2,730
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Advanced glycation end products in food and their effects on intestinal tract

, ORCID Icon, , &

References

  • Ahmad, S., H. Khan, Z. Siddiqui, M. Y. Khan, S. Rehman, U. Shahab, T. Godovikova, V. Silnikov, and Moinuddin. 2018. AGEs, RAGEs and s-RAGE; friend or foe for cancer. Seminars in Cancer Biology, 49:44–55.
  • Ali, M., A. Barakat, A. El-Faham, H. H. Al-Rasheed, K. Dahlous, A. M. Al-Majid, A. Sharma, S. Yousuf, M. Sanam, Z. Ul-Haq, M. I. Choudhary, et al. 2020. Synthesis and characterisation of thiobarbituric acid enamine derivatives, and evaluation of their α-glucosidase inhibitory and anti-glycation activity. Journal of Enzyme Inhibition and Medicinal Chemistry 35 (1):692–701. doi: 10.1080/14756366.2020.1737045.
  • Aljahdali, N., P. Gadonna-Widehem, C. Delayre-Orthez, D. Marier, B. Garnier, F. Carbonero, and P. M. Anton. 2017. Repeated oral exposure to N ε-carboxymethyllysine, a Maillard reaction product, alleviates gut microbiota dysbiosis in colitic mice. Digestive Diseases and Sciences 62 (12):3370–84. doi: 10.1007/s10620-017-4767-8.
  • Almajwal, A. M., I. Alam, M. Abulmeaty, S. Razak, G. Pawelec, and W. Alam. 2020. Intake of dietary advanced glycation end products influences inflammatory markers, immune phenotypes, and antiradical capacity of healthy elderly in a little-studied population. Food Science & Nutrition 8 (2):1046–57. doi: 10.1002/fsn3.1389.
  • Aragno, M., and R. Mastrocola. 2017. Dietary sugars and endogenous formation of advanced glycation endproducts: Emerging mechanisms of disease. Nutrients 9 (4):385. doi: 10.3390/nu9040385.
  • Asano, M., Y. Fujita, Y. Ueda, D. Suzuki, T. Miyata, H. Sakai, and A. Saito. 2002. Renal proximal tubular metabolism of protein-linked pentosidine, an advanced glycation end product. Nephron 91 (4):688–694. doi: 10.1159/000065032.
  • Bains, Y., and A. Gugliucci. 2017. Ilex paraguariensis and its main component chlorogenic acid inhibit fructose formation of advanced glycation endproducts with amino acids at conditions compatible with those in the digestive system. Fitoterapia 117:6–10. doi: 10.1016/j.fitote.2016.12.006.
  • Battson, M. L., D. M. Lee, D. K. Jarrell, S. Hou, K. E. Ecton, T. L. Weir, and C. L. Gentile. 2018. Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction. American Journal of Physiology-Endocrinology and Metabolism 314 (5):E468–477. doi: 10.1152/ajpendo.00187.2017.
  • Bedoui, S. A., M. Barbirou, M. Stayoussef, M. Dallel, A. Mokrani, L. Makni, A. Mezlini, B. Bouhaouala-Zahar, B. Yacoubi-Loueslati, and W. Y. Almawi. 2020. Identification of novel advanced glycation end products receptor gene variants associated with colorectal cancer in Tunisians: A case-control study. Gene 754:144893. doi: 10.1016/j.gene.2020.144893.
  • Bell, V., J. Ferrao, L. Pimentel, M. Pintado, and T. Fernandes. 2018. One health, fermented foods, and gut microbiota. Foods 7 (12):195. doi: 10.3390/foods7120195.
  • Birlouez-Aragon, I., N. Locquet, E. De St Louvent, D. J.-R. Bouveresse, and P. Stahl. 2005. Evaluation of the Maillard reaction in infant formulas by means of front-face fluorescence. Annals of the New York Academy of Sciences 1043 (1):308–318. doi: 10.1196/annals.1333.038.
  • Birlouez-Aragon, I., M. Pischetsrieder, J. Leclère, F. J. Morales, K. Hasenkopf, R. Kientsch-Engel, C. J. Ducauze, and D. Rutledge. 2004. Assessment of protein glycation markers in infant formulas. Food Chemistry 87 (2):253–9. doi: 10.1016/j.foodchem.2003.11.019.
  • Bosch, L., A. Alegrı´A, R. Farré, and G. Clemente. 2008. Effect of storage conditions on furosine formation in milk–cereal based baby foods. Food Chemistry 107 (4):1681–6. doi: 10.1016/j.foodchem.2007.09.051.
  • Bosch, L., A. Alegría, R. Farré, and G. Clemente. 2007. Fluorescence and color as markers for the Maillard reaction in milk–cereal based infant foods during storage. Food Chemistry 105 (3):1135–1143. doi: 10.1016/j.foodchem.2007.02.016.
  • Bosch, L., M. L. Sanz, A. Montilla, A. Alegría, R. Farré, and M. D. del Castillo. 2007. Simultaneous analysis of lysine, Nɛ-carboxymethyllysine and lysinoalanine from proteins. Journal of Chromatography B 860 (1):69–77. doi: 10.1016/j.jchromb.2007.10.011.
  • Bramhall, M., K. Rich, A. Chakraborty, L. Logunova, N. Han, J. Wilson, J. McLaughlin, A. Brass, and S. M. Cruickshank. 2020. Differential expression of soluble receptor for advanced glycation end-products in mice susceptible or resistant to chronic colitis. Inflammatory Bowel Disease 26 (3):360–368. doi: 10.1093/ibd/izz311.
  • Büser, W., H. F. Erbersdobler, and R. Liardon. 1987. Identification and determination of N-ε-carboxymethyllysine by gas-liquid chromatography. Journal of Chromatography A 387:515–9. doi:10.1016/S0021-9673(01)94562-5.
  • Byun, K., Y. Yoo, M. Son, J. Lee, G.-B. Jeong, Y. M. Park, G. H. Salekdeh, and B. Lee. 2017. Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases. Pharmacology & Therapeutics 177:44–55. doi: 10.1016/j.pharmthera.2017.02.030.
  • Cai, W., J. C. He, L. Zhu, X. Chen, S. Wallenstein, G. E. Striker, and H. Vlassara. 2007. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: Association with increased AGER1 expression. The American Journal of Pathology 170 (6):1893–902. doi: 10.2353/ajpath.2007.061281.
  • Cai, W., J. Uribarri, L. Zhu, X. Chen, S. Swamy, Z. Zhao, F. Grosjean, C. Simonaro, G. A. Kuchel, M. Schnaider-Beeri, et al. 2014. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proceedings of the National Academy of Sciences of the United States of America 111 (13):4940–5. doi: 10.1073/pnas.1316013111.
  • Chao, P.-C., C.-N. Huang, C.-C. Hsu, M.-C. Yin, and Y.-R. Guo. 2010. Association of dietary AGEs with circulating AGEs, glycated LDL, IL-1α and MCP-1 levels in type 2 diabetic patients. European Journal of Nutrition 49 (7):429–34. doi: 10.1007/s00394-010-0101-3.
  • Chao, P. C., C. C. Hsu, and M. C. Yin. 2009. Analysis of glycative products in sauces and sauce-treated foods. Food Chemistry 113 (1):262–6. doi: 10.1016/j.foodchem.2008.06.076.
  • Chen, J. H., X. Lin, C. H. Bu, and X. G. Zhang. 2018. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutrition & Metabolism 15:72. doi: 10.1186/s12986-018-0306-7.
  • Chen, L., Z. Duan, L. Tinker, H. Sangi-Haghpeykar, H. Strickler, G. Y. F. Ho, M. J. Gunter, T. Rohan, C. Logsdon, D. L. White, et al. 2016. A prospective study of soluble receptor for advanced glycation end-products and colorectal cancer risk in postmenopausal women. Cancer Epidemiology 42:115–23. doi: 10.1016/j.canep.2016.04.004.
  • Csongová, M., E. Renczés, V. Šarayová, L. Mihalovičová, J. Janko, R. Gurecká, A. D. Troise, P. Vitaglione, and K. Šebeková. 2019. Maternal consumption of a diet rich in Maillard reaction products accelerates neurodevelopment in F1 and sex-dependently affects behavioral phenotype in F2 rat offspring. Foods 8 (5):168. doi: 10.3390/foods8050168.
  • Cui, H. P., J. Y. Yu, S. Q. Xia, E. Duhoranimana, Q. R. Huang, and X. M. Zhang. 2019. Improved controlled flavor formation during heat-treatment with a stable Maillard reaction intermediate derived from xylose-phenylalanine. Food Chemistry 271:47–53. doi: 10.1016/j.foodchem.2018.07.161.
  • Cunnane, S. C. 2005. Origins and evolution of the Western diet: Implications of iodine and seafood intakes for the human brain. The American Journal of Clinical Nutrition 82 (2):483. doi: 10.1093/ajcn.82.2.483.
  • de Oliveira, F. C., J. S. D. Coimbra, E. B. de Oliveira, A. D. G. Zuniga, and E. E. G. Rojas. 2016. Food protein-polysaccharide conjugates obtained via the Maillard reaction: A review. Critical Reviews in Food Science and Nutrition 56 (7):1108–25. doi: 10.1080/10408398.2012.755669.
  • DeChristopher, L. R. 2017. Perspective: The paradox in dietary advanced glycation end products research-the source of the serum and urinary advanced glycation end products is the intestines, not the food. Advances in Nutrition (Bethesda, MD) 8 (5):679–83. doi: 10.3945/an.117.016154.
  • Dehnad, A., W. Fan, J. X. Jiang, S. R. Fish, Y. Li, S. Das, G. Mozes, K. A. Wong, K. A. Olson, G. W. Charville, et al. 2020. AGER1 downregulation associates with fibrosis in nonalcoholic steatohepatitis and type 2 diabetes. The Journal of Clinical Investigation 130 (8):4320–30. doi: 10.1172/Jci133051.
  • Delgado-Andrade, C., and V. Fogliano. 2018. Dietary advanced glycosylation end-products (dAGEs) and melanoidins formed through the Maillard reaction: Physiological consequences of their intake. Annual Review of Food Science and Technology 9:271–91. doi: 10.1146/annurev-food-030117-012441.
  • Delgado-Andrade, C., I. Seiquer, A. Haro, R. Castellano, and M. P. Navarro. 2010. Development of the Maillard reaction in foods cooked by different techniques. Intake of Maillard-derived compounds. Food Chemistry 122 (1):145–53. doi: 10.1016/j.foodchem.2010.02.031.
  • Delgado-Andrade, C., F. J. Tessier, C. Niquet-Leridon, I. Seiquer, and M. Pilar Navarro. 2012. Study of the urinary and faecal excretion of Nε-carboxymethyllysine in young human volunteers. Amino Acids. 43 (2):595–602. doi: 10.1007/s00726-011-1107-8.
  • Deng, R., H. Wu, H. Ran, X. Kong, L. Hu, X. Wang, and Q. Su. 2017. Glucose-derived AGEs promote migration and invasion of colorectal cancer by up-regulating Sp1 expression. Biochimica et Biophysica Acta: General Subjects 1861 (5 Pt A):1065–74. doi: 10.1016/j.bbagen.2017.02.024.
  • El-Nashar, H. A. S., N. M. Mostafa, M. El-Shazly, and O. A. Eldahshan. 2020. The role of plant-derived compounds in managing diabetes mellitus: A review of literature from 2014 to 2019. Current Medicinal Chemistry. doi: 10.2174/0929867328999201123194510.
  • Fenaille, F., V. Parisod, P. Visani, S. Populaire, J.-C. Tabet, and P. A. Guy. 2006. Modifications of milk constituents during processing: A preliminary benchmarking study. International Dairy Journal 16 (7):728–39. doi:10.1016/j.idairyj.2005.08.003.
  • Feng, J. X., F. F. Hou, M. Liang, G. B. Wang, X. Zhang, H. Y. Li, D. Xie, J. W. Tian, and Z. Q. Liu. 2007. Restricted intake of dietary advanced glycation end products retards renal progression in the remnant kidney model. Kidney International 71 (9):901–11. doi: 10.1038/sj.ki.5002162.
  • Flandroy, L., T. Poutahidis, G. Berg, G. Clarke, M.-C. Dao, E. Decaestecker, E. Furman, T. Haahtela, S. Massart, H. Plovier, et al. 2018. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. The Science of the Total Environment 627:1018–38. doi: 10.1016/j.scitotenv.2018.01.288.
  • Foerster, A., and T. Henle. 2003. Glycation in food and metabolic transit of dietary AGEs (advanced glycation end-products): Studies on the urinary excretion of pyrraline. Biochemical Society Transactions 31 (Pt 6):1383–5. doi: 10.1042/bst0311383.
  • Förster, A., Y. Kühne, and T. O. Henle. 2005. Studies on absorption and elimination of dietary Maillard reaction products. Annals of the New York Academy of Sciences 1043 (1):474–81. doi: 10.1196/annals.1333.054.
  • Goldberg, T., W. Cai, M. Peppa, V. Dardaine, B. S. Baliga, J. Uribarri, and H. Vlassara. 2004. Advanced glycoxidation end products in commonly consumed foods. Journal of the American Dietetic Association 104 (8):1287–91. doi: 10.1016/j.jada.2004.05.214.
  • Gowd, V., Q. Kang, Q. Wang, Q. Wang, F. Chen, and K.-W. Cheng. 2020. Resveratrol: Evidence for its nephroprotective effect in diabetic nephropathy. Advances in Nutrition (Bethesda, MD) 11 (6):1555–68. doi: 10.1093/advances/nmaa075.
  • Grunwald, S., R. Krause, M. Bruch, T. Henle, and M. Brandsch. 2006. Transepithelial flux of early and advanced glycation compounds across Caco-2 cell monolayers and their interaction with intestinal amino acid and peptide transport systems. The British Journal of Nutrition 95 (6):1221–8. doi: 10.1079/BJN20061793.
  • Harcourt, B. E., K. C. Sourris, M. T. Coughlan, K. Z. Walker, S. L. Dougherty, S. Andrikopoulos, A. L. Morley, V. Thallas-Bonke, V. Chand, S. A. Penfold, et al. 2011. Targeted reduction of advanced glycation improves renal function in obesity. Kidney International 80 (2):190–8. doi: 10.1038/ki.2011.57.
  • Harohally, N. V., S. M. Srinivas, and S. Umesh. 2014. ZnCl2-mediated practical protocol for the synthesis of Amadori ketoses. Food Chemistry 158:340–4. doi: 10.1016/j.foodchem.2014.02.094.
  • Hartkopf, J, and H. F. Erbersdobler. 1994. Modelluntersuchungen zu Bedingungen der Bildung vonNε-Carboxymethyllysin in Lebensmitteln. Zeitschrift für Lebensmittel-Untersuchung Und-Forschung 198 (1):15–9. doi:10.1007/BF01195275.
  • He, J., M. Zeng, Z. Zheng, Z. He, and J. Chen. 2014. Simultaneous determination of N ε-(carboxymethyl) lysine and N ε-(carboxyethyl) lysine in cereal foods by LC–MS/MS. European Food Research and Technology 238 (3):367–74. doi:10.1007/s00217-013-2085-8.
  • He, C., J. Sabol, T. Mitsuhashi, and H. Vlassara. 1999. Dietary glycotoxins: Inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes 48 (6):1308–15. doi: 10.2337/diabetes.48.6.1308.
  • Hellwig, M., D. Bunzel, M. Huch, C. M. A. P. Franz, S. E. Kulling, and T. Henle. 2015. Stability of individual Maillard reaction products in the presence of the human colonic microbiota. Journal of Agricultural and Food Chemistry 63 (30):6723–30. doi: 10.1021/acs.jafc.5b01391.
  • Hellwig, M., S. Geissler, R. Matthes, A. Peto, C. Silow, M. Brandsch, and T. Henle. 2011. Transport of free and peptide-bound glycated amino acids: Synthesis, transepithelial flux at caco-2 cell monolayers, and interaction with apical membrane transport proteins. Chembiochem: A European Journal of Chemical Biology 12 (8):1270–9. doi: 10.1002/cbic.201000759.
  • Hipkiss, A. R. 2018. Glycotoxins: Dietary and metabolic origins; possible amelioration of neurotoxicity by carnosine, with special reference to Parkinson's disease. Neurotoxicity Research 34 (1):164–72. doi: 10.1007/s12640-018-9867-5.
  • Hohmann, C., K. Liehr, C. Henning, R. Fiedler, M. Girndt, M. Gebert, M. Hulko, M. Storr, and M. A. Glomb. 2017. Detection of free advanced glycation end products in vivo during hemodialysis. Journal of Agricultural and Food Chemistry 65 (4):930–7. doi: 10.1021/acs.jafc.6b05013.
  • Hull, G. L. J., J. V. Woodside, J. M. Ames, and G. J. Cuskelly. 2012. N-epsilon-(carboxymethyl)lysine content of foods commonly consumed in a Western style diet. Food Chemistry 131 (1):170–4. doi: 10.1016/j.foodchem.2011.08.055.
  • Hwang, J. S., C. H. Shin, and S. W. Yang. 2005. Clinical implications of Nε-(carboxymethyl)lysine, advanced glycation end product, in children and adolescents with type 1 diabetes. Diabetes, Obesity and Metabolism 7 (3):263–7. doi: 10.1111/j.1463-1326.2004.00398.x.
  • Kamphuis, J. B. J., B. Guiard, M. Leveque, M. Olier, I. Jouanin, S. Yvon, V. Tondereau, P. Rivière, F. Guéraud, S. Chevolleau, et al. 2020. Lactose and fructo-oligosaccharides increase visceral sensitivity in mice via glycation processes, increasing mast cell density in colonic mucosa. Gastroenterology 158 (3):652–63.e6. doi: 10.1053/j.gastro.2019.10.037.
  • Kellow, N. J., and M. T. Coughlan. 2015. Effect of diet-derived advanced glycation end products on inflammation. Nutrition Reviews 73 (11):737–759. doi: 10.1093/nutrit/nuv030.
  • Kilhovd, B. K., A. Juutilainen, S. Lehto, T. Rönnemaa, P. A. Torjesen, K. F. Hanssen, and M. Laakso. 2007. Increased serum levels of advanced glycation endproducts predict total, cardiovascular and coronary mortality in women with type 2 diabetes: A population-based 18 year follow-up study. Diabetologia 50 (7):1409–17. doi: 10.1007/s00125-007-0687-z.
  • Kong, S. Y., M. Takeuchi, H. Hyogo, G. McKeown-Eyssen, S.-I. Yamagishi, K. Chayama, P. J. O'Brien, P. Ferrari, K. Overvad, A. Olsen, et al. 2015. The association between glyceraldehyde-derived advanced glycation end-products and colorectal cancer risk. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology 24 (12):1855–1863. doi: 10.1158/1055-9965.Epi-15-0422.
  • Korca, E., V. Piskovatska, J. Borgermann, A. Navarrete Santos, and A. Simm. 2020. Circulating antibodies against age-modified proteins in patients with coronary atherosclerosis. Scientific Reports 10 (1):17105. doi: 10.1038/s41598-020-73877-5.
  • Koschinsky, T., C.-J. He, T. Mitsuhashi, R. Bucala, C. Liu, C. Buenting, K. Heitmann, and H. Vlassara. 1997. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proceedings of the National Academy of Sciences 94 (12):6474–9. doi: 10.1073/pnas.94.12.6474.
  • Kutlu, T. 2016. Dietary glycotoxins and infant formulas. Türk Pediatri Arşivi 51 (4):179–85. doi:10.5152/TurkPediatriArs.2016.2543.
  • Lee, H. S., and J. S. Hwang. 2020. Impact of type 2 diabetes mellitus and antidiabetic medications on bone metabolism. Current Diabetes Report 20 (12):78. doi: 10.1007/s11892-020-01361-5.
  • Leonova, T., V. Popova, A. Tsarev, C. Henning, K. Antonova, N. Rogovskaya, M. Vikhnina, T. Baldensperger, A. Soboleva, E. Dinastia, et al. 2020. Does Protein Glycation Impact on the Drought-Related Changes in Metabolism and Nutritional Properties of Mature Pea (Pisum sativum L.) Seeds?. International Journal of Molecular Sciences 21 (2):567 doi:10.3390/ijms21020567.
  • Liang, Z. L., L. Li, Q. Y. Fu, X. Zhang, Z. B. Xu, and B. Li. 2016. Formation and elimination of pyrraline in the Maillard reaction in a saccharide-lysine model system. Journal of the Science of Food and Agriculture 96 (7):2555–64. doi: 10.1002/jsfa.7376.
  • Lieuw-A-Fa, M. L. M., V. W. M. van Hinsbergh, T. Teerlink, R. Barto, J. Twisk, C. D. A. Stehouwer, and C. G. Schalkwijk. 2004. Increased levels of Nϵ-(carboxymethyl)lysine and Nϵ-(carboxyethyl)lysine in type 1 diabetic patients with impaired renal function: Correlation with markers of endothelial dysfunction. Nephrology Dialysis Transplantation 19 (3):631–6. doi: 10.1093/ndt/gfg619.
  • Lin, P. H., C. C. Chang, K. H. Wu, C. K. Shih, W. Chiang, H. Y. Chen, Y.-H. Shih, K.-L. Wang, Y.-H. Hong, T.-M. Shieh, et al. 2019. Dietary glycotoxins, advanced glycation end products, inhibit cell proliferation and progesterone secretion in ovarian granulosa cells and mimic PCOS-like symptoms. Biomolecules 9 (8):327. doi: 10.3390/biom9080327.
  • Lin, R.-Y., R. P. Choudhury, W. Cai, M. Lu, J. T. Fallon, E. A. Fisher, and H. Vlassara. 2003. Dietary glycotoxins promote diabetic atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 168 (2):213–220. doi: 10.1016/S0021-9150(03)00050-9.
  • Lingelbach, L. B., A. E. Mitchell, R. B. Rucker, and R. B. McDonald. 2000. Accumulation of advanced glycation endproducts in aging male Fischer 344 rats during long-term feeding of various dietary carbohydrates. The Journal of Nutrition 130 (5):1247–55. doi: 10.1093/jn/130.5.1247.
  • Lovestone, S., and U. Smith. 2014. Advanced glycation end products, dementia, and diabetes. Proceedings of the National Academy of Sciences of the United States of America 111 (13):4743–4. doi: 10.1073/pnas.1402277111.
  • Luceri, C., E. Bigagli, S. Agostiniani, F. Giudici, D. Zambonin, S. Scaringi, F. Ficari, M. Lodovici, and C. Malentacchi. 2019. Analysis of oxidative stress-related markers in Crohn's disease patients at surgery and correlations with clinical findings. Antioxidants 8 (9):378. doi: 10.3390/antiox8090378.[Mismatch] 10.
  • Miao, J., S. Lin, T. Soteyome, B. M. Peters, Y. Li, H. Chen, J. Su, L. Li, B. Li, Z. Xu, et al. 2019. Biofilm formation of staphylococcus aureus under food heat processing conditions: First report on CML production within biofilm. Scientific Reports 9 (1):1312. doi: 10.1038/s41598-018-35558-2. 10.1038/s41598-018-35558-2
  • Mildner-Szkudlarz, S., A. Siger, A. Szwengiel, and J. Bajerska. 2015. Natural compounds from grape by-products enhance nutritive value and reduce formation of CML in model muffins. Food Chemistry 172:78–85. doi: 10.1016/j.foodchem.2014.09.036.
  • Moura, F. A., M. O. F. Goulart, S. B. G. Campos, and A. S. da Paz Martins. 2020. The close interplay of nitro-oxidative stress, advanced glycation end products and inflammation in inflammatory bowel diseases. Current Medicinal Chemistry 27 (13):2059–76. doi: 10.2174/0929867325666180904115633.
  • Muscat, S., J. Pelka, J. Hegele, B. Weigle, G. Münch, and M. Pischetsrieder. 2007. Coffee and Maillard products activate NF-kappaB in macrophages via H2O2 production. Molecular Nutrition & Food Research 51 (5):525–35. doi: 10.1002/mnfr.200600254.
  • O'Brien, J., and P. A. Morrissey. 1989. Nutritional and toxicological aspects of the Maillard browning reaction in foods. Critical Reviews in Food Science and Nutrition 28 (3):211–48. doi: 10.1080/10408398909527499.
  • Oh, J.-G., S.-H. Chun, D. H. Kim, J. H. Kim, H. S. Shin, Y. S. Cho, Y. K. Kim, H.-D. Choi, and K.-W. Lee. 2017. Anti-inflammatory effect of sugar-amino acid Maillard reaction products on intestinal inflammation model in vitro and in vivo. Carbohydrate Research 449:47–58. doi: 10.1016/j.carres.2017.07.003.
  • Potipiranun, T., S. Adisakwattana, W. Worawalai, R. Ramadhan, and P. Phuwapraisirisan. 2018. Identification of Pinocembrin as an Anti-Glycation Agent and α-Glucosidase Inhibitor from Fingerroot (Boesenbergia rotunda): The Tentative Structure–Activity Relationship towards MG-Trapping Activity. Molecules 23 (12):3365 doi:10.3390/molecules23123365.
  • Poulsen, M. W., R. V. Hedegaard, J. M. Andersen, B. de Courten, S. Bügel, J. Nielsen, L. H. Skibsted, and L. O. Dragsted. 2013. Advanced glycation endproducts in food and their effects on health. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 60:10–37. doi: 10.1016/j.fct.2013.06.052.
  • Prosser, C. G., E. A. Carpenter, and A. J. Hodgkinson. 2019. Nε-carboxymethyllysine in nutritional milk formulas for infants. Food Chemistry 274:886–90. doi: 10.1016/j.foodchem.2018.09.069.
  • Qu, W., X. Yuan, J. Zhao, Y. Zhang, J. Hu, J. Wang, and J. Li. 2017. Dietary advanced glycation end products modify gut microbial composition and partially increase colon permeability in rats. Molecular Nutrition & Food Research 61 (10):1700118. doi: 10.1002/mnfr.201700118.
  • Ramasamy, R., S. F. Yan, and A. M. Schmidt. 2011. Receptor for AGE (RAGE): Signaling mechanisms in the pathogenesis of diabetes and its complications. Annals of the New York Academy of Sciences 1243 (1):88–102. doi: 10.1111/j.1749-6632.2011.06320.x.
  • Rowan, S., S. Jiang, T. Korem, J. Szymanski, M.-L. Chang, J. Szelog, C. Cassalman, K. Dasuri, C. McGuire, R. Nagai, et al. 2017. Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America 114 (22):E4472–81. doi: 10.1073/pnas.1702302114.
  • Rubio, C. A., and P. T. Schmidt. 2018. Severe defects in the macrophage barrier to gut microflora in inflammatory bowel disease and colon cancer. Anticancer Research 38 (7):3811–5. doi: 10.21873/anticanres.12664.
  • Salazar-Villanea, S., C. I. Butre, P. A. Wierenga, E. M. A. M. Bruininx, H. Gruppen, W. H. Hendriks, and A. F. B. van der Poel. 2018. Apparent ileal digestibility of Maillard reaction products in growing pigs. PLoS One 13 (7):e0199499. doi: 10.1371/journal.pone.e0199499. 10.pone.0199499
  • Scheijen, J. L. J. M., E. Clevers, L. Engelen, P. C. Dagnelie, F. Brouns, C. D. A. Stehouwer, and C. G. Schalkwijk. 2016. Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary AGE database. Food Chemistry 190:1145–50. doi: 10.1016/j.foodchem.2015.06.049.
  • Schiavone, S., M. Neri, L. Trabace, and E. Turillazzi. 2017. The NADPH oxidase NOX2 mediates loss of parvalbumin interneurons in traumatic brain injury: Human autoptic immunohistochemical evidence. Scientific Reports 7 (1):8752. doi: 10.1038/s41598-017-09202-4.
  • Schwenger, V., M. Zeier, T. Henle, and E. Ritz. 2001. Advanced glycation endproducts (AGEs) as uremic toxins. Nahrung/Food 45 (3):172–6. doi: 10.1002/1521-3803(20010601)45:3 < 172::AID-FOOD172 > 3.0.CO;2-U.
  • Šebeková, K., V. Faist, T. Hofmann, R. Schinzel, and A. Heidland. 2003. Effects of a diet rich in advanced glycation end products in the rat remnant kidney model. American Journal of Kidney Diseases 41 (3):S48–S51. doi: 10.1053/ajkd.2003.50084.
  • Šebeková, K., T. Hofmann, P. Boor, K. Šebeková, O. Ulicná, H. F. Erbersdobler, J. W. Baynes, S. R. Thorpe, A. Heidland, and V. Somoza. 2005. Renal effects of oral Maillard reaction product load in the form of bread crusts in healthy and subtotally nephrectomized rats. Annals of the New York Academy of Sciences 1043 (1):482–91. doi: 10.1196/annals.1333.055.
  • Šebeková, K., G. Saavedra, C. Zumpe, V. Somoza, K. Klenovicsová, and I. Birlouez-Aragon. 2008. Plasma concentration and urinary excretion of Nɛ-(carboxymethyl)lysine in breast milk– and formula-fed infants. Annals of the New York Academy of Sciences 1126 (1):177–80. doi: 10.1196/annals.1433.049.
  • Shang, F.-M., and H.-L. Liu. 2018. Fusobacterium nucleatum and colorectal cancer: A review. World Journal of Gastrointestinal Oncology 10 (3):71–81. doi: 10.4251/wjgo.v10.i3.71.
  • Sharma, A., S. Kaur, M. Sarkar, B. C. Sarin, and H. Changotra. 2020. The AGE-RAGE axis and RAGE genetics in chronic obstructive pulmonary disease. Clinical Reviews in Allergy & Immunology. Advance online publication. doi: 10.1007/s12016-020-08815-4.
  • Snelson, M, and M. Coughlan. 2019. Dietary Advanced Glycation End Products: Digestion, Metabolism and Modulation of Gut Microbial Ecology. Nutrients 11 (2):215–230 doi:10.3390/nu11020215.
  • Somoza, V. 2005. Five years of research on health risks and benefits of Maillard reaction products: An update. Molecular Nutrition & Food Research 49 (7):663–72. doi: 10.1002/mnfr.200500034.
  • Son, S., I. Hwang, S. H. Han, J.-S. Shin, O. S. Shin, and J.-W. Yu. 2017. Advanced glycation end products impair NLRP3 inflammasome-mediated innate immune responses in macrophages. The Journal of Biological Chemistry 292 (50):20437–48. doi: 10.1074/jbc.M117.806307.
  • Song, S., Q. Liu, W.-M. Chai, S.-S. Xia, Z.-Y. Yu, and Q.-M. Wei. 2020. Inhibitory potential of 4-hexylresorcinol against α-glucosidase and non-enzymatic glycation: Activity and mechanism. Journal of Bioscience and Bioengineering. doi: 10.1016/j.jbiosc.2020.10.011.
  • Stinghen, A. E., Z. A. Massy, H. Vlassara, G. E. Striker, and A. Boullier. 2016. Uremic toxicity of advanced glycation end products in CKD. Journal of the American Society of Nephrology: JASN 27 (2):354–70. doi: 10.1681/ASN.2014101047.
  • Takeuchi, M., J.-I. Takino, S. Furuno, H. Shirai, M. Kawakami, M. Muramatsu, Y. Kobayashi, and S.-I. Yamagishi. 2015. Assessment of the concentrations of various advanced glycation end-products in beverages and foods that are commonly consumed in Japan. PLoS One 10 (3):e0118652. doi: 10.1371/journal.pone.0118652.
  • Tauer, A., K. Hasenkopf, T. Kislinger, I. Frey, and M. Pischetsrieder. 1999. Determination of Nε-carboxymethyllysine in heated milk products by immunochemical methods. European Food Research and Technology 209 (1):72–6. doi: 10.1007/s002170050460.
  • Teodorowicz, M., W. H. Hendriks, H. J. Wichers, and H. F. J. Savelkoul. 2018. Immunomodulation by processed animal feed: The role of Maillard reaction products and advanced glycation end-products (AGEs). Frontiers in Immunology 9:2088. doi: 10.3389/fimmu.2018.02088.
  • Tessier, F. J., and I. Birlouez-Aragon. 2012. Health effects of dietary Maillard reaction products: The results of ICARE and other studies. Amino Acids 42 (4):1119–31. doi: 10.1007/s00726-010-0776-z.
  • Tessier, F. J., C. Niquet-Léridon, P. Jacolot, C. Jouquand, M. Genin, A.-M. Schmidt, N. Grossin, and E. Boulanger. 2016. Quantitative assessment of organ distribution of dietary protein-bound 13C-labeled Nɛ-carboxymethyllysine after a chronic oral exposure in mice. Molecular Nutrition & Food Research 60 (11):2446–56. doi: 10.1002/mnfr.201600140.
  • Thornalley, P. J. 1998. Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cellular and Molecular Biology (Noisy-le-Grand, France) 44 (7):1013–23. doi: 10.1038/sj.cdd.4400448.
  • Trevisan, A. J. B., D. de Almeida Lima, G. R. Sampaio, R. A. M. Soares, and D. H. Markowicz Bastos. 2016. Influence of home cooking conditions on Maillard reaction products in beef. Food Chemistry 196:161–9. doi: 10.1016/j.foodchem.2015.09.008.
  • Tuohy, K. M., D. J. S. Hinton, S. J. Davies, M. J. C. Crabbe, G. R. Gibson, and J. M. Ames. 2006. Metabolism of Maillard reaction products by the human gut microbiota-implications for health. Molecular Nutrition & Food Research 50 (9):847–57. doi: 10.1002/mnfr.200500126.
  • Uribarri, J., W. Cai, M. Peppa, S. Goodman, L. Ferrucci, G. Striker, and H. Vlassara. 2007. Circulating glycotoxins and dietary advanced glycation endproducts: Two links to inflammatory response, oxidative stress, and aging. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 62 (4):427–33. doi: 10.1093/gerona/62.4.427.
  • Uribarri, J., W. Cai, O. Sandu, M. Peppa, T. Goldberg, and H. Vlassara. 2005. Diet-derived advanced glycation end products are major contributors to the body's AGE pool and induce inflammation in healthy subjects. Annals of the New York Academy of Sciences 1043 (1):461–6. doi: 10.1196/annals.1333.052.
  • Uribarri, J., M. Peppa, W. Cai, T. Goldberg, M. Lu, S. Baliga, J. A. Vassalotti, and H. Vlassara. 2003. Dietary glycotoxins correlate with circulating advanced glycation end product levels in renal failure patients. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation 42 (3):532–8. doi: 10.1016/S0272-6386(03)00779-0.
  • Uribarri, J., S. Woodruff, S. Goodman, W. Cai, X. Chen, R. Pyzik, A. Yong, G. E. Striker, and H. Vlassara. 2010. Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association 110 (6):911–6.e2. doi: 10.1016/j.jada.2010.03.018.
  • Vlassara, H., and G. E. Striker. 2010. Intake of advanced glycation endproducts: Role in the development of diabetic complications. In Principles of diabetes mellitus, ed. L. Poretsky, 313–30. Boston, MA: Springer US.
  • Wang, Y., H. Liu, D. Zhang, J. Liu, J. Wang, S. Wang, and B. Sun. 2019. Baijiu vinasse extract scavenges glyoxal and inhibits the formation of N(epsilon)-carboxymethyllysine in dairy food. Molecules 24 (8):1526. doi: 10.3390/molecules24081526.
  • Wedzicha, B. L. 1992. Chemistry of sulphiting agents in food. Food Additives and Contaminants 9 (5):449–59. doi: 10.1080/02652039209374097.
  • Widjaja, S. S., Rusdiana, and M. Savira. 2018. CD4 and its relevance to advanced glycation end products in tuberculosis patients with co-morbidity diabetes. Open Access Macedonian Journal of Medical Sciences 6 (11):2115–8. doi: 10.3889/oamjms.2018.347.
  • Yacoub, R., M. Nugent, W. Cai, G. N. Nadkarni, L. D. Chaves, S. Abyad, A. M. Honan, S. A. Thomas, W. Zheng, S. A. Valiyaparambil, et al. 2017. Advanced glycation end products dietary restriction effects on bacterial gut microbiota in peritoneal dialysis patients; a randomized open label controlled trial. PLoS One 12 (9):e0184789. doi: 10.1371/journal.pone.0184789.
  • Zhang, G., G. Huang, L. Xiao, and A. E. Mitchell. 2011. Determination of advanced glycation endproducts by LC-MS/MS in raw and roasted almonds (Prunus dulcis). Journal of Agriculture Food Chemistry 59 (22):12037–46. doi: 10.1021/jf202515k.
  • Zhao, D., B. Sheng, Y. Wu, H. Li, D. Xu, Y. Nian, S. Mao, C. Li, X. Xu, and G. Zhou. 2019. Comparison of free and bound advanced glycation end products in food: A review on the possible influence on human health. Journal of Agricultural and Food Chemistry 67 (51):14007–18. doi: 10.1021/acs.jafc.9b05891.
  • Zheng, F., C. He, W. Cai, M. Hattori, M. Steffes, and H. Vlassara. 2002. Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products. Diabetes/Metabolism Research and Reviews 18 (3):224–37. doi: 10.1002/dmrr.283.
  • Zhou, X., N. Lin, M. Zhang, X. Wang, Y. An, Q. Su, P. Du, B. Li, and H. Chen. 2020. Circulating soluble receptor for advanced glycation end products and other factors in type 2 diabetes patients with colorectal cancer. BMC Endocrine Disorders 20 (1):170. doi: 10.1186/s12902-020-00647-9.
  • Zieman, S. J., and D. A. Kass. 2004. Advanced glycation end product cross-linking: Pathophysiologic role and therapeutic target in cardiovascular disease. Congestive Heart Failure (Greenwich, Conn.) 10 (3):144–51. doi: 10.1111/j.1527-5299.2004.03223.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.