1,479
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production

ORCID Icon, , , , , , , , , & ORCID Icon show all

References

  • Agrawal, H., R. Joshi, and M. Gupta. 2016. Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chemistry 204:365–72. doi: 10.1016/j.foodchem.2016.02.127.
  • Agrawal, H., R. Joshi, and M. Gupta. 2017. Isolation and and characterisation of enzymatic hydrolysed peptides with antioxidant activities from green tender sorghum. LWT 84:608–16. doi: 10.1016/j.lwt.2017.06.036.
  • Agrawal, H., R. Joshi, and M. Gupta. 2019. Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusine coracana) protein hydrolysate. Food Research International 120:697–707. doi: 10.1016/j.foodres.2018.11.028.
  • Agyei, D., and M. K. Danquah. 2011. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances 29 (3):272–7. doi: 10.1016/j.biotechadv.2011.01.001.
  • Aluko, R. E. 2015. Antihypertensice peptides from proteins. In Annual review of food science and technology, ed. M. P. Doyle and T. R. Klaenhammer, Vol. 6, 235–62. Palo Alto: Annual Reviews.
  • Alves, T. O., C. T. S. D’Almeida, K. A. Scherf, and M. S. L. Ferreira. 2019. Modern approaches in the identification and quantification of immunogenic peptides in cereals by LC-MS/MS. Frontiers in Plant Science 10:1470. doi: 10.3389/fpls.2019.01470.
  • Amagliani, L., J. O'Regan, A. L. Kelly, and J. A. O’Mahony. 2017. The composition, extraction, functionality and applications of rice proteins: A review. Trends in Food Science & Technology 64:1–12. doi: 10.1016/j.tifs.2017.01.008.
  • Ausbacher, D., G. Svineng, T. Hansen, and M. B. Strom. 2012. Anticancer mechanisms of action of two small amphipathic beta(2,2)-amino acid derivatives derived from antimicrobial peptides. Biochimica Et Biophysica Acta (Bba) - Biomembranes 1818 (11):2917–25. doi: 10.1016/j.bbamem.2012.07.005.
  • Balatti, G. E., E. E. Ambroggio, G. D. Fidelio, M. F. Martini, and M. Pickholz. 2017. Differential Interaction of Antimicrobial Peptides with Lipid Structures Studied by Coarse-Grained Molecular Dynamics Simulations. Molecules 22 (10):1775. doi: 10.3390/molecules22101775.
  • Boyle, P., and B. Levin. 2008. World cancer report. Lyon, France: IARC Press.
  • Cavazos, A., and E. G. de Mejia. 2013. Identification of Bioactive Peptides from Cereal Storage Proteins and Their Potential Role in Prevention of Chronic Diseases. Comprehensive Reviews in Food Science and Food Safety 12 (4):364–80. doi: 10.1111/1541-4337.12017.
  • Cebolla, A., M. D. Moreno, L. Coto, and C. Sousa. 2018. Gluten Immunogenic Peptides as Standard for the Evaluation of Potential Harmful Prolamin Content in Food and Human Specimen. Nutrients 10 (12)16.1927. doi: 10.3390/nu1012:.
  • Cermeno, M., A. Connolly, M. B. O’Keeffe, C. Flynn, A. M. Alashi, R. E. Aluko, and R. J. FitzGerald. 2019. Identification of bioactive peptides from brewers' spent grain and contribution of Leu/Ile to bioactive potency. Journal of Functional Foods 60:103455. doi: 10.1016/j.jff.2019.103455.
  • Chalamaiah, M., S. K. Ulug, H. Hong, and J. P. Wu. 2019. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. Journal of Functional Foods 58:123–9. doi: 10.1016/j.jff.2019.04.050.
  • Charlier, C., and C. Michaux. 2003. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. European Journal of Medicinal Chemistry 38 (7-8):645–59. doi: 10.1016/S0223-5234(03)00115-6.
  • Chen, L., A. Ejima, R. Z. Gu, J. Lu, M. Y. Cai, and K. Sato. 2019. Presence of Exopeptidase-Resistant and Susceptible Peptides in a Bacterial Protease Digest of Corn Gluten. Journal of Agricultural and Food Chemistry 67 (43):11948–54. doi: 10.1021/acs.jafc.9b04444.
  • Chen, M. L., P. Ning, Y. Jiao, Z. Xu, and Y. H. Cheng. 2021. Extraction of antioxidant peptides from rice dreg protein hydrolysate via an angling method. Food Chemistry 337:128069. doi: 10.1016/j.foodchem.2020.128069.
  • Cian, R. E., A. G. Garzon, O. Martinez-Augustin, C. C. Botto, and S. R. Drago. 2018. Antithrombotic Activity of Brewers' Spent Grain Peptides and their Effects on Blood Coagulation Pathways. Plant Foods for Human Nutrition 73 (3):241–6. doi: 10.1007/s11130-018-0682-1.
  • Cian, R. E., J. Vioque, and S. R. Drago. 2015. Structure-mechanism relationship of antioxidant and ACE I inhibitory peptides from wheat gluten hydrolysate fractionated by pH. Food Research International 69:216–23. doi: 10.1016/j.foodres.2014.12.036.
  • Cicero, A. F. G., F. Fogacci, and A. Colletti. 2017. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. British Journal of Pharmacology 174 (11):1378–94. doi: 10.1111/bph.13608.
  • Connolly, A., M. Cermeno, D. Crowley, Y. O’Callaghan, N. M. O’Brien, and R. J. FitzGerald. 2019. Characterisation of the in vitro bioactive properties of alkaline and enzyme extracted brewers' spent grain protein hydrolysates. Food Research International 121:524–32. doi: 10.1016/j.foodres.2018.12.008.
  • Connolly, A., M. B. O’Keeffe, A. B. Nongonierma, C. O. Piggott, and R. J. FitzGerald. 2017. Isolation of peptides from a novel brewers spent grain protein isolate with potential to modulate glycaemic response. International Journal of Food Science & Technology 52 (1):146–53. doi: 10.1111/ijfs.13260.
  • Connolly, A., M. B. O’Keeffe, C. O. Piggott, A. B. Nongonierma, and R. J. FitzGerald. 2015. Generation and identification of angiotensin converting enzyme (ACE) inhibitory peptides from a brewers' spent grain protein isolate. Food Chemistry 176:64–71. doi: 10.1016/j.foodchem.2014.12.027.
  • Connolly, A., C. O. Piggott, and R. J. FitzGerald. 2014. In vitro alpha-glucosidase, angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory properties of brewers' spent grain protein hydrolysates. Food Research International 56:100–7. doi: 10.1016/j.foodres.2013.12.021.
  • Crowley, D., Y. O’Callaghan, A. McCarthy, A. Connolly, C. O. Piggott, R. J. FitzGerald, and N. M. O’Brien. 2015. Immunomodulatory potential of a brewers' spent grain protein hydrolysate incorporated into low-fat milk following in vitro gastrointestinal digestion. International Journal of Food Sciences and Nutrition 66 (6):672–6. doi: 10.3109/09637486.2015.1077788.
  • Cui, X. D., J. J. Du, J. Li, and Z. H. Wang. 2018. Inhibitory site of α-hairpinin peptide from tartary buckwheat has no effect on its antimicrobial activities . Acta Biochimica et Biophysica Sinica 50 (4):408–16. doi: 10.1093/abbs/gmy015.
  • Diaz-Gomez, J. L., F. Castorena-Torres, R. E. Preciado-Ortiz, and S. Garcia-Lara. 2017. Anti-cancer activity of maize bioactive peptides. Frontiers in Chemistry 5:44. doi: 10.3389/fchem.2017.00044.
  • Fang, Y., X. Pan, E. M. Zhao, Y. Shi, X. C. Shen, J. Wu, F. Pei, Q. H. Hu, and W. F. Qiu. 2019. Isolation and identification of immunomodulatory selenium-containing peptides from selenium-enriched rice protein hydrolysates. Food Chemistry 275:696–702. doi: 10.1016/j.foodchem.2018.09.115.
  • Fernandez-Tome, S., F. Xu, Y. H. Han, B. Hernandez-Ledesma, and H. Xiao. 2020. Inhibitory effects of peptide lunasin in colorectal cancer HCT-116 cells and their tumorsphere-derived subpopulation. International Journal of Molecular Sciences 21 (2):537. doi: 10.3390/ijms21020537.
  • Galali, Y., Z. A. Omar, and S. M. Sajadi. 2020. Biologically active components in by-products of food processing. Food Science & Nutrition 8 (7):3004–22. doi: 10.1002/fsn3.1665.
  • Harris, S., S. Powers, A. Monteagudo-Mera, O. Kosik, A. Lovegrove, P. Shewry, and D. Charalampopoulos. 2020. Determination of the prebiotic activity of wheat arabinogalactan peptide (AGP) using batch culture fermentation. European Journal of Nutrition 59 (1):297–307. doi: 10.1007/s00394-019-01908-7.
  • Hayes, M. 2018. Food proteins and bioactive peptides: New and novel sources, characterisation strategies and applications. Foods 7 (3):38. doi: 10.3390/foods7030038.
  • Heinio, R. L., E. Nordlund, K. Poutanen, and J. Buchert. 2012. Use of enzymes to elucidate the factors contributing to bitterness in rye flavour. Food Research International 45 (1):31–8. doi: 10.1016/j.foodres.2011.10.006.
  • Hoskin, D. W., and A. Ramamoorthy. 2008. Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta 1778 (2):357–75. doi: 10.1016/j.bbamem.2007.11.008.
  • Hsieh, C. C., C. H. Wang, and Y. S. Huang. 2016. Lunasin attenuates obesity-associated metastasis of 4T1 breast cancer cell through anti-inflammatory property. International Journal of Molecular Sciences 17 (12):2109. doi: 10.3390/ijms17122109.
  • Iwaniak, A., M. Darewicz, D. Mogut, and P. Minkiewicz. 2019. Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods. Journal of Functional Foods 61:103486. doi: 10.1016/j.jff.2019.103486.
  • Jakubczyk, A., U. Szymanowska, M. Karaś, U. Złotek, and D. Kowalczyk. 2019. Potential anti-inflammatory and lipase inhibitory peptides generated by in vitro gastrointestinal hydrolysis of heat treated millet grains. CYTA - Journal of Food 17 (1):324–33. doi: 10.1080/19476337.2019.1580317.
  • Jia, J. Q., N. Miao, J. J. Du, and Q. Y. Wu. 2019. Angiotensin-I converting enzyme inhibitory peptides from sweet sorghum grain protein: Optimisation of hydrolysis conditions and hydrolysate characterization. Journal of the Chemical Society of Pakistan 41 (1):175–85.
  • Jiang, Q. Q., Y. Pan, Y. P. Cheng, H. L. Li, D. D. Liu, and H. Li. 2016. Lunasin suppresses the migration and invasion of breast cancer cells by inhibiting matrix metalloproteinase-2/-9 via the FAK/Akt/ERK and NF-κB signaling pathways. Oncology Reports 36 (1):253–62. doi: 10.3892/or.2016.4798.
  • Jie, Y., J. L. Hu, H. F. Zhao, and B. L. Zhang. 2019. [A novel bioinformatics-based way to manufacture anti-lipid oxidation peptide from Caraganaseeds’ protein]. Food Science, 20:1–14. doi: 10.7506/spkx1002-6630-20190822-224.(in Chinese).
  • Jin, D. X., X. L. Liu, X. Q. Zheng, X. J. Wang, and J. F. He. 2016. Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides. Food Chemistry 204:427–36. doi: 10.1016/j.foodchem.2016.02.119.
  • Karami, Z., and B. Akbari-Adergani. 2019. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Science and Technology 56 (2):535–47. doi: 10.1007/s13197-018-3549-4.
  • Karaś, M., A. Jakubczyk, U. Szymanowska, K. Jęderka, S. Lewicki, and U. Złotek. 2019. Different temperature treatments of millet grains affect the biological activity of protein hydrolyzates and peptide fractions. Nutrients 11 (3):550. doi: 10.3390/nu11030550.
  • Kawakami, K., C. Moritani, M. Uraji, A. Fujita, K. Kawakami, T. Hatanaka, E. Suzaki, and S. Tsuboi. 2017. Hepatoprotective effects of rice-derived peptides against acetaminophen-induced damage in mice. Journal of Clinical Biochemistry and Nutrition 60 (2):115–20. doi: 10.3164/jcbn.16-44.
  • Li, G. H., and X. H. Yan. 2010. Bioactive peptides derived from food proteins-basics and applications. Beijing, China: Chemical Industry Press Co., Ltd.
  • Li, Y., and J. M. Yu. 2015. Research progress in structure-activity relationship of bioactive peptides. Journal of Medicinal Food 18 (2):147–56. doi: 10.1089/jmf.2014.0028.
  • Li-Chan, E. C. Y. 2015. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science 1:28–37. doi: 10.1016/j.cofs.2014.09.005.
  • Liang, Q. F., X. F. Ren, H. L. Ma, S. Y. Li, K. K. Xu, and A. O. Oladejo. 2017. Effect of low-frequency ultrasonic-assisted enzymolysis on the physicochemical and antioxidant properties of corn protein hydrolysates. Journal of Food Quality 2017:1–10. doi: 10.1155/2017/2784146.
  • Lin, F., L. A. Chen, R. Liang, Z. F. Zhang, J. B. Wang, M. Y. Cai, and Y. Li. 2011. Pilot-scale production of low molecular weight peptides from corn wet milling byproducts and the antihypertensive effects in vivo and in vitro. Food Chemistry 124 (3):801–7. doi: 10.1016/j.foodchem.2010.06.099.
  • Liu, L., S. S. Li, J. X. Zheng, T. T. Bu, G. Q. He, and J. P. Wu. 2020. Safety considerations on food protein-derived bioactive peptides. Trends in Food Science & Technology 96:199–207. doi: 10.1016/j.tifs.2019.12.022.
  • Liu, Y. Q., P. Strappe, W. T. Shang, and Z. K. Zhou. 2019. Functional peptides derived from rice bran proteins. Critical Reviews in Food Science and Nutrition 59 (2):349–56. doi: 10.1080/10408398.2017.1374923.
  • Luo, D. Y., H. Zhang, H. Hong, and S. Zhuang. 2019. Bioactive peptides function and preparation. Beijing, China: China Light Industry Press Ltd.
  • Luo, X. Y., Y. Fei, Q. Z. Xu, T. W. Lei, X. C. Mo, Z. T. Wang, L. L. Zhang, X. Mou, and H. M. Li. 2020. Isolation and identification of antioxidant peptides from tartary buckwheat albumin (Fagopyrum tataricum Gaertn.) and their antioxidant activities. Journal of Food Science 85 (3):611–7. doi: 10.1111/1750-3841.15004.
  • Ma, Y. Y., and Y. L. L. Xiong. 2009. Antioxidant and bile acid binding activity of buckwheat protein in vitro digests. Journal of Agricultural and Food Chemistry 57 (10):4372–80. doi: 10.1021/jf803670u.
  • Ma, Y. Y., Y. L. L. Xiong, J. J. Zhai, H. N. Zhu, and T. Dziubla. 2010. Fractionation and evaluation of radical scavenging peptides from in vitro digests of buckwheat protein. Food Chemistry 118 (3):582–8. doi: 10.1016/j.foodchem.2009.05.024.
  • Ma, Z. L., T. Hou, W. Shi, W. W. Liu, and H. He. 2015. Inhibition of hepatocyte apoptosis: An important mechanism of corn peptides attenuating liver injury induced by ethanol. International Journal of Molecular Sciences 16 (9):22062–80. doi: 10.3390/ijms160922062.
  • Ma, Z. L., T. Hou, W. Shi, W. W. Liu, S. A. Ibrahim, and H. He. 2016. Purification and identification of corn peptides that facilitate alcohol metabolism by semi-preparative high-performance liquid chromatography and nano liquid chromatography with electrospray ionization tandem mass spectrometry. Journal of Separation Science 39 (21):4234–42. doi: 10.1002/jssc.201600554.
  • Ma, Z. L., W. J. Zhang, G. C. Yu, H. He, and Y. Zhang. 2012. The primary structure identification of a corn peptide facilitating alcohol metabolism by HPLC-MS/MS. Peptides 37 (1):138–43. doi: 10.1016/j.peptides.2012.07.004.
  • Majid, A., and C. G. P. Priyadarshini. 2019. Millet derived bioactive peptides: A review on their functional properties and health benefits. Critical Reviews in Food Science and Nutrition, 60:1–10. doi: 10.1080/10408398.2019.1686342.
  • Malaguti, M., G. Dinelli, E. Leoncini, V. Bregola, S. Bosi, A. F. G. Cicero, and S. Hrelia. 2014. Bioactive peptides in cereals and legumes: Agronomical, biochemical and clinical aspects. International Journal of Molecular Sciences 15 (11):21120–35. doi: 10.3390/ijms151121120.
  • Malalgoda, M., and S. Simsek. 2017. Celiac disease and cereal proteins. Food Hydrocolloids. 68:108–13. doi: 10.1016/j.foodhyd.2016.09.024.
  • Marson, G. V., M. T. D. Machado, R. J. S. de Castro, and M. D. Hubinger. 2019. Sequential hydrolysis of spent brewer's yeast improved its physico-chemical characteristics and antioxidant properties: A strategy to transform waste into added-value biomolecules. Process Biochemistry 84:91–102. doi: 10.1016/j.procbio.2019.06.018.
  • Martin, M., and A. Deussen. 2019. Effects of natural peptides from food proteins on angiotensin converting enzyme activity and hypertension. Critical Reviews in Food Science and Nutrition 59 (8):1264–83. doi: 10.1080/10408398.2017.1402750.
  • Nelson, D. L., and M. M. Cox. 2013. Lehninger principles of biochemistry. 6th ed. New York: W.H.Freeman and Company.
  • Nongonierma, A. B., M. Hennemann, S. Paolella, and R. J. FitzGerald. 2017. Generation of wheat gluten hydrolysates with dipeptidyl peptidase IV (DPP-IV) inhibitory properties. Food & Function 8 (6):2249–57. doi: 10.1039/c7fo00165g.
  • Orona-Tamayo, D., M. E. Valverde, and O. Paredes-Lopez. 2019. Bioactive peptides from selected Latin American food crops—A nutraceutical and molecular approach. Critical Reviews in Food Science and Nutrition 59 (12):1949–75. doi: 10.1080/10408398.2018.1434480.
  • Ortiz-Martinez, M., E. G. de Mejia, S. Garcia-Lara, O. Aguilar, L. M. Lopez-Castillo, and J. T. Otero-Pappatheodorou. 2017. Antiproliferative effect of peptide fractions isolated from a quality protein maize, a white hybrid maize, and their derived peptides on hepatocarcinoma human HepG2 cells. Journal of Functional Foods 34:36–48. doi: 10.1016/j.jff.2017.04.015.
  • Phillips, R. L., E. A. Palombo, J. F. Panozzo, and M. Bhave. 2011. Puroindolines, Pin alleles, hordoindolines and grain softness proteins are sources of bactericidal and fungicidal peptides. Journal of Cereal Science 53 (1):112–7. doi: 10.1016/j.jcs.2010.10.005.
  • Phongthai, S., and S. Rawdkuen. 2020. Fractionation and characterization of antioxidant peptides from rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Cereal Chemistry 97 (2):316–25. doi: 10.1002/cche.10247.
  • Ren, G. X., Y. Q. Hao, Y. Y. Zhu, Z. X. Shi, and G. Zhao. 2018. Expression of bioactive lunasin peptide in transgenic rice grains for the application in functional food. Molecules 23 (9):2373. doi: 10.3390/molecules23092373.
  • Ruan, J. J., H. Chen, J. R. Shao, Q. Wu, and X. Y. Han. 2011. An antifungal peptide from Fagopyrum tataricum seeds. Peptides 32 (6):1151–8. doi: 10.1016/j.peptides.2011.03.015.
  • Saleh, A. S. M., Q. Zhang, and Q. Shen. 2016. Recent research in antihypertensive activity of food protein-derived hydrolyzates and peptides. Critical Reviews in Food Science and Nutrition 56 (5):760–87. doi: 10.1080/10408398.2012.724478.
  • Sarabandi, K., P. Gharehbeglou, and S. M. Jafari. 2020. Spray-drying encapsulation of protein hydrolysates and bioactive peptides: Opportunities and challenges. Drying Technology 38 (5-6):577–95. doi: 10.1080/07373937.2019.1689399.
  • Selamassakul, O., N. Laohakunjit, O. Kerdchoechuen, L. P. Yang, and C. S. Maier. 2020. Bioactive peptides from brown rice protein hydrolyzed by bromelain: Relationship between biofunctional activities and flavor characteristics. Journal of Food Science 85 (3):707–17. doi: 10.1111/1750-3841.15052.
  • Shobako, N., A. Ishikado, Y. Ogawa, Y. Sono, T. Kusakari, M. Suwa, M. Matsumoto, R. Kanamoto, and K. Ohinata. 2018. A novel endothelial NO-dependent vasorelaxing and anti-hypertensive peptide derived from rice bran (0263-6352). Retrieved from ≤Go to ISI≥://WOS:000455594800152
  • Sun, S., H. Zhang, K. Shan, T. J. Sun, M. Y. Lin, L. L. Jia, and Y. Q. Chen. 2019. Effect of different cereal peptides on the development of type 1 diabetes is associated with their anti-inflammatory ability: In vitro and in vivo studies. Molecular Nutrition & Food Research 63 (11):1800987. doi: 10.1002/mnfr.201800987.
  • Sun, S. L., G. W. Zhang, H. Y. Mu, H. Zhang, and Y. Q. Chen. 2019. The mixture of corn and wheat peptide prevent diabetes in NOD mice. Journal of Functional Foods 56:163–70. doi: 10.1016/j.jff.2019.03.020.
  • Suwannapan, O., K. Wachirattanapongmetee, S. Thawornchinsombut, and S. Katekaew. 2020. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from Thai jasmine rice bran protein hydrolysates. International Journal of Food Science and Technology, 55:10. doi: 10.1111/ijfs.14495.
  • Swanston, J. S., P. L. Smith, W. T. B. Thomas, R. Sylvester-Bradley, D. Kindred, J. M. Brosnan, T. A. Bringhurst, and R. C. Agu. 2014. Stability, across environments, of grain and alcohol yield, in soft wheat varieties grown for grain distilling or bioethanol production. Journal of the Science of Food and Agriculture 94 (15):3234–40. doi: 10.1002/jsfa.6675.
  • Tang, C. H., J. Peng, D. W. Zhen, and Z. Chen. 2009. Physicochemical and antioxidant properties of buckwheat (Fagopyrum esculentum Moench) protein hydrolysates. Food Chemistry 115 (2):672–8. doi: 10.1016/j.foodchem.2008.12.068.
  • Tong, L. T., Z. Y. Ju, L. L. Wang, J. Qiu, L. Y. Liu, X. R. Zhou, T. T. Liang, D. H. Geng, and S. M. Zhou. 2019. Peptides derived from rice alpha-globulin reduce atherosclerosis in apolipoprotein E-deficient mice by inhibiting TNF-alpha-induced vascular endothelial cells injury. Journal of Functional Foods 63:103582. doi: 10.1016/j.jff.2019.103582.
  • Tu, M. L., S. Z. Cheng, W. H. Lu, and M. Du. 2018. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. Trac Trends in Analytical Chemistry 105:7–17. doi: 10.1016/j.trac.2018.04.005.
  • Uraipong, C., and J. Zhao. 2016. Rice bran protein hydrolysates exhibit strong in vitro -amylase, -glucosidase and ACE-inhibition activities. Journal of the Science of Food and Agriculture 96 (4):1101–10. doi: 10.1002/jsfa.7182.
  • Wang, F., G. Y. Yu, Y. Y. Zhang, B. L. Zhang, and J. F. Fan. 2015. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena sativa L.), Buckwheat (Fagopyrum esculentum), and Highland Barley (Hordeum vulgare trifurcatum (L.) Trofim) Proteins. Journal of Agricultural and Food Chemistry 63 (43):9543–9. doi: 10.1021/acs.jafc.5b04016.
  • Wang, R. C., H. X. Zhao, X. X. Pan, C. Orfila, W. H. Lu, and Y. Ma. 2019. Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α-glucosidase inhibitory peptides from soy protein . Food Science & Nutrition 7 (5):1848–56. doi: 10.1002/fsn3.1038.
  • Wang, W., X. S. Zhuang, Z. H. Yuan, Q. Yu, W. Qi, Q. Wang, and X. S. Tan. 2012. High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresource Technology 108:252–7. doi: 10.1016/j.biortech.2011.12.092.
  • Wang, X. J., X. Q. Zheng, N. K. Kopparapu, W. S. Cong, Y. P. Deng, X. J. Sun, and X. L. Liu. 2014. Purification and evaluation of a novel antioxidant peptide from corn protein hydrolysate. Process Biochemistry 49 (9):1562–9. doi: 10.1016/j.procbio.2014.05.014.
  • Wang, X. M., H. X. Chen, X. G. Fu, S. Q. Li, and J. Wei. 2017. A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study. Lwt 75:93–9. doi: 10.1016/j.lwt.2016.08.047.
  • Wang, Y. W., H. X. Chen, X. M. Wang, S. Q. Li, Z. Q. Chen, J. Y. Wang, and W. Liu. 2015. Isolation and identification of a novel peptide from zein with antioxidant and antihypertensive activities. Food & Function 6 (12):3799–806. doi: 10.1039/c5fo00815h.
  • Wattanasiritham, L., C. Theerakulkait, S. Wickramasekara, C. S. Maier, and J. F. Stevens. 2016. Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein. Food Chemistry 192:156–62. doi: 10.1016/j.foodchem.2015.06.057.
  • Wu, Q. Y., J. J. Du, J. Q. Jia, and C. Kuang. 2016. Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: Hydrolysis kinetic, purification and molecular docking study. Food Chemistry 199:140–9. doi: 10.1016/j.foodchem.2015.12.012.
  • Xing, R. R., Y. Y. Ma, Y. J. Wang, Y. R. Wen, and Z. Liu. 2019. Specific recognition of proteins and peptides via controllable oriented surface imprinting of boronate affinity-anchored epitopes. Chemical Science 10 (6):1831–5. doi: 10.1039/c8sc04169e.
  • Xu, S. W., Y. T. Shen, G. J. Chen, S. Bean, and Y. H. Li. 2019. Antioxidant characteristics and identification of peptides from sorghum kafirin hydrolysates. Journal of Food Science 84 (8):2065–76. doi: 10.1111/1750-3841.14704.
  • Xu, S. W., Y. T. Shen, and Y. H. Li. 2019. Antioxidant activities of sorghum kafirin alcalase hydrolysates and membrane/gel filtrated fractions. Antioxidants 8 (5):131. doi: 10.3390/antiox8050131.
  • Yang, W. Z., Y. Z. Shen, R. Abeynayakea, T. Ran, and L. Y. Chen. 2019. Screening of peptides for their impact of protease, protease dose and peptide dose on in vitro rumen dry matter digestibility. Journal of Animal Science 97 (Supplement_3):398–9. doi: 10.1093/jas/skz258.794.
  • Yong, L., and C. Muyi. 2007. Peptide nutrition. Beijing China: Peking University Medical Press.
  • Yin, H., H. Z. Cai, S. K. Wang, L. G. Yang, and G. J. Sun. 2015. Wheat peptides reduce oxidative stress and inhibit NO production through modulating mu-opioid receptor in a rat NSAID-induced stomach damage model. Chinese Journal of Natural Medicines 13 (1):22–9. https://www.sciencedirect.com/science/article/pii/S1875536415600036?via%3Dihub. doi: 10.1016/S1875-5364(15)60003-6.
  • Yu, G. Y., F. Wang, B. L. Zhang, and J. F. Fan. 2016. In vitro inhibition of platelet aggregation by peptides derived from oat (Avena sativa L.), highland barley (Hordeum vulgare Linn. var. nudum Hook. f.), and buckwheat (Fagopyrum esculentum Moench) proteins. Food Chemistry 194:577–86. doi: 10.1016/j.foodchem.2015.08.058.
  • Zhang, L. M., Y. S. Jiang, Z. T. Yin, J. Y. Sun, H. H. Li, X. T. Sun, M. Q. Huang, and F. P. Zheng. 2018. Isolation and evaluation of two angiotensin-I- converting enzyme inhibitory peptides from fermented grains (Jiupei) used in Chinese Baijiu production. RSC Advances 8 (65):37451–61. doi: 10.1039/C8RA07251E.
  • Zhang, P., C. Chang, H. J. Liu, B. Li, Q. J. Yan, and Z. Q. Jiang. 2020. Identification of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten hydrolysate by the protease of Pseudomonas aeruginosa. Journal of Functional Foods 65:103751. doi: 10.1016/j.jff.2019.103751.
  • Zhang, S. T., M. D. Zhang, R. W. Yang, S. M. Zhang, and S. Y. Lin. 2019. Preparation, identification, and activity evaluation of antioxidant peptides from protein hydrolysate of corn germ meal. Journal of Food Processing and Preservation 43 (10):11. doi: 10.1111/jfpp.14160.
  • Zhou, C. S., H. L. Ma, Q. Z. Ding, L. Lin, X. J. Yu, L. Luo, C. H. Dai, and A. E. A. Yagoub. 2013. Ultrasonic pretreatment of corn gluten meal proteins and neutrase: Effect on protein conformation and preparation of ACE (angiotensin converting enzyme) inhibitory peptides. Food and Bioproducts Processing 91 (4):665–71. doi: 10.1016/j.fbp.2013.06.003.
  • Zhou, X. L., L. Wen, Z. J. Li, Y. M. Zhou, Y. J. Chen, and Y. Lu. 2015. Advance on the benefits of bioactive peptides from buckwheat. Phytochemistry Reviews 14 (3):381–8. doi: 10.1007/s11101-014-9390-0.
  • Zhuang, H., N. Tang, S. T. Dong, B. Sun, and J. B. Liu. 2013. Optimisation of antioxidant peptide preparation from corn gluten meal. Journal of the Science of Food and Agriculture 93 (13):3264–70. doi: 10.1002/jsfa.6170.
  • Zhuang, H., N. Tang, and Y. Yuan. 2013. Purification and identification of antioxidant peptides from corn gluten meal. Journal of Functional Foods 5 (4):1810–21. doi: 10.1016/j.jff.2013.08.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.