437
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Endogenous LC-PUFA biosynthesis capability in commercially important mollusks

&

References

  • Ackman, R. G., S. Epstein, and M. Kelleher. 1974. A comparison of lipids and fatty acids of the ocean quahaug, Arctica islandica, from Nova Scotia and New Brunswick. Journal of the Fisheries Research Board of Canada 31 (11):1803–11. doi: 10.1139/f74-232.
  • Albertin, C. B., O. Simakov, T. Mitros, Z. Y. Wang, J. R. Pungor, E. Edsinger-Gonzales, S. Brenner, C. W. Ragsdale, and D. S. Rokhsar. 2015. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 524 (7564):220–4. doi: 10.1038/nature14668.
  • Bautista-Teruel, M. N., S. S. Koshio, and M. Ishikawa. 2011. Diet development and evaluation for juvenile abalone, Haliotis asinina Linne: Lipid and essential fatty acid levels. Aquaculture 312 (1–4):172–9. doi: 10.1016/j.aquaculture.2011.01.004.
  • Bell, M. V., J. R. Dick, T. R. Anderson, and D. W. Pond. 2007. Application of liposome and stable isotope tracer techniques to study polyunsaturated fatty acid biosynthesis in marine zooplankton. Journal of Plankton Research 29 (5):417–22. doi: 10.1093/plankt/fbm025.
  • Bell, M. V., and D. R. Tocher. 2009. Biosynthesis of fatty acids, general principles and new directions. In Lipids in aquatic ecosystems, 211–36. New York, NY.
  • Blanchet, C., M. Lucas, P. Julien, R. Morin, S. Gingras, and E. Dewailly. 2005. Fatty acid composition of wild and farmed Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Lipids 40 (5):529–31. doi: 10.1007/s11745-005-1414-0.
  • Brenna, J. T., K. S. Kothapalli, and W. J. Park. 2010. Alternative transcripts of fatty acid desaturase (FADS) genes. Prostaglandins, Leukotrienes and Essential Fatty Acids 82:281–5.
  • Caers, M., P. Coutteau, P. Sorgeloos, and G. Gajardo. 2003. Impact of algal diets and emulsions on the fatty acid composition and content of selected tissues of adult broodstock of the Chilean scallop Argopecten purpuratus (Lamarck, 1819). Aquaculture 217 (1–4):437–52. doi: 10.1016/S0044-8486(02)00144-8.
  • Castro, L. F. C., D. R. Tocher, and O. Monroig. 2016. Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. Progress in Lipid Research 62:25–40. doi: 10.1016/j.plipres.2016.01.001.
  • Cook, H. W., and R. C. R. McMaster. 1996. Fatty acid desaturation and chain elongation in eukaryotes. New Comprehensive Biochemistry 31:129–52.
  • Cook, P. A. 2016. Recent trends in worldwide abalone production. Journal of Shellfish Research 35 (3):581–3. doi: 10.2983/035.035.0302.
  • Da Costa, F., S. Nóvoa, J. Ojea, and D. Martínez-Patiño. 2012. Effects of algal diets and starvation on growth, survival and fatty acid composition of Solen marginatus (Bivalvia: Solenidae) larvae. Scientia Marina 76 (3):527–37. doi: 10.3989/scimar.03470.18A.
  • De Moreno, J. E. A., V. J. Moreno, and R. R. Brenner. 1976. Lipid metabolism of the yellow clam, Mesodesma mactroides: 2-polyunsaturated fatty acid metabolism. Lipids 11 (7):561–6. doi: 10.1007/BF02532902.
  • De Roos, B., A. A. Sneddon, M. Sprague, G. W. Horgan, and I. A. Brouwer. 2017. The potential impact of compositional changes in farmed fish on its health-giving properties: Is it time to reconsider current dietary recommendations? Public Health Nutrition 20 (11):2042–9. doi: 10.1017/S1368980017000696.
  • Deutsch, L., S. Graslund, C. Folke, M. Troell, M. Huitric, N. Kautsky, and L. Lebel. 2007. Feeding aquaculture growth through globalization: Exploitation of marine ecosystems for fishmeal. Global Environmental Change 17 (2):238–49. doi: 10.1016/j.gloenvcha.2006.08.004.
  • Dolorosa, R. G., and F. Dangan-Galon. 2014. Poulation dynamics of the mangrove clam Polymesoda erosa (Bivalvia: Corbiculidae) in Iwahig, Palawan, Philippines. International Journal of Fauna and Biological Studies 1 (6):11–5.
  • Durazo-Beltrán, E., L. R. D'Abramo, J. F. Toro-Vazquez, C. Vasquez-Peláez, and M. T. Viana. 2003. Effect of triacylglycerols in formulated diet on growth and fatty acid composition in tissue of green abalone (Haliotis fulgens). Aquaculture 224 (1–4):257–70. doi: 10.1016/S0044-8486(03)00223-0.
  • FAO. 2016. The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. Rome.
  • FAO. 2018. The state of world fisheries and aquaculture 2018 - Meeting the sustainable developing goals. Rome. License: CC BY-NC-SA 3.0 IGO.
  • Fritsche, K. 2006. Fatty acids as modulators of the immune response. Annual Review of Nutrition 26:45−73. doi: 10.1146/annurev.nutr.25.050304.092610.
  • Garrido, D., N. Kabeya, F. Hontoria, J. C. Navarro, D. B. Reis, M. V. Martín, C. Rodríguez, E. Almansa, and Ó. Monroig. 2019. Methyl-end desaturases with Δ12 and ω3 regioselectivities enable the de novo PUFA biosynthesis in the cephalopod Octopus vulgaris. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1864 (8):1134–44. doi: 10.1016/j.bbalip.2019.04.012.
  • Giri, A, and T. Ohshima. 2012. Bioactive marine peptides: nutraceutical value and novel approaches. Advances in Food and Nutrition Research 65:73–105. doi:10.1016/B978-0-12-416003-3.00005-6. PMC: 22361181
  • Hastings, N., M. Agaba, D. R. Tocher, M. J. Leaver, J. R. Dick, J. R. Sargent, and A. J. Teale. 2001. A vertebrate fatty acid desaturase with Delta 5 and Delta 6 activities. Proceedings of the National Academy of Sciences of the United States of America 98 (25):14304–9. doi: 10.1073/pnas.251516598.
  • Joseph, J. D. 1982. Lipid composition of marine and estuarine invertebrates. Part II: Mollusca. Progress in Lipid Research 21 (2):109–53. doi: 10.1016/0163-7827(82)90002-9.
  • Kabeya, N., M. M. Fonseca, D. E. K. Ferrier, J. C. Navarro, L. K. Bay, D. S. Francis, D. R. Tocher, L. F. C. Castro, and O. Monroig. 2018. Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Science Advances 4 (5):eaar6849. doi: 10.1126/sciadv.aar6849.
  • Lee, P. G. 1995. Nutrition of cephalopods: Fueling the system. Marine and Freshwater Behaviour and Physiology 25 (1–3):35–51. doi: 10.1080/10236249409378906.
  • Li, M., K. Mai, G. He, Q. Ai, W. Zhang, W. Xu, J. Wang, Z. Liufu, Y. Zhang, and H. Zhou. 2013. Characterization of Δ5 fatty acyl desaturase in abalone Haliotis discus hannai Ino. Aquaculture 416–417:48–56. doi: 10.1016/j.aquaculture.2013.08.030.
  • Liu, H., Z. Guo, H. Zheng, S. Wang, Y. Wang, W. Liu, and G. Zhang. 2014. Functional characterization of a Δ5-like fatty acyl desaturase and its expression during early embryogenesis in the noble scallop Chlamys nobilis Reeve. Molecular Biology Reports 41 (11):7437–45. doi: 10.1007/s11033-014-3633-4.
  • Liu, H., H. Zhang, H. Zheng, S. Wang, Z. Guo, and G. Zhang. 2014. PUFA biosynthesis pathway in marine scallop Chlamys nobilis Reeve. Journal of Agricultural and Food Chemistry 62 (51):12384–91. doi: 10.1021/jf504648f.
  • Liu, H., H. Zheng, S. Wang, Y. Wang, S. Li, W. Liu, and G. Zhang. 2013. Cloning and functional characterization of a polyunsaturated fatty acid elongase in a marine bivalve noble scallop Chlamys nobilis Reeve. Aquaculture 416–417:146–51. doi: 10.1016/j.aquaculture.2013.09.015.
  • Martins, D. A., L. Custódio, L. Barreira, H. Pereira, R. Ben-Hamadou, J. Varela, and K. Abu-Salah. 2013. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Marine Drugs 11 (7):2259–81. doi: 10.3390/md11072259.
  • Mateos, H. T., P. A. Lewandowski, and X. Q. Su. 2011. Dietary fish oil supplements increase tissue n-3 fatty acid composition and expression of Delta-6 desaturase and elongase-2 in Jade Tiger hybrid abalone. Lipids 46 (8):741–51. doi: 10.1007/s11745-011-3565-x.
  • Mateos, H. T., P. A. Lewandowski, and X. Q. Su. 2012a. Effects of dietary fish oil replacement with flaxseed oil on tissue fatty acid composition and expression of desaturase and elongase genes. Journal of the Science of Food and Agriculture 92 (2):418–26. doi: 10.1002/jsfa.4594.
  • Mateos, H. T., P. A. Lewandowski, and X. Q. Su. 2012b. The effect of replacing dietary fish oil with canola oil on fatty acid composition and expression of desaturase and elongase genes in Jade Tiger hybrid abalone. Food Chemistry 131 (4):1217–22. doi: 10.1016/j.foodchem.2011.09.107.
  • Monroig, O., R. de Llanos, I. Varo, F. Hontoria, D. R. Tocher, S. Puig, and J. C. Navarro. 2017. Biosynthesis of polyunsaturated fatty acids in Octopus vulgaris: Molecular cloning and functional characterisation of a stearoyl-CoA desaturase and an elongation of very long-chain fatty acid 4 protein. Marine Drugs 15 (3):82. doi: 10.3390/md15030082.
  • Monroig, Ó., D. Guinot, F. Hontoria, D. R. Tocher, and J. C. Navarro. 2012. Biosynthesis of essential fatty acids in Octopus vulgaris (Cuvier, 1797): Molecular cloning, functional characterisation and tissue distribution of a fatty acyl elongase. Aquaculture 360–361:45–53.
  • Monroig, O., F. Hontoria, I. Varo, D. R. Tocher, and J. C. Navarro. 2016. Investigating the essential fatty acids in the common cuttlefish Sepia officinalis (Mollusca, Cephalopoda): Molecular cloning and functional characterisation of fatty acyl desaturase and elongase. Aquaculture 450:38–47. doi: 10.1016/j.aquaculture.2015.07.003.
  • Monroig, O., and N. Kabeya. 2018. Desaturases and elongases involved in polyunsaturated fatty acid biosynthesis in aquatic invertebrates: A comprehensive review. Fisheries Science 84 (6):911–28. doi: 10.1007/s12562-018-1254-x.
  • Monroig, Ó., J. C. Navarro, J. R. Dick, F. Alemany, and D. R. Tocher. 2012. Identification of a Δ5-like fatty acyl desaturase from the cephalopod Octopus vulgaris (Cuvier 1797) involved in the biosynthesis of essential fatty acids. Marine Biotechnology (New York, N.Y.) 14 (4):411–22. doi: 10.1007/s10126-011-9423-2.
  • Moylan, S., M. Maes, N. R. Wray, and M. Berk. 2013. The neuroprogressive nature of major depressive disorder: Pathways to disease evolution and resistance, and therapeutic implications. Molecular Psychiatry 18 (5):595–606. doi: 10.1038/mp.2012.33.
  • Navarro, J. C., and R. Villanueva. 2003. The fatty acid composition of Octopus vulgaris paralarvae reared with live and inert food: Deviation from their natural fatty acid profile. Aquaculture 219 (1–4):613–31. doi: 10.1016/S0044-8486(02)00311-3.
  • Naylor, R. L., R. J. Goldburg, J. H. Primavera, N. Kautsky, M. C. Beveridge, J. Clay, C. Folke, J. Lubchenco, H. Mooney, and M. Troell. 2000. Effect of aquaculture on world fish supplies. Nature 405 (6790):1017–24. doi: 10.1038/35016500.
  • Oon, N. F. 1980. Growth and mortality of thee Malaysia cockle (Anadara granosa L.) under commercial culture; analysis through length-frequency data. Madras: Bay of Bengal Programme, Food and Agriculture Organization.
  • Pernet, F., V. M. Bricelj, and C. C. Parrish. 2005. Effect of varying dietary levels of omega 6 polyunsaturated fatty acids during the early ontogeny of the sea scallop, Placopecten magellanicus. Journal of Experimental Marine Biology and Ecology 327 (2):115–33. doi: 10.1016/j.jembe.2005.06.008.
  • Pirini, M., M. P. Manuzzi, A. Pagliarani, F. Trombetti, A. R. Borgatti, and V. Ventrella. 2007. Changes in fatty acid composition of Mytilus galloprovincialis (Lmk) fed on microalgal and wheat germ diets. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 147 (4):616–26. doi: 10.1016/j.cbpb.2007.04.003.
  • Ran, Z., J. Xu, K. Liao, O. Monroig, J. Navarro, A. Oboh, M. Jin, Q. Zhou, C. Zhou, D. R. Tocher, et al. 2019. Biosynthesis of long-chain polyunsaturated fatty acids in the razor clam Sinonovacula constricta: Characterization of four fatty acyl elongases and a novel desaturase capacity. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1864 (8):1083–90. doi: 10.1016/j.bbalip.2019.04.004.
  • Ran, Z., J. Xu, K. Liao, S. Li, S. Chen, and X. Yan. 2018. Biosynthesis of polyunsaturated fatty acids in the razor clam Sinonovacula constricta: Characterization of Δ5 and Δ6 fatty acid desaturases. Journal of Agricultural and Food Chemistry 66 (18):4592–601. doi: 10.1021/acs.jafc.8b00968.
  • Ruano, F., P. Ramos, M. Quaresma, N. M. Bandarra, and I. P. da Fonseca. 2012. Evolution of fatty acid profile and condition index in mollusc bivalves submitted to different depuration periods. Revista Portuguesa de Ciencias Veterinarias 111 (581–582):75–84.
  • Rueda, M., and H. J. Urban. 1998. Population dynamics and fishery of the fresh-water clam Polymesoda solida (Corbiculidae) in Cienaga Poza Verde, Salamance Island, Colombian Caribbean. Fisheries Research 39 (1):75–86. doi: 10.1016/S0165-7836(98)00168-4.
  • Russo, G. L. 2009. Dietary n-6 and n-3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochemical Pharmacology 77 (6):937–46. doi: 10.1016/j.bcp.2008.10.020.
  • Sprague, M., J. R. Dick, and D. R. Tocher. 2016. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Scientific Report 6:21892.
  • Sprecher, H. 2000. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochimica et Biophysica Acta 1486 (2–3):219–31. doi: 10.1016/s1388-1981(00)00077-9.
  • Surm, J. M., P. J. Prentis, and A. Pavasovic. 2015. Comparative analysis and distribution of omega-3 lcPUFA biosynthesis genes in marine molluscs. PLoS One 10 (8):e0136301. doi: 10.1371/journal.pone.0136301.
  • Tan, K. S., H. Ma, S. Li, and H. Zheng. 2020a. Bivalves as future source of sustainable natural omega-3 polyunsaturated fatty acids. Food Chemistry 311:125907 doi: 10.1016/j.foodchem.2019.125907.
  • Tan, K. S., H. Zhang, and H. Zheng. 2020b. Selective breeding of edible bivalves and its implication of global climate change. Reviews in Aquaculture 12 (4):2559–72. doi: 10.1111/raq.12458.
  • Tan, K. S., H. Liu, T. Ye, H. Ma, S. Li, and H. Zheng. 2020c. Growth, survival and lipid composition of Crassostrea gigas, C. angulata and their reciprocal hybrids cultured in southern China. Aquaculture 516:734524. doi: 10.1016/j.aquaculture.2019.734524.
  • Tan, K. S., H. Zhang, L. Lim, and H. Zheng. 2020d. Selection breeding program of Nan'ao Golden Scallop Chlamys nobilis with higher nutritional values and less susceptible to stress. Aquaculture 517:734769. doi: 10.1016/j.aquaculture.2019.734769.
  • Tan, K. S., and J. Ransangan. 2016a. High mortality and poor growth of green mussels, Perna viridis, in high chlorophyll-a environment. Ocean Science Journal 51 (1):43–57.
  • Tan, K. S., and J. Ransangan. 2016b. Feeding behaviour of green mussels, Perna viridis in Marudu Bay, Malaysia. Aquaculture Research 48 (3):1216–31. doi: 10.1111/are.12963.
  • Tan, K. S., and J. Ransangan. 2016c. Feasibility of green mussel, Perna viridis farming in Marudu Bay, Malaysia. Aquaculture Report 4:130–5.
  • Tan, K. S., H. Zhang, H. Liu, D. Cheng, T. Ye, H. Ma, S. Li, and H. Zheng. 2019. Enhancing lipid nutritional quality of oysters by hybridization between Crassostrea gigas and C. angulata. Aquaculture Research 50 (12):3776–82. doi: 10.1111/are.14340.[Misma.tch]
  • Tan, K. S., and H. Zheng. 2020. Ocean acidification and adaptive bivalve farming. Science of the Total Environment 701:134794.
  • Tan, K. S., and H. P. Zheng. 2019. Climate change and bivalve mass mortality in temperate regions. In Reviews of environmental contamination and toxicology, ed. W. P. de Voogt, Vol. 250, 109–29. New York: Springer.
  • Vidal, E. A. G., R. Villanueva, and J. P. Andrade. 2014. Cephalopod culture: Current status of main biological models and research priorities. Advance in Marine Biology 1–98.
  • Viso, A. C., and J. C. Marty. 1993. Fatty acids from 28 marine microalgae. Phytochemistry 34 (6):1521–33. doi: 10.1016/S0031-9422(00)90839-2.
  • Vrinten, P., I. Mavraganis, X. Qiu, and T. Senger. 2013. Biosynthesis of long chain polyunsaturated fatty acids in the marine ichthyosporean Sphaeroforma arctica. Lipids 48 (3):263–74. doi: 10.1007/s11745-012-3738-2.
  • Waldock, M. J., and D. L. Holland. 1984. Fatty acid metabolism in young oysters, Crassostrea gigas: Polyunsaturated fatty acids. Lipids 19 (5):332–6. doi: 10.1007/BF02534783.
  • Williams, C. M., and G. Burdge. 2006. Long-chain n − 3 PUFA: Plant v. marine sources. Proceedings of the Nutrition Society 65 (1):42–50. − doi: 10.1079/PNS2005473.
  • Xu, W., K. S. Mai, W. B. Zhang, Z. G. Liufu, B. P. Tan, H. M. Ma, and Q. H. Ai. 2004. Influence of dietary lipid sources on growth and fatty acid composition of juvenile abalone, Haliotis discus hannai Ino. Journal of Shellfish Research 127:29–40.
  • Zhang, H., H. Liu, D. Cheng, H. Liu, and H. Zheng. 2018. Molecular cloning and functional characterisation of a polyunsaturated fatty acid elongase in a marine bivalve Crassostrea angulata. Journal of Food and Nutrition Research 6 (2):89–95. doi: 10.12691/jfnr-6-2-4.
  • Zhang, G., X. Fang, X. Guo, L. Li, R. Luo, F. Xu, P. Yang, L. Zhang, X. Wang, H. Qi, et al. 2012. The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490 (7418):49–54. doi: 10.1038/nature11413.
  • Zhukova, N. V., and V. I. Svetashev. 1986. Biosynthesis of non-methylene-interrupted dienoic fatty acids for [C-14] acetate in mollusks. Biochimica et Biophysica Acta (Bba) - Lipids and Lipid Metabolism 878 (1):131–3. doi: 10.1016/0005-2760(86)90351-6.
  • Zhukova, N. V. 1991. The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids in mollusks. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 100 (4):801–4. doi: 10.1016/0305-0491(91)90293-M.
  • Zhukova, N. V., A. B. Imbs, and L. F. Yi. 1998. Diet-induced changes in lipid and fatty acid composition of Artemia salina. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 120 (3):499–506. doi: 10.1016/S0305-0491(98)10036-6.
  • Zhukova, N. V., and V. I. Svetashev. 1986. Non-methylene-interrupted dienoic fatty acids in molluscs from the Sea of Japan. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 83 (3):643–6. doi: 10.1016/0305-0491(86)90311-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.