSP.2013.6638284.
  • Ghorbani, H., A. MNikbakht, M. Tabatabaei, M. Hosseini, P. Mohammadi, and M. Student. 2011. Application of modeling techniques for prediction and optimization of biodiesel production processes. International Conference on Biotechnology and Environment Management.
  • Gökmen, V., Ö. Ç. Açar, A. Serpen, and İ. Süğüt. 2009. Modeling dead-end ultrafiltration of apple juice using artificial neural network. Journal of Food Process Engineering 32 (2):248–64. doi: 10.1111/j.1745-4530.2007.00214.x.
  • Gowen, A., N. Abu-Ghannam, J. Frias, and J. Oliveira. 2007. Influence of pre-blanching on the water absorption kinetics of soybeans. Journal of Food Engineering 78 (3):965–71. doi: 10.1016/j.jfoodeng.2005.12.009.
  • Goyal, S., and G. K. Goyal. 2011a. A new scientific approach of intelligent artificial neural network engineering for predicting shelf life of milky white dessert jeweled with pistachio. International Journal of Scientific & Engineering Research 2 (9):1–4.
  • Goyal, S., and G. K. Goyal. 2011b. Advanced computing research on cascade single and double hidden layers for detecting shelf life of kalakand: An artificial neural network approach. International Journal of Computer Science and Emerging Technology 2 (5):292–5.
  • Goyal, S., and G. K. Goyal. 2011c. Simulated neural network intelligent computing models for predicting shelf life of soft cakes. Global Journal of Computer Science and Technology 11 (14):7.
  • Graves, A., A. R. Mohamed, and G. Hinton. 2013. Speech recognition with deep recurrent neural networks. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. doi: 10.1109/ICASSP.2013.6638947.
  • Guha, P., T. Bhatnagar, I. Pal, U. Kamboj, and S. Mishra. 2017. Prediction of properties of wheat dough using intelligent deep belief networks. Journal of Experimental & Theoretical Artificial Intelligence 29 (6):1283–96. doi: 10.1080/0952813X.2017.1340976.
  • Guo, L., T. Wang, Z. Wu, J. Wang, M. Wang, Z. Cui, S. Ji, J. Cai, C. Xu, and X. Chen. 2020. Portable food-freshness prediction platform based on colorimetric barcode combinatorics and deep convolutional neural networks. Advanced Materials 32 (45):2004805. doi: 10.1002/adma.202004805.
  • Guy, R. 2001. Extrusion cooking: Technologies and applications. Sawston, UK: Woodhead publishing.
  • Halac, D., E. Sokic, and E. Turajlic. 2017. Almonds classification using supervised learning methods. 2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT), 1–6. doi: 10.1109/ICAT.2017.8171603.
  • Harper, J. M., and J. P. Clark. 1978. Food extrusion. CRC Critical Reviews in Food Science and Nutrition 11 (2):155–215. doi: 10.1080/10408397909527262.
  • Heidari, E., M. A. Sobati, and S. Movahedirad. 2016. Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN). Chemometrics and Intelligent Laboratory Systems 155:73–85. doi: 10.1016/j.chemolab.2016.03.031.
  • Henderson, M., B. Thomson, and S. Young. 2014. Robust dialog state tracking using delexicalised recurrent neural networks and unsupervised adaptation. 2014 IEEE Workshop on Spoken Language Technology, SLT 2014 - Proceedings. doi: 10.1109/SLT.2014.7078601.
  • Hochreiter, S., and J. Schmidhuber. 1997. Long short-term memory. Neural Computation 9 (8):1735–80. doi: 10.1162/neco.1997.9.8.1735.
  • Hofmann, T. 2001. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 42 (1/2):177–96. doi: 10.1023/A:1007617005950.
  • Huang, S.-M., C.-H. Kuo, C.-A. Chen, Y.-C. Liu, and C.-J. Shieh. 2017. RSM and ANN modeling-based optimization approach for the development of ultrasound-assisted liposome encapsulation of piceid. Ultrasonics Sonochemistry 36:112–22. doi: 10.1016/j.ultsonch.2016.11.016.
  • Huang, Y., L. J. Kangas, and B. A. Rasco. 2007. Applications of artificial neural networks (ANNs) in food science. Critical Reviews in Food Science and Nutrition 47 (2):113–26. doi: 10.1080/10408390600626453.
  • Ilamathi, P., V. Selladurai, K. Balamurugan, and V. T. Sathyanathan. 2013. ANN-GA approach for predictive modeling and optimization of NOx emission in a tangentially fired boiler. Clean Technologies and Environmental Policy 15 (1):125–31. doi: 10.1007/s10098-012-0490-5.
  • Jafari, S. M., V. Ghanbari, D. Dehnad, and M. Ganje. 2018. Neural networks modeling of Aspergillus flavus growth in tomato paste containing microencapsulated olive leaf extract. Journal of Food Safety 38 (1):e12396. doi: 10.1111/jfs.12396.
  • Jahedi Rad, S., M. Kaveh, V. R. Sharabiani, and E. Taghinezhad. 2018. Fuzzy logic, artificial neural network and mathematical model for prediction of white mulberry drying kinetics. Heat and Mass Transfer 54 (11):3361–74. doi: 10.1007/s00231-018-2377-4.
  • Janjai, S., K. Tohsing, N. Lamlert, T. Mundpookhier, W. Chanalert, and B. K. Bala. 2018. Experimental performance and artificial neural network modeling of solar drying of litchi in the parabolic greenhouse dryer. Journal of Renewable Energy and Smart Grid Technology 13 (1):1–12. https://www.tci-thaijo.org/index.php/RAST/article/view/56849.
  • Janod, K., M. Morchid, R. Dufour, G. Linares, and R. De Mori. 2017. Denoised bottleneck features from deep autoencoders for telephone conversation analysis. IEEE/ACM Transactions on Audio Speech and Language Processing 25 (9):1809–20. doi: 10.1109/TASLP.2017.2718843.
  • Jiang, Q., and C. H. Chen. 2005. A multi-dimensional fuzzy decision support strategy. Decision Support Systems 38 (4):591–8. doi: 10.1016/j.dss.2003.08.003.
  • Kalathingal, M. S. H., S. Basak, and J. Mitra. 2020. Artificial neural network modeling and genetic algorithm optimization of process parameters in fluidized bed drying of green tea leaves. Journal of Food Process Engineering 43 (1):e13128. doi: 10.1111/jfpe.13128.
  • Karakaplan, N., E. Goz, E. Tosun, and M. Yuceer. 2019. Kinetic and artificial neural network modeling techniques to predict the drying kinetics of Mentha spicata L. Journal of Food Processing and Preservation 43 (10):e14142. doi: 10.1111/jfpp.14142.
  • Kashaninejad, M., A. A. Dehghani, and M. Kashiri. 2009. Modeling of wheat soaking using two artificial neural networks (MLP and RBF). Journal of Food Engineering 91 (4):602–7. doi: 10.1016/j.jfoodeng.2008.10.012.
  • Kaveh, M., R. A. Chayjan, and B. Khezri. 2018. Modeling drying properties of pistachio nuts, squash and cantaloupe seeds under fixed and fluidized bed using data-driven models and artificial neural networks. International Journal of Food Engineering 14 (1):1–19. doi: 10.1515/ijfe-2017-0248.
  • Khajeh, M., M. G. Moghaddam, and M. Shakeri. 2012. Application of artificial neural network in predicting the extraction yield of essential oils of Diplotaenia cachrydifolia by supercritical fluid extraction. The Journal of Supercritical Fluids 69:91–6. doi: 10.1016/j.supflu.2012.05.006.
  • Khan, T. M., and A. Robles-Kelly. 2020. A derivative-free method for quantum perceptron training in multi-layered neural networks. arXiv Preprint arXiv:2009.13264.
  • Khawas, P., K. K. Dash, A. J. Das, and S. C. Deka. 2016. Modeling and optimization of the process parameters in vacuum drying of culinary banana (Musa ABB) slices by application of artificial neural network and genetic algorithm. Drying Technology 34 (4):491–503. doi: 10.1080/07373937.2015.1060605.
  • Khoshhal, A., A. A. Dakhel, A. Etemadi, and S. Zereshki. (2010). Drying process. Journal of Food Process Engineering 33, 298–313. doi: 10.1111/j.1745-4530.2009.00435.x.
  • Kişi, Ö. 2007. Streamflow forecasting using different artificial neural network algorithms. Journal of Hydrologic Engineering 12 (5):532. doi: 10.1061/(ASCE)1084-0699(2007)12:5(532).
  • Kohonen, T. 1982. Self-organized formation of topologically correct feature maps. Biological Cybernetics 43 (1):59–69. doi: 10.1007/BF00337288.
  • Kseibat, D. S., G. S. Mittal, and O. A. Basir. 2004. Predicting safety and quality of thermally processed canned foods using a neural network. Transactions of the Institute of Measurement and Control 26 (1):55–68. doi: 10.1191/0142331204tm0104oa.
  • Kundu, P., V. Paul, V. Kumar, and I. M. Mishra. 2015. Formulation development, modeling and optimization of emulsification process using evolving RSM coupled hybrid ANN-GA framework. Chemical Engineering Research and Design 104:773–90. doi: 10.1016/j.cherd.2015.10.025.
  • Lamrini, B., G. Della Valle, I. C. Trelea, N. Perrot, and G. Trystram. 2012. A new method for dynamic modelling of bread dough kneading based on artificial neural network. Food Control. 26 (2):512–24. doi: 10.1016/j.foodcont.2012.01.011.
  • Lange, S., and M. Riedmiller. 2010. Deep auto-encoder neural networks in reinforcement learning. Proceedings of the International Joint Conference on Neural Networks. doi: 10.1109/IJCNN.2010.5596468.
  • Laorko, A., Z. Li, S. Tongchitpakdee, S. Chantachum, and W. Youravong. 2010. Effect of membrane property and operating conditions on phytochemical properties and permeate flux during clarification of pineapple juice. Journal of Food Engineering 100 (3):514–21. doi: 10.1016/j.jfoodeng.2010.04.039.
  • Larochelle, H., M. Mandel, R. Pascanu, and Y. Bengio. 2012. Learning algorithms for the classification restricted Boltzmann machine. Journal of Machine Learning Research 13:643–69.
  • León-Roque, N., M. Abderrahim, L. Nuñez-Alejos, S. M. Arribas, and L. Condezo-Hoyos. 2016. Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks. Talanta 161:31–9. doi: 10.1016/j.talanta.2016.08.022.
  • Li, Y., C. Fang, J. Yang, Z. Wang, X. Lu, and M. H. Yang. 2017. Universal style transfer via feature transforms. Advances in Neural Information Processing Systems 30 (NIPS 2017).
  • Liang, X., L. Lee, and E. P. Xing. 2017. Deep variation-structured reinforcement learning for visual relationship and attribute detection. Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. doi: 10.1109/CVPR.2017.469.
  • Lin, J.-A., C.-H. Kuo, B.-Y. Chen, Y. Li, Y.-C. Liu, J.-H. Chen, and C.-J. Shieh. 2016. A novel enzyme-assisted ultrasonic approach for highly efficient extraction of resveratrol from Polygonum cuspidatum. Ultrasonics Sonochemistry 32:258–64. doi: 10.1016/j.ultsonch.2016.03.018.
  • Lin, Y. H., and Y. C. Hu. 2018. Electrical energy management based on a hybrid artificial neural network-particle swarm optimization-integrated two-stage non-intrusive load monitoring process in smart homes. Processes 6 (12):236. doi: 10.3390/pr6120236.
  • Liu, Q. F., S. H. Kim, and S. Lee. 2009. Prediction of microfiltration membrane fouling using artificial neural network models. Separation and Purification Technology 70 (1):96–102. doi: 10.1016/j.seppur.2009.08.017.
  • Liu, X., and R. Ichise. 2017. Food sales prediction with meteorological data—A case study of a Japanese chain supermarket. In Data mining and big data. DMBD 2017. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10387, 93–104. Cham, Switzerland: Springer. doi: 10.1007/978-3-319-61845-6_10.
  • Luo, H., P. Jia, S. Qiao, and S. Duan. 2018. Enhancing electronic nose performance based on a novel QPSO-RBM technique. Sensors and Actuators B: Chemical 259:241–9. doi: 10.1016/j.snb.2017.12.026.
  • Maca, P., P. Pech, and J. Pavlasek. 2014. Comparing the selected transfer functions and local optimization methods for neural network flood runoff forecast. Mathematical Problems in Engineering 2014:1–10. doi: 10.1155/2014/782351.
  • Madadlou, A., Z. Emam-Djomeh, M. E. Mousavi, M. Ehsani, M. Javanmard, and D. Sheehan. 2009. Response surface optimization of an artificial neural network for predicting the size of re-assembled casein micelles. Computers and Electronics in Agriculture 68 (2):216–21. doi: 10.1016/j.compag.2009.06.005.
  • Mandal, B., N. B. Puhan, and A. Verma. 2019. Deep convolutional generative adversarial network-based food recognition using partially labeled data. IEEE Sensors Letters 3 (2):1–4. doi: 10.1109/LSENS.2018.2886427.
  • Mohd Adnan, M. R. H., A. Sarkheyli, A. Mohd Zain, and H. Haron. 2013. Fuzzy logic for modeling machining process: A review. Artificial Intelligence Review 43:345–79. doi: 10.1007/s10462-012-9381-8.
  • Mohi Alden, K., M. Omid, A. Rajabipour, B. Tajeddin, and M. Soltani Firouz. 2019. Quality and shelf-life prediction of cauliflower under modified atmosphere packaging by using artificial neural networks and image processing. Computers and Electronics in Agriculture 163:104861. doi: 10.1016/j.compag.2019.104861.
  • Moreira, L. S., B. C. Chagas, C. S. V. Pacheco, H. M. Santos, L. H. S. de Menezes, M. M. Nascimento, M. A. S. Batista, R. M. de Jesus, F. A. C. Amorim, L. N. Santos, et al. 2019. Development of procedure for sample preparation of cashew nuts using mixture design and evaluation of nutrient profiles by Kohonen neural network. Food Chemistry 273:136–43. doi: 10.1016/j.foodchem.2018.01.050.
  • Movagharnejad, K., and M. Nikzad. 2007. Modeling of tomato drying using artificial neural network. Computers and Electronics in Agriculture 59 (1–2):78–85. doi: 10.1016/j.compag.2007.05.003.
  • Murthy, K., T. Pandurangapp, and B. Manohar. 2012. Microwave drying of mango ginger (Curcuma amada Roxb): prediction of drying kinetics by mathematical modelling and artificial neural network. International Journal of Food Science & Technology 47 (6):1229–36.
  • Musa, K. H., A. Abdullah, and A. Al-Haiqi. 2016. Determination of DPPH free radical scavenging activity: Application of artificial neural networks. Food Chemistry 194:705–11. doi: 10.1016/j.foodchem.2015.08.038.
  • Muthusamy, S., L. P. Manickam, V. Murugesan, C. Muthukumaran, and A. Pugazhendhi. 2019. Pectin extraction from Helianthus annuus (sunflower) heads using RSM and ANN modelling by a genetic algorithm approach. International Journal of Biological Macromolecules 124:750–8. doi: 10.1016/j.ijbiomac.2018.11.036.
  • Nayak, J., K. Vakula, P. Dinesh, B. Naik, and D. Pelusi. 2020. Intelligent food processing: Journey from artificial neural network to deep learning. Computer Science Review 38:100297. doi: 10.1016/j.cosrev.2020.100297.
  • Nedovic, V., A. Kalusevic, V. Manojlovic, S. Levic, and B. Bugarski. 2011. An overview of encapsulation technologies for food applications. Procedia Food Science 1:1806–15. doi: 10.1016/j.profoo.2011.09.265.
  • Neelam, S., B. K. Kumbhar, and M. Kulshreshtha. 2006. Modeling of extrusion process using response surface methodology and artificial neural networks. Journal of Engineering Science and Technology 1 (1):31–40.
  • Ni, C., Y. Zhang, and D. Wang. 2018. Moisture content quantization of masson pine seedling leaf based on stacked autoencoder with near-infrared spectroscopy. Journal of Electrical and Computer Engineering 2018:1–8. doi: 10.1155/2018/8696202.
  • Nourbakhsh, H., Z. Emam-Djomeh, M. Omid, H. Mirsaeedghazi, and S. Moini. 2014. Prediction of red plum juice permeate flux during membrane processing with ANN optimized using RSM. Computers and Electronics in Agriculture 102:1–9. doi: 10.1016/j.compag.2013.12.017.
  • Oroian, M. 2015. Influence of temperature, frequency and moisture content on honey viscoelastic parameters - Neural networks and adaptive neuro-fuzzy inference system prediction. LWT - Food Science and Technology 63 (2):1309–16. doi: 10.1016/j.lwt.2015.04.051.
  • Panchal, G., A. Ganatra, Y. P. Kosta, and D. Panchal. 2011. Behaviour analysis of multilayer perceptronswith multiple hidden neurons and hidden layers. International Journal of Computer Theory and Engineering 3 (2):332–7. doi: 10.7763/IJCTE.2011.V3.328.
  • Parker, D. B. 1982. Learning logic. Invention report S81-64, File 1. Office of Technology Licensing. October, Stanford University.
  • Pérez-Ortiz, J. A., F. A. Gers, D. Eck, and J. Schmidhuber. 2003. Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets. Neural Networks 16 (2):241–50. doi: 10.1016/S0893-6080(02)00219-8.
  • Perrot, N., I. Ioannou, I. Allais, C. Curt, J. Hossenlopp, and G. Trystram. 2006. Fuzzy concepts applied to food product quality control: A review. Fuzzy Sets and Systems 157 (9):1145–54. doi: 10.1016/j.fss.2005.12.013.
  • Pilkington, J. L., C. Preston, and R. L. Gomes. 2014. Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua. Industrial Crops and Products 58:15–24. doi: 10.1016/j.indcrop.2014.03.016.
  • Pradhan, D., and R. C. Pradhan. 2020. Application of a neural network mathematical model in the development of hot air roasting process technology for Chironji (Buchanania lanzan) kernels. Journal of Food Processing and Preservation 2020:e14907. doi: 10.1111/jfpp.14907.
  • Raeisi-Vanani, H., M. Shayannejad, A.-R. Soltani-Toudeshki, M.-A. Arab, S. Eslamian, M. Amoushahi-Khouzani, M. Marani-Barzani, and K. Ostad-Ali-Askari. 2017. A simple method for land grading computations and its comparison with genetic algorithm (GA) method. International Journal of Research Studies in Agricultural Sciences (IJRSAS) 3 (8):26–38.
  • Rai, P., G. C. Majumdar, S. DasGupta, and S. De. 2005. Prediction of the viscosity of clarified fruit juice using artificial neural network: A combined effect of concentration and temperature. Journal of Food Engineering 68 (4):527–33. doi: 10.1016/j.jfoodeng.2004.07.003.
  • Ramzi, M., M. Kashaninejad, F. Salehi, A. R. Sadeghi Mahoonak, and S. M. Ali Razavi. 2015. Modeling of rheological behavior of honey using genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system. Food Bioscience 9 (1):60–7. doi: 10.1016/j.fbio.2014.12.001.
  • Raoufy, M. R., S. Gharibzadeh, B. Radmehr, R. Khaksar, and H. Hosseini. 2010. Predicting the combined effect of zataria multiflora essential oil, PH and temperature on the growth of Staphylococcus aureus using artificial neural networks. Journal of Food Safety 30 (2):318–29. doi: 10.1111/j.1745-4565.2009.00209.x.
  • Razmi-Rad, E., B. Ghanbarzadeh, S. M. Mousavi, Z. Emam-Djomeh, and J. Khazaei. 2007. Prediction of rheological properties of Iranian bread dough from chemical composition of wheat flour by using artificial neural networks. Journal of Food Engineering 81 (4):728–34. doi: 10.1016/j.jfoodeng.2007.01.009.
  • Rivero, D., J. Dorado, E. Fernández-Blanco, and A. Pazos. 2009. A genetic algorithm for ANN design, training and simplification. In IWANN 2009: Bio-inspired systems: Computational and ambient intelligence. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 391–8. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-02478-8_49.
  • Rokach, L. 2010. Pattern classification using ensemble methods. Vol. 75. Singapore: World Scientific.
  • Rumelhart, D. E., and D. Zipser. 1985. Feature discovery by competitive learning. Cognitive Science 9 (1):75–112. doi: 10.1016/S0364-0213(85)80010-0.
  • Sablani, S. S., M. Marcotte, O. D. Baik, and F. Castaigne. 1998. Modeling of simultaneous heat and water transport in the baking process. Food Science Technology 31:201–9.
  • Sablani, S. S., O. D. Baik, and M. Marcotte. 2002. Neural networks for predicting thermal conductivity of bakery products. Journal of Food Engineering 52 (3):299–304. doi: 10.1016/S0260-8774(01)00119-4.
  • Sabour, M. R., and A. Amiri. 2017. Comparative study of ANN and RSM for simultaneous optimization of multiple targets in Fenton treatment of landfill leachate. Waste Management 65:54–62. doi: 10.1016/j.wasman.2017.03.048.
  • Sak, H., A. Senior, and F. Beaufays. 2014. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH.
  • Salakhutdinov, R., and G. Hinton. 2009. Deep Boltzmann machines. Proceedings of Artificial Intelligence and Statistics, 448–55.
  • Salazar, G. A., N. Fraidenraich, C. A. A. de Oliveira, O. de Castro Vilela, M. Hongn, and J. M. Gordon. 2017. Analytic modeling of parabolic trough solar thermal power plants. Energy 138:1148–56. doi: 10.1016/j.energy.2017.07.110.
  • Sarkar, T., M. Salauddin, S. K. Hazra, and R. Chakraborty. 2020. Comparative study of predictability of response surface methodology (RSM) and artificial neural network-particle swarm optimization (ANN-PSO) for total colour difference of pineapple fortified rasgulla processing. International Journal of Intelligent Networks 1:17–31. doi: 10.1016/j.ijin.2020.06.001.
  • Sazli, M. H. 2006. A brief review of feed-forward neural networks. Communications, Faculty of Science, University of Ankara. doi: 10.1501/0003168.
  • Shahidi, B., A. Sharifi, L. Roozbeh Nasiraie, M. Niakousari, and M. Ahmadi. 2020. Phenolic content and antioxidant activity of flixweed (Descurainia sophia) seeds extracts: Ranking extraction systems based on fuzzy logic method. Sustainable Chemistry and Pharmacy 16:100245. doi: 10.1016/j.scp.2020.100245.
  • Shi, J., and M. Le Maguer. 2002. Osmotic dehydration of foods: Mass transfer and modeling aspects. Food Reviews International 18 (4):305–35. doi: 10.1081/FRI-120016208.
  • Simić, V. M., K. M. Rajković, S. S. Stojičević, D. T. Veličković, N. Nikolić, M. L. Lazić, and I. T. Karabegović. 2016. Optimization of microwave-assisted extraction of total polyphenolic compounds from chokeberries by response surface methodology and artificial neural network. Separation and Purification Technology 160:89–97. doi: 10.1016/j.seppur.2016.01.019.
  • Singh, U. P., S. S. Chouhan, S. Jain, and S. Jain. 2019. Multilayer Convolution Neural Network for the Classification of Mango Leaves Infected by Anthracnose Disease. IEEE Access 7:43721–9. doi: 10.1109/ACCESS.2019.2907383.
  • Sinha, K., S. Chowdhury, P. Das Saha, and S. Datta. 2013. Modeling of microwave-assisted extraction of natural dye from seeds of Bixa orellana (Annatto) using response surface methodology (RSM) and artificial neural network (ANN). Industrial Crops and Products 41 (1):165–71. doi: 10.1016/j.indcrop.2012.04.004.
  • Sinha, K., Das Saha, P., and Datta S. 2012. Response surface optimization and artificial neural network modeling of microwave assisted natural dye extraction from pomegranate rind. Industrial Crops and Products 37 (1):408–14. doi: 10.1016/j.indcrop.2011.12.032.
  • Siripatrawan, U., and P. Jantawat. 2009. Artificial neural network approach to simultaneously predict shelf life of two varieties of packaged rice snacks. International Journal of Food Science & Technology 44 (1):42–9. doi: 10.1111/j.1365-2621.2007.01631.x.
  • Sodeifian, G., S. A. Sajadian, and N. Saadati Ardestani. 2016. Evaluation of the response surface and hybrid artificial neural network-genetic algorithm methodologies to determine extraction yield of Ferulago angulata through supercritical fluid. Journal of the Taiwan Institute of Chemical Engineers 60:165–73. doi: 10.1016/j.jtice.2015.11.003.
  • Stoffel, M., F. Bamer, and B. Markert. 2018. Artificial neural networks and intelligent finite elements in non-linear structural mechanics. Thin-Walled Structures 131:102–6. doi: 10.1016/j.tws.2018.06.035.
  • Sun, Q., M. Zhang, A. S. Mujumdar, and P. Yang. 2019. Combined LF-NMR and Artificial Intelligence for Continuous Real-Time Monitoring of Carrot in Microwave Vacuum Drying. Food and Bioprocess Technology 12 (4):551–62. doi: 10.1007/s11947-018-2231-1.
  • Taghadomi-Saberi, S., M. Omid, Z. Emam-Djomeh, and K. H. Faraji-Mahyari. 2015. Determination of cherry color parameters during ripening by artificial neural network assisted image processing technique. Journal of Agricultural Science and Technology 17 (3):589–600.
  • Tang, S. Y., J. S. Lee, K. T. K. Teo, and H. J. Tham. 2018. Intelligent sensory evaluation of osmotically dehydrated pumpkin. 23rd International Congress of Chemical and Process Engineering. CHISA 2018 and 21st Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction PRES 2018.
  • Tarafdar, A., N. C. Shahi, and A. Singh. 2019. Freeze-drying behaviour prediction of button mushrooms using artificial neural network and comparison with semi-empirical models. Neural Computing and Applications 31 (11):7257–68. doi: 10.1007/s00521-018-3567-1.
  • Tarafdar, A., N. C. Shahi, A. Singh, and R. Sirohi. 2018. Artificial neural network modeling of water activity: A low energy approach to freeze drying. Food and Bioprocess Technology 11 (1):164–71. doi: 10.1007/s11947-017-2002-4.
  • Torrecilla, J. S., L. Otero, and P. D. Sanz. 2004. A neural network approach for thermal/pressure food processing. Journal of Food Engineering 62 (1):89–95. doi: 10.1016/S0260-8774(03)00174-2.
  • Tortoe, C. 2010. A review of osmodehydration for the food industry. African Journal of Food Science 4 (6):303–24.
  • Trafialek, J., W. Laskowski, and W. Kolanowski. 2015. The use of Kohonen’s artificial neural networks for analyzing the results of HACCP system declarative survey. Food Control 51:263–9. doi: 10.1016/j.foodcont.2014.11.032.
  • Vásquez, N., C. Magán, J. Oblitas, T. Chuquizuta, H. Avila-George, and W. Castro. 2018. Comparison between artificial neural network and partial least squares regression models for hardness modeling during the ripening process of Swiss-type cheese using spectral profiles. Journal of Food Engineering 219:8–15. doi: 10.1016/j.jfoodeng.2017.09.008.
  • Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the behavioral sciences. PhD dissertation, Harvard University.
  • Wilby, R. L., T. M. L. Wigley, D. Conway, P. D. Jones, B. C. Hewitson, J. Main, and D. S. Wilks. 1998. Statistical downscaling of general circulation model output: A comparison of methods. Water Resources Research 34 (11):2995–3008. doi: 10.1029/98WR02577.
  • Wu, X., P. Rózycki, and B. M. Wilamowski. 2015. A hybrid constructive algorithm for single-layer feedforward networks learning. IEEE Transactions on Neural Networks and Learning Systems 26 (8):1659–68. doi: 10.1109/TNNLS.2014.2350957.
  • Yazdanshenas, M., S. A. R. Tabatabaee-Nezhad, M. Soltanieh, R. Roostaazad, and A. B. Khoshfetrat. 2010. Contribution of fouling and gel polarization during ultrafiltration of raw apple juice at industrial scale. Desalination 258 (1–3):194–200. doi: 10.1016/j.desal.2010.03.014.
  • Yitian, L., and R. R. Gu. 2003. Modeling flow and sediment transport in a river system using an artificial neural network. Environmental Management 31 (1):122–34. doi: 10.1007/s00267-002-2862-9.
  • Yu, P., M. Y. Low, and W. Zhou. 2018. Development of a partial least squares-artificial neural network (PLS-ANN) hybrid model for the prediction of consumer liking scores of ready-to-drink green tea beverages. Food Research International (Ottawa, Ont.) 103:68–75. doi: 10.1016/j.foodres.2017.10.015.
  • Zhang, X.-J., Y.-F. Lu, and S.-H. Zhang. 2016. Multi-task learning for food identification and analysis with deep convolutional neural networks. Journal of Computer Science and Technology 31 (3):489–500. doi: 10.1007/s11390-016-1642-6.
  • Zheng, Y., M. Huang, Y. Lu, and W. Li. 2018. Fractional stochastic resonance multi-parameter adaptive optimization algorithm based on genetic algorithm. Neural Computing and Applications 32:16807–18.
  • Zheng, Z., X. Guo, K. Zhu, W. Peng, and H. Zhou. 2016. The optimization of the fermentation process of wheat germ for flavonoids and two benzoquinones using EKF-ANN and NSGA-II. RSC Advances 6 (59):53821–9. doi: 10.1039/C5RA27004A.
  • Zhou, Z.-H. 2012. Ensemble methods: Foundations and algorithms. Boca Raton, FL: CRC press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.