1,397
Views
21
CrossRef citations to date
0
Altmetric
Review

Impact of high-pressure treatment on casein micelles, whey proteins, fat globules and enzymes activity in dairy products: a review

, ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Alirezalu, K., M. Pateiro, M. Yaghoubi, A. Alirezalu, S. H. Peighambardoust, and J. M. Lorenzo. 2020. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends in Food Science & Technology 100:292–306. doi: 10.1016/j.tifs.2020.04.010.
  • Alonso, R., A. Picon, P. Gaya, E. Fernández-García, and M. Nuñez. 2012. Effect of high-pressure treatment of ewe raw milk curd at 200 and 300 MPa on characteristics of Hispánico cheese. Journal of Dairy Science 95 (7):3501–13. doi: 10.3168/jds.2011-4979.
  • Ávila, M., N. Gómez-Torres, D. Delgado, P. Gaya, and S. Garde. 2017. Effect of high-pressure treatments on proteolysis, volatile compounds, texture, colour, and sensory characteristics of semi-hard raw ewe milk cheese. Food Research International 100:595–602. doi: 10.1016/j.foodres.2017.07.043.
  • Baier, D., C. Schmitt, and D. Knorr. 2015. Changes in functionality of whey protein and micellar casein after high pressure - Low temperature treatments. Food Hydrocolloids 44:416–23. doi: 10.1016/j.foodhyd.2014.10.010.
  • Batty, D., L. Meunier-Goddik, and J. G. Waite-Cusic. 2019. Camembert-type cheese quality and safety implications in relation to the timing of high-pressure processing during aging. Journal of Dairy Science 102 (10):8721–33. doi: 10.3168/jds.2018-16236.
  • Beigmohammadi, F., S. H. Peighambardoust, J. Hesari, S. Azadmard-Damirchi, S. J. Peighambardoust, and N. K. Khosrowshahi. 2016. Antibacterial properties of LDPE nanocomposite films in packaging of UF cheese. LWT - Food Science and Technology 65:106–11. doi: 10.1016/j.lwt.2015.07.059.
  • Black, E. P., P. Setlow, A. D. Hocking, C. M. Stewart, A. L. Kelly, and D. G. Hoover. 2007. Response of spores to high-pressure processing. Comprehensive Reviews in Food Science and Food Safety 6 (4):103–19. doi: 10.1111/j.1541-4337.2007.00021.x.
  • Bravo, F. I., X. Felipe, R. López-Fandiño, and E. Molina. 2015. Skim milk protein distribution as a result of very high hydrostatic pressure. Food Research International 72:74–9. doi: 10.1016/j.foodres.2015.03.014.
  • Butz, P., E. C. Needs, A. Baron, O. Bayer, B. Geisel, B. Gupta, U. Oltersdorf, and B. Tauscher. 2003. Consumer attitudes to high pressure food processing. Food, Agriculture and Environment 1:30–4. doi: 10.1037/h0045409.
  • Calzada, J., A. del Olmo, A. Picon, P. Gaya, and M. Nuñez. 2014. High-pressure processing for the control of lipolysis, volatile compounds and off-odours in raw milk cheese. Food and Bioprocess Technology 7 (8):2207–17. doi: 10.1007/s11947-013-1206-5.
  • Calzada, J., A. Del Olmo, A. Picon, P. Gaya, and M. Nuñez. 2014. Effect of high-pressure-processing on the microbiology, proteolysis, texture and flavour of Brie cheese during ripening and refrigerated storage. International Dairy Journal 37 (2):64–73. doi: 10.1016/j.idairyj.2014.03.002.
  • Calzada, J., A. del Olmo, A. Picon, and M. Nuñez. 2014. Effect of high-pressure-processing on lipolysis and volatile compounds of Brie cheese during ripening and refrigerated storage. International Dairy Journal 39 (2):232–9. doi: 10.1016/j.idairyj.2014.07.007.
  • Calzada, J., A. del Olmo, A. Picon, and M. Nuñez. 2015. Effect of high pressure processing on the lipolysis, volatile compounds, odour and colour of cheese made from unpasteurized milk. Food and Bioprocess Technology 8 (5):1076–88. doi: 10.1007/s11947-015-1473-4.
  • Capellas, M., M. Mor-Mur, E. Sendra, R. Pla, and B. Guamis. 1996. Populations of aerobic mesophils and inoculated E. coli during storage of fresh Goat's Milk Cheese Treated with High Pressure. Journal of Food Protection 59 (6):582–7. doi: 10.4315/0362-028X-59.6.582.
  • Cornell, A. 2017. HPP process for dairy foods. Australian Patent AU, 2017101178.
  • Costabel, L. M., C. Bergamini, S. R. Vaudagna, A. L. Cuatrin, G. Audero, and E. Hynes. 2016. Effect of high-pressure treatment on hard cheese proteolysis. Journal of Dairy Science 99 (6):4220–32. doi: 10.3168/jds.2015-9907.
  • da Cruz, A. G., J. d A. Fonseca Faria, S. M. Isay Saad, H. M. André Bolini, A. S. Sant´Ana, and M. Cristianini. 2010. High pressure processing and pulsed electric fields: Potential use in probiotic dairy foods processing. Trends in Food Science & Technology 21 (10):483–93. doi: 10.1016/j.tifs.2010.07.006.
  • Daryaei, H., M. J. Coventry, C. Versteeg, and F. Sherkat. 2008. Effect of high pressure treatment on starter bacteria and spoilage yeasts in fresh lactic curd cheese of bovine milk. Innovative Food Science & Emerging Technologies 9 (2):201–5. doi: 10.1016/j.ifset.2007.06.011.
  • de Ancos, B., M. Pilar Cano, and R. Gómez. 2000. Characteristics of stirred low-fat yoghurt as affected by high pressure. International Dairy Journal 10 (1-2):105–11. https://doi.org/10.1016/S0958-6946.(00)00021-2 doi: 10.1016/S0958-6946(00)00021-2.
  • de Castro Leite, B. R., M. M. de Oliveira, and M. Cristianini. 2018. High-pressure technologies in dairy processing: Quality maintenance and increase in consumption. In Food processing for increased quality and consumption, 149–77. London, UK: Academic Press. doi: 10.1016/B978-0-12-811447-6.00006-0.
  • Dehghani, S., S. H. Peighambardoust, S. J. Peighambardoust, S. H. Fasihnia, N. K. Khosrowshahi, B. Gullón, and J. M. Lorenzo. 2020. Optimization of the amount of ZnO, CuO, and Ag nanoparticles on antibacterial properties of low-density polyethylene (LDPE) films using the response surface method. Food Analytical Methods 1–10. doi: 10.1007/s12161-020-01856-7.
  • Delgado-Gutierrez, C., and C. M. Bruhn. 2008. Health professionals’ attitudes and educational needs regarding new food processing technologies: Food science education research. Journal of Food Science Education 7 (4):78–83. doi: 10.1111/j.1541-4329.2008.00058.x.
  • Delgado-Martínez, F. J., A. I. Carrapiso, R. Contador, and M. R. Ramírez. 2019. Volatile compounds and sensory changes after high pressure processing of mature “Torta del Casar” (raw ewe’s milk cheese) during refrigerated storage. Innovative Food Science & Emerging Technologies 52:34–41. doi: 10.1016/j.ifset.2018.11.004.
  • Delgado, F. J., J. González-Crespo, R. Cava, and R. Ramírez. 2012. Changes in microbiology, proteolysis, texture and sensory characteristics of raw goat milk cheeses treated by high-pressure at different stages of maturation. LWT - Food Science and Technology 48 (2):268–75. doi: 10.1016/j.lwt.2012.03.025.
  • Devi, A. F., R. Buckow, Y. Hemar, and S. Kasapis. 2013. Structuring dairy systems through high pressure processing. Journal of Food Engineering 114 (1):106–22. doi: 10.1016/j.jfoodeng.2012.07.032.
  • Devi, A. F., R. Buckow, T. Singh, Y. Hemar, and S. Kasapis. 2015. Colour change and proteolysis of skim milk during high pressure thermal-processing. Journal of Food Engineering 147:102–10. doi: 10.1016/j.jfoodeng.2014.09.017.
  • Dumay, E., D. Chevalier-Lucia, L. Picart-Palmade, A. Benzaria, A. Gràcia-Julià, and C. Blayo. 2013. Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends in Food Science & Technology 31 (1):13–26. doi: 10.1016/j.tifs.2012.03.005.
  • Ebrahimi, Y., S. J. Peighambardoust, S. H. Peighambardoust, and S. Z. Karkaj. 2019. Development of antibacterial carboxymethyl cellulose-based nanobiocomposite films containing various metallic nanoparticles for food packaging applications . Journal of Food Science 84 (9):2537–48. doi: 10.1111/1750-3841.14744.
  • Eisenmenger, M. J., and J. I. Reyes-De-Corcuera. 2009. High pressure enhancement of enzymes: A review. Enzyme and Microbial Technology 45 (5):331–47. doi: 10.1016/j.enzmictec.2009.08.001.
  • Escobedo-Avellaneda, Z., M. Pateiro-Moure, N. Chotyakul, J. A. Torres, J. Welti-Chanes, and C. Pérez-Lamela. 2011. Benefits and limitations of food processing by high-pressure technologies: Effects on functional compounds and abiotic contaminants. CYTA - Journal of Food 9 (4):351–64. doi: 10.1080/19476337.2011.616959.
  • Espinosa-Pesqueira, D., M. M. Hernández-Herrero, and A. X. Roig-Sagués. 2018. High hydrostatic pressure as a tool to reduce formation of biogenic amines in artisanal Spanish cheeses. Foods 7 (9):137. doi: 10.3390/foods7090137.
  • Evelyn Silva, F. V. M. 2016. Modeling the inactivation of psychrotrophic Bacillus cereus spores in beef slurry by 600 MPa HPP combined with 38-70 °c: Comparing with thermal processing and estimating the energy requirements. Food and Bioproducts Processing 99:179–87. doi: 10.1016/j.fbp.2016.05.003.
  • Evert-Arriagada, K., M. M. Hernández-Herrero, B. Guamis, and A. J. Trujillo. 2014. Commercial application of high-pressure processing for increasing starter-free fresh cheese shelf-life. LWT - Food Science and Technology 55 (2):498–505. doi: 10.1016/j.lwt.2013.10.030.
  • Evert-Arríagada, K., A. J. Trujillo, G. G. Amador-Espejo, and M. M. Hernández-Herrero.. 2018. High pressure processing effect on different Listeria spp. in a commercial starter-free fresh cheese. Food Microbiology 76:481–6. doi: 10.1016/j.fm.2018.07.012
  • Fasihnia, S. H., S. H. Peighambardoust, S. J. Peighambardoust, and A. Oromiehie. 2018. Development of novel active polypropylene based packaging films containing different concentrations of sorbic acid. Food Packaging and Shelf Life 18:87–94. https://doi.org/10.1016/j.fpsl.2018.10.001 doi: 10.1016/j.fpsl.2018.10.001.
  • Fasihnia, S. H., S. H. Peighambardoust, S. J. Peighambardoust, A. Oromiehie, M. Soltanzadeh, and D. Peressini. 2020. Migration analysis, antioxidant and mechanical characterization of polypropylene-based active food packaging films loaded with BHA, BHT and TBHQ. Journal of Food Science 85 (8):2317–28. https://doi.org/10.1111/1750-3841.15337 doi: 10.1111/1750-3841.15337.
  • Franchi, M. A., A. A. L. Tribst, and M. Cristianini. 2011. Inactivation of Lactobacillus brevis in beer utilizing a combination of high-pressure homogenization and lysozyme treatment. Journal of the Institute of Brewing 117 (4):634–8. doi: 10.1002/j.2050-0416.2011.tb00515.x.
  • García-Risco, M. R., A. Olano, M. Ramos, and R. López-Fandiño. 2000. Micellar changes induced by high pressure. Influence in the proteolytic activity and organoleptic properties of milk. Journal of Dairy Science 83 (10):2184–9. https://doi.org/10.3168/jds.s0022-0302.(00)75101-0 doi: 10.3168/jds.S0022-0302(00)75101-0.
  • Garrido, M., R. Contador, J. García-Parra, F. J. Delgado, J. Delgado-Adámez, and R. Ramírez. 2015. Volatile profile of human milk subjected to high-pressure thermal processing. Food Research International (Ottawa, Ont.) 78:186–94. doi: 10.1016/j.foodres.2015.10.016.
  • Gervilla, R., V. Ferragut, and B. Guamis. 2001. High hydrostatic pressure effects on color and milk-fat globule of ewe’s milk. Journal of Food Science 66 (6):880–5. doi: 10.1111/j.1365-2621.2001.tb15190.x.
  • Ghoshal, G. 2018. Emerging food processing technologies. In Food processing for increased quality and consumption. London, UK: Academic Press, 29–65. 10.1016/B978-0-12-811447-6.00002-3.
  • Giannoglou, M., G. Katsaros, G. Moatsou, and P. Taoukis. 2019. Effect of high hydrostatic pressure treatment on the viability and acidification ability of lactic acid bacteria. International Dairy Journal 96:50–7. doi: 10.1016/j.idairyj.2019.04.012.
  • Hajizadeh, H.,. S. J. Peighambardoust, S. H. Peighambardoust, and D. Peressini. 2020. Physical, mechanical, and antibacterial characteristics of bio-nanocomposite films loaded with Ag-modified SiO2 and TiO2 nanoparticles. Journal of Food Science 85 (4):1193–202. doi: 10.1111/1750-3841.15079.
  • Harte, F., M. Amonte, L. Luedecke, B. G. Swanson, and G. V. Barbosa-Cánovas. 2002. Yield stress and microstructure of set yogurt made from high hydrostatic pressure-treated full fat milk. Journal of Food Science 67 (6):2245–50. doi: 10.1111/j.1365-2621.2002.tb09535.x.
  • Harte, F., L. Luedecke, B. Swanson, and G. V. Barbosa-Cánovas. 2003. Low-fat set yogurt made from milk subjected to combinations of high hydrostatic pressure and thermal processing. Journal of Dairy Science 86 (4):1074–82. https://doi.org/10.3168/jds.S0022-0302.(03)73690-X doi: 10.3168/jds.S0022-0302(03)73690-X.
  • Hemar, Y., C. Xu, S. Wu, and M. Ashokkumar. 2020. Size reduction of “reformed casein micelles” by high-power ultrasound and high hydrostatic pressure. Ultrasonics Sonochemistry 63:104929. doi: 10.1016/j.ultsonch.2019.104929.
  • Hicks, D. T., L. F. Pivarnik, R. McDermott, N. Richard, D. G. Hoover, and K. E. Kniel. 2009. Consumer awareness and willingness to pay for high-pressure processing of ready-to-eat food. Journal of Food Science Education 8 (2):32–8. doi: 10.1111/j.1541-4329.2009.00069.x.
  • Huang, H. W., C. P. Hsu, and C. Y. Wang. 2020. Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis 28 (1):1–13. doi: 10.1016/j.jfda.2019.10.002.
  • Huang, H. W., S. J. Wu, J. K. Lu, Y. T. Shyu, and C. Y. Wang. 2017. Current status and future trends of high-pressure processing in food industry. Food Control 72:1–8. doi: 10.1016/j.foodcont.2016.07.019.
  • Huppertz, T., and C. G. De Kruif. 2006. Disruption and reassociation of casein micelles under high pressure: Influence of milk serum composition and casein micelle concentration. Journal of Agricultural and Food Chemistry 54 (16):5903–9. doi: 10.1021/jf060689c.
  • Huppertz, T., P. F. Fox, K. G. de Kruif, and A. L. Kelly. 2006. High pressure-induced changes in bovine milk proteins: A review. Biochimica et Biophysica Acta 1764 (3):593–8. doi: 10.1016/j.bbapap.2005.11.010.
  • Huppertz, T., P. F. Fox, and A. L. Kelly. 2003. High pressure-induced changes in the creaming properties of bovine milk. Innovative Food Science & Emerging Technologies 4 (4):349–59. https://doi.org/10.1016/S1466-8564.(03)00057-2 doi: 10.1016/S1466-8564(03)00057-2.
  • Huppertz, T., P. F. Fox, and A. L. Kelly. 2004a. Effects of high pressure treatment on the yield of cheese curd from bovine milk. Innovative Food Science & Emerging Technologies 5 (1):1–8. doi: 10.1016/j.ifset.2003.09.001.
  • Huppertz, T., P. F. Fox, and A. L. Kelly. 2004b. Plasmin activity and proteolysis in high pressure-treated bovine milk. Le Lait 84 (3):297–304. https://doi.org/10.1051/lait. doi: 10.1051/lait:2004003.
  • Huppertz, T., P. F. Fox, and A. L. Kelly. 2004c. High pressure treatment of bovine milk: effects on casein micelles and whey proteins. The Journal of Dairy Research 71 (1):97–106. doi: 10.1017/S002202990300640X.
  • Huppertz, T., K. Hinz, M. R. Zobrist, T. Uniacke, A. L. Kelly, and P. F. Fox. 2005. Effects of high pressure treatment on the rennet coagulation and cheese-making properties of heated milk. Innovative Food Science & Emerging Technologies 6 (3):279–85. doi: 10.1016/j.ifset.2005.03.005.
  • Huppertz, T., M. A. Smiddy, H. D. Goff, and A. L. Kelly. 2011. Effects of high pressure treatment of mix on ice cream manufacture. International Dairy Journal 21 (9):718–26. doi: 10.1016/j.idairyj.2010.12.005.
  • Iturmendi, N., A. García, U. Galarza, C. Barba, T. Fernández, and J. I. Maté. 2020. Influence of high hydrostatic pressure treatments on the physicochemical, microbiological and rheological properties of reconstituted micellar casein concentrates. Food Hydrocolloids 106:105880. doi: 10.1016/j.foodhyd.2020.105880.
  • Kadam, P. S., B. A. Jadhav, R. V. Salve, and G. M. Machewad. 2011. Review on the High Pressure Technology (HPT) for food preservation. Journal of Food Processing & Technology 03 (01):1–5. doi: 10.4172/2157-7110.1000135.
  • Kalichevsky, M. T., D. Knorr, and P. J. Lillford. 1995. Potential food applications of high-pressure effects on ice-water transitions. Trends in Food Science & Technology 6 (8):253–9. https://doi.org/10.1016/S0924-2244.(00)89109-8 doi: 10.1016/S0924-2244(00)89109-8.
  • Kiełczewska, K., A. Jankowska, A. Dąbrowska, M. Wachowska, and J. Ziajka. 2020. The effect of high pressure treatment on the dispersion of fat globules and the fatty acid profile of caprine milk. International Dairy Journal 102:104607. doi: 10.1016/j.idairyj.2019.104607.
  • Kielczewska, K., A. Kruk, M. Czerniewicz, and M. Kopeć. 2009. Effect of high pressure on constituents of the colloidal phase of milk. Milchwissenschaft 64 (4):358–60.
  • Kühn, J., T. Considine, and H. Singh. 2006. Interactions of milk proteins and volatile flavor compounds: Implications in the development of protein foods. Journal of Food Science 71 (5):R72–R82. doi: 10.1111/j.1750-3841.2006.00051.x.
  • Leite Júnior, B. R., C. A. A. L. Tribst, C. F. S. Bonafe, and M. Cristianini. 2016. Determination of the influence of high pressure processing on calf rennet using response surface methodology: Effects on milk coagulation. LWT - Food Science and Technology 65:10–7. doi: 10.1016/j.lwt.2015.07.063.
  • Leite Júnior, B. R. d C., A. A. L. Tribst, and M. Cristianini. 2016. Comparative effects of high isostatic pressure and thermal processing on the inactivation of Rhizomucor miehei protease. LWT - Food Science and Technology 65:1050–3. doi: 10.1016/j.lwt.2015.09.042.
  • Leite Júnior, B. R. d C., A. A. L. Tribst, and M. Cristianini. 2017. The effect of high pressure processing on recombinant chymosin, bovine rennet and porcine pepsin: Influence on the proteolytic and milk-clotting activities and on milk-clotting characteristics. LWT - Food Science and Technology 76:351–60. doi: 10.1016/j.lwt.2016.04.018.
  • Leite Júnior, B. R. d C., A. A. L. Tribst, L. R. Ribeiro, and M. Cristianini. 2019. High pressure processing impacts on the hydrolytic profile of milk coagulants. Food Bioscience 31:100449. doi: 10.1016/j.fbio.2019.100449.
  • Liu, G., C. Carøe, Z. Qin, D. M. E. Munk, M. Crafack, M. A. Petersen, and L. Ahrné. 2020. Comparative study on quality of whole milk processed by high hydrostatic pressure or thermal pasteurization treatment. LWT 127:109370. doi: 10.1016/j.lwt.2020.109370.
  • López-Fandiño, R. 2006. High pressure-induced changes in milk proteins and possible applications in dairy technology. International Dairy Journal 16 (10):1119–31. doi: 10.1016/j.idairyj.2005.11.007.
  • Machado, K. I. A., A. R. Roquetto, C. S. Moura, A. de Souza Lopes, M. Cristianini, and J. Amaya-Farfan. 2019. Comparative impact of thermal and high isostatic pressure inactivation of gram-negative microorganisms on the endotoxic potential of reconstituted powder milk. LWT 106:78–82. doi: 10.1016/j.lwt.2019.02.064.
  • Mandal, R., and R. Kant. 2017. High-pressure processing and its applications in the dairy industry. food science and technology. An International Journal (FSTJ) 1 (1):33–45.
  • Marciniak, A., S. Suwal, S. Touhami, J. Chamberland, Y. Pouliot, and A. Doyen. 2020. Production of highly purified fractions of α-lactalbumin and β-lactoglobulin from cheese whey using high hydrostatic pressure. Journal of Dairy Science 103 (9):7939–50. doi: 10.3168/jds.2019-17817.
  • Martínez-Monteagudo, S. I., and M. D. A. Saldaña. 2014. Modeling the retention kinetics of conjugated linoleic acid during high-pressure sterilization of milk. Food Research International 62:169–76. doi: 10.1016/j.foodres.2014.02.014.
  • Molina, E., M. Dolores Álvarez, M. Ramos, A. Olano, and R. López-Fandiño. 2000. Use of high-pressure-treated milk for the production of reduced-fat cheese. International Dairy Journal 10 (7):467–75. https://doi.org/10.1016/S0958-6946.(00)00064-9 doi: 10.1016/S0958-6946(00)00064-9.
  • Munir, M., M. Nadeem, T. Mahmood Qureshi, C. J. Gamlath, G. J. O. Martin, Y. Hemar, and M. Ashokkumar. 2020. Effect of sonication, microwaves and high-pressure processing on ACE-inhibitory activity and antioxidant potential of Cheddar cheese during ripening. Ultrasonics Sonochemistry 67:105140. doi: 10.1016/j.ultsonch.2020.105140.
  • Munir, M., M. Nadeem, T. M. Qureshi, T. S. H. Leong, C. J. Gamlath, G. J. O. Martin, and M. Ashokkumar. 2019. Effects of high pressure, microwave and ultrasound processing on proteins and enzyme activity in dairy systems – A review. Innovative Food Science & Emerging Technologies 57:102192. https://doi.org/10.1016/j.ifset.2019.102192 doi: 10.1016/j.ifset.2019.102192.
  • Nassar, K. S., J. Lu, X. Pang, E. S. Ragab, Y. Yue, U. J. Obaroakpo, S. Gebreyowhans, N. Hussain, Y. Bayou, S. Zhang, et al. 2021. The functionality of micellar casein produced from retentate caprine milk treated by HP. Journal of Food Engineering 288:110144. doi: 10.1016/j.jfoodeng.2020.110144.
  • Nassar, K. S., J. Lu, X. Pang, E. S. Ragab, Y. Yue, S. Zhang, and J. Lv. 2020. Rheological and microstructural properties of rennet gel made from caprine milk treated by HP. Journal of Food Engineering 267:109710. doi: 10.1016/j.jfoodeng.2019.109710.
  • Nassar, K. S., S. Zhang, J. Lu, X. Pang, E. S. Ragab, Y. Yue, and J. Lv. 2019. Combined effects of high-pressure treatment and storage temperature on the physicochemical properties of caprine milk. International Dairy Journal 96:66–72. doi: 10.1016/j.idairyj.2019.03.003.
  • Nottagh, S., J. Hesari, S. H. Peighambardoust, R. Rezaei-Mokarram, and H. Jafarizadeh-Malmiri. 2018. Development of a biodegradable coating formulation based on the biological characteristics of the Iranian Ultra-filtrated cheese. Biologia (Poland) 73 (4):403–13. doi: 10.2478/s11756-018-0039-0.
  • Nottagh, S., J. Hesari, S. H. Peighambardoust, R. Rezaei-Mokarram, and H. Jafarizadeh-Malmiri. 2020. Effectiveness of edible coating based on chitosan and Natamycin on biological, physico-chemical and organoleptic attributes of Iranian ultra-filtrated cheese. Biologia 75 (4):605–11. https://doi.org/10.2478/s11756-019-00378-w doi: 10.2478/s11756-019-00378-w.
  • O'Reilly, C. E., P. M. O'Connor, A. L. Kelly, T. P. Beresford, and P. M. Murphy. 2000. Use of hydrostatic pressure for inactivation of microbial contaminants in cheese. Applied and Environmental Microbiology 66 (11):4890–6. doi: 10.1128/aem.66.11.4890-4896.2000.
  • O'Reilly, C. E., A. L. Kelly, P. M. Murphy, and T. P. Beresford. 2001. High pressure treatment: Applications in cheese manufacture and ripening. Trends in Food Science & Technology 12 (2):51–9. https://doi.org/10.1016/S0924-2244.(01)00060-7 doi: 10.1016/S0924-2244(01)00060-7.
  • OJEU. 2015. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliam (p. L327/1-22). Official Journal of the European Union.
  • Ozturk, M., S. Govindasamy-Lucey, J. J. Jaeggi, M. E. Johnson, and J. A. Lucey. 2015. Low-sodium Cheddar cheese: Effect of fortification of cheese milk with ultrafiltration retentate and high-hydrostatic pressure treatment of cheese. Journal of Dairy Science 98 (10):6713–26. doi: 10.3168/jds.2015-9549.
  • Ozturk, M., S. Govindasamy-Lucey, J. J. Jaeggi, M. E. Johnson, and J. A. Lucey. 2018. Investigating the properties of high-pressure-treated, reduced-sodium, low-moisture, part-skim Mozzarella cheese during refrigerated storage. Journal of Dairy Science 101 (8):6853–65. doi: 10.3168/jds.2018-14415.
  • Pandey, H., V. Kumar, and B. K. Roy. 2014. Assessment of genotoxicity of some common food preservatives using Allium cepa L. as a test plant. Toxicology Reports 1:300–8. doi: 10.1016/j.toxrep.2014.06.002.
  • Pandey, P. K., and H. S. Ramaswamy. 2004. Effect of high-pressure treatment of milk on lipase and γ-glutamyl transferase activity. Journal of Food Biochemistry 28 (6):449–62. doi: 10.1111/j.1745-4514.2004.02603.x.
  • Parrón, J. A., D. Ripollés, F. Navarro, S. J. Ramos, M. D. Pérez, M. Calvo, and L. Sánchez. 2018. Effect of high pressure treatment on the antirotaviral activity of bovine and ovine dairy by-products and bioactive milk proteins. Innovative Food Science & Emerging Technologies 48:265–73. doi: 10.1016/j.ifset.2018.07.007.
  • Patel, H. A., H. Singh, S. G. Anema, and L. K. Creamer. 2006. Effects of heat and high hydrostatic pressure treatments on disulfide bonding interchanges among the proteins in skim milk. Journal of Agricultural and Food Chemistry 54 (9):3409–20. doi: 10.1021/jf052834c.
  • Patrignani, F., and R. Lanciotti. 2016. Applications of high and ultra high pressure homogenization for food safety. Frontiers in Microbiology 7:1132–13. doi: 10.3389/fmicb.2016.01132.
  • Peighambardoust, S. H., F. Beigmohammadi, and S. J. Peighambardoust. 2016. Application of organoclay nanoparticle in low-density polyethylene films for packaging of UF cheese. Packaging Technology and Science 29 (7):355–63. doi: 10.1002/pts.2212.
  • Peighambardoust, S. H., A. Golshan Tafti, and J. Hesari. 2011. Application of spray drying for preservation of lactic acid starter cultures: A review. Trends in Food Science & Technology 22 (5):215–24. doi: 10.1016/j.tifs.2011.01.009.
  • Peighambardoust, S. H., S. van Brenk, A. J. van der Goot, R. J. Hamer, and R. M. Boom. 2007. Dough processing in a Couette-type device with varying eccentricity: Effect on glutenin macro-polymer properties and dough micro-structure. Journal of Cereal Science 45 (1):34–48. doi: 10.1016/j.jcs.2006.05.009.
  • Peighambardoust, S. H., A. J. van der Goot, R. M. Boom, and R. J. Hamer. 2006. Mixing behaviour of a zero-developed dough compared to a flour–water mixture. Journal of Cereal Science 44 (1):12–20. doi: 10.1016/j.jcs.2005.12.011.
  • Peighambardoust, S. J., S. H. Peighambardoust, N. Mohammadzadeh Pournasir, and P. Pakdel. 2019. Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packaging and Shelf Life 22:100420. doi: 10.1016/j.fpsl.2019.100420.
  • Peighambardoust, S. J., S. Zahed-Karkaj, S. H. Peighambardoust, Y. Ebrahimi, and D. Peressini. 2020. Characterization of carboxymethyl cellulose-based active films incorporating non-modified and Ag or Cu-modified Cloisite 30B and montmorillonite nanoclays. Iranian Polymer Journal 29 (12):1087–97. doi: 10.1007/s13726-020-00863-z.
  • Penna, A. L. B., and G. V. Barbosa-Cánovas. 2007. High hydrostatic pressure processing on microstructure of probiotic low-fat yogurt. Food Research International 40 (4):510–9. doi: 10.1016/j.foodres.2007.01.001.
  • Pinto, C. A., S. A. Moreira, L. G. Fidalgo, R. S. Inácio, F. J. Barba, and J. A. Saraiva. 2020. Effects of high‐pressure processing on fungi spores: Factors affecting spore germination and inactivation and impact on ultrastructure. Comprehensive Reviews in Food Science and Food Safety 19 (2):553–73. doi: 10.1111/1541-4337.12534.
  • Reps, A., A. Jankowska, and K. Wiśniewska. 2009. The effect of high pressure on selected properties of yoghurt. High Pressure Research 29 (1):33–7. doi: 10.1080/08957950802593782.
  • Ribeiro, L. R., B. R. Leite Júnior, C. de, and M. Cristianini. 2018. Effect of high-pressure processing on the characteristics of cheese made from ultrafiltered milk: Influence of the kind of rennet. Innovative Food Science & Emerging Technologies 50:57–65. doi: 10.1016/j.ifset.2018.10.012.
  • Roach, A., and F. Harte. 2008. Disruption and sedimentation of casein micelles and casein micelle isolates under high-pressure homogenization. Innovative Food Science & Emerging Technologies 9 (1):1–8. doi: 10.1016/j.ifset.2007.03.027.
  • Rodríguez-Alcalá, L. M., P. Castro-Gómez, X. Felipe, L. Noriega, and J. Fontecha. 2015. Effect of processing of cow milk by high pressures under conditions up to 900MPa on the composition of neutral, polar lipids and fatty acids. LWT - Food Science and Technology 62 (1):265–70. doi: 10.1016/j.lwt.2014.12.052.
  • Sánchez, L., M. D. Pérez, and J. A. Parrón. 2020. HPP in dairy products: Impact on quality and applications. In Present and future of high pressure processing, 245–272. Elsevier. 10.1016/B978-0-12-816405-1.00011-X.
  • Sandra, S., M. A. Stanford, and L. M. Goddik. 2004. The use of high-pressure processing in the production of Queso Fresco cheese. Journal of Food Science 69 (4):FEP153–FEP158. doi: 10.1111/j.1365-2621.2004.tb06340.x.
  • Serra, M., A. J. Trujillo, P. D. Jaramillo, B. Guamis, and V. Ferragut. 2008. Ultra-high pressure homogenization-induced changes in skim milk: Impact on acid coagulation properties. The Journal of Dairy Research 75 (1):69–75. doi: 10.1017/S0022029907003032.
  • Serrano, J., G. Velazquez, K. Lopetcharat, J. A. Ramírez, and J. A. Torres. 2004. Effect of moderate pressure treatments on microstructure, texture, and sensory properties of stirred-curd cheddar shreds. Journal of Dairy Science 87 (10):3172–82. https://doi.org/10.3168/jds.S0022-0302.(04)73452-9 doi: 10.3168/jds.S0022-0302(04)73452-9.
  • Shabbir, M. A., H. Ahmed, A. A. Maan, A. Rehman, M. T. Afraz, M. W. Iqbal, I. M. Khan, R. M. Amir, W. Ashraf, M. R. Khan, et al. 2020. Effect of non-thermal processing techniques on pathogenic and spoilage microorganisms of milk and milk products. Food Science and Technology. doi: 10.1590/fst.05820.
  • Singh, S., F. Cook, J. Costelloe, and D. Fu. 2008. High pressure pasteurization of liquid food product. United States Patent US 2008/0311259 A1.
  • Sørensen, H., K. Mortensen, G. H. Sørland, F. H. Larsen, M. Paulsson, and R. Ipsen. 2014. Dynamic ultra-high pressure homogenisation of milk casein concentrates: Influence of casein content. Innovative Food Science & Emerging Technologies 26:143–52. doi: 10.1016/j.ifset.2014.09.004.
  • Sørensen, H., K. Mortensen, G. H. Sørland, F. H. Larsen, M. Paulsson, and R. Ipsen. 2015. Dynamic ultra-high pressure homogenisation of whey protein-depleted milk concentrate. International Dairy Journal 46:12–21. doi: 10.1016/j.idairyj.2014.09.012.
  • Sousa, S. G., M. D. Santos, L. G. Fidalgo, I. Delgadillo, and J. A. Saraiva. 2014. Effect of thermal pasteurisation and high-pressure processing on immunoglobulin content and lysozyme and lactoperoxidase activity in human colostrum. Food Chemistry 151:79–85. doi: 10.1016/j.foodchem.2013.11.024.
  • Stratakos, A. C., E. S. Inguglia, M. Linton, J. Tollerton, L. Murphy, N. Corcionivoschi, A. Koidis, and B. K. Tiwari. 2019. Effect of high pressure processing on the safety, shelf life and quality of raw milk. Innovative Food Science & Emerging Technologies 52:325–33. doi: 10.1016/j.ifset.2019.01.009.
  • Tafti, A. G., S. H. Peighambardoust, J. Hesari, A. Bahrami, and E. S. Bonab. 2013. Physico-chemical and functional properties of spray-dried sourdough in breadmaking. Food Science and Technology International 19 (3):271–8. https://doi.org/10.1177/1082013212452415 doi: 10.1177/1082013212452415.
  • Tsevdou, M., M. Ouli-Rousi, C. Soukoulis, and P. Taoukis. 2020. Impact of high-pressure process on probiotics: Viability kinetics and evaluation of the quality characteristics of probiotic yoghurt. Foods 9 (3):360. doi: 10.3390/foods9030360.
  • Van Opstal, I., C. F. Bagamboula, S. C. Vanmuysen, E. Y. Wuytack, and C. W. Michiels. 2004. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments. International Journal of Food Microbiology92 (2):227–34. doi: 10.1016/j.ijfoodmicro.2003.09.011
  • Vazquez-Landaverde, P. A., J. A. Torres, and M. C. Qian. 2006. Effect of high-pressure-moderate-temperature processing on the volatile profile of milk. Journal of Agricultural and Food Chemistry 54 (24):9184–92. doi: 10.1021/jf061497k.
  • Viazis, S., B. E. Farkas, and J. C. Allen. 2007. Effects of high-pressure processing on immunoglobulin A and lysozyme activity in human milk. Journal of Human Lactation 23 (3):253–61. doi: 10.1177/0890334407303945.
  • Voigt, D. D., F. Chevalier, M. C. Qian, and A. L. Kelly. 2010. Effect of high-pressure treatment on microbiology, proteolysis, lipolysis and levels of flavour compounds in mature blue-veined cheese. Innovative Food Science & Emerging Technologies 11 (1):68–77. doi: 10.1016/j.ifset.2009.10.009.
  • Yang, S., G. Liu, D. M. E. Munk, Z. Qin, M. A. Petersen, D. R. Cardoso, J. Otte, and L. Ahrné. 2020. Cycled high hydrostatic pressure processing of whole and skimmed milk: Effects on physicochemical properties. Innovative Food Science & Emerging Technologies 63:102378. doi: 10.1016/j.ifset.2020.102378.
  • Yang, W., Y. Xu, D. J. Zhang, Y. X. Zhao, and Z. Zhao. 2013. Effects of high pressure treatments on the ripening of hard cheeses. Applied Mechanics and Materials 464:98–102. Trans Tech Publications Ltd. doi: 10.4028/www.scientific.net/AMM.464.98.
  • Yordanov, D. G., and G. V. Angelova. 2010. High pressure processing for foods preserving. Biotechnology & Biotechnological Equipment 24 (3):1940–5. doi: 10.2478/V10133-010-0057-8.
  • Zamora, A., V. Ferragut, P. D. Jaramillo, B. Guamis, and A. J. Trujillo. 2007. Effects of ultra-high pressure homogenization on the cheese-making properties of milk. Journal of Dairy Science 90 (1):13–23. https://doi.org/10.3168/jds.S0022-0302.(07)72604-8 doi: 10.3168/jds.S0022-0302(07)72604-8.
  • Zamora, A., A. J. Trujillo, E. Armaforte, D. S. Waldron, and A. L. Kelly. 2012. Effect of fat content and homogenization under conventional or ultra-high-pressure conditions on interactions between proteins in rennet curds. Journal of Dairy Science 95 (9):4796–803. doi: 10.3168/jds.2012-5351.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.