1,618
Views
15
CrossRef citations to date
0
Altmetric
Reviews

How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: a review

, &

References

  • Alagarsamy, K., L. F. Shamala, and S. Wei. 2018. Protocol: High-efficiency in-planta Agrobacterium-mediated transgenic hairy root induction of Camellia sinensis var. sinensis. Plant Methods 14:17.doi: 10.1186/s13007-018-0285-8.
  • Ashihara, H. 2015. Occurrence, biosynthesis and metabolism of theanine (γ-glutamyl-L-ethylamide) in plants: A comprehensive review. Natural Product Communications 10 (5):803–810. doi: 10.1177/1934578X1501000525.
  • Ashihara, H., A. Crozier, and A. Komamine. 2011. Plant metabolism and biotechnology. 1st ed. Chichester: Wiley.
  • Ashihara, H., F. M. Gillies, and A. Crozier. 1997. Metabolism of caffeine and related purine alkaloids in leaves of tea (Camellia sinensis L.). Plant and Cell Physiology 38 (4):413–419. doi: 10.1093/oxfordjournals.pcp.a029184.
  • Ashihara, H., M. Kato, and C. K. Ye. 1998. Biosynthesis and metabolism of purine alkaloids in leaves of cocoa tea (Camellia ptilophylla). Journal of Plant Research 111 (4):599–604. doi: 10.1007/BF02507798.
  • Ashihara, H., and H. Kubota. 1986. Patterns of adenine metabolism and caffeine biosynthesis in different parts of tea seedlings. Physiologia Plantarum 68 (2):275–281. doi: 10.1111/j.1399-3054.1986.tb01926.x.
  • Ashihara, H., A. M. Monteiro, T. Moritz, F. M. Gillies, and A. Crozier. 1996. Catabolism of caffeine and related purine alkaloids in leaves of Coffea arabica L. Planta 198 (3):334–339. doi: 10.1007/BF00620048.
  • Ashihara, H., H. Sano, and A. Crozier. 2008. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering. Phytochemistry 69 (4):841–856. doi: 10.1016/j.phytochem.2007.10.029.
  • Bai, P. X., K. Wei, L. Y. Wang, F. Zhang, L. Ruan, H. L. Li, L. Y. Wu, and H. Cheng. 2019. Identification of a novel gene encoding the specialized alanine decarboxylase in tea (Camellia sinensis) plants. Molecules 24 (3):540. doi: 10.3390/molecules24030540.
  • Cabrera, C., R. Artacho, and R. Gimenez. 2006. Beneficial effects of green tea–a review. Journal of the American College of Nutrition 25 (2):79–99. doi: 10.1080/07315724.2006.10719518.
  • Chen, L., C. Zheng, J. Q. Ma, C. K. Jiang, S. Ercisli, M. Z. Yao, and L. Chen. 2020. The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant. Horticulture Research 7:63 doi: 10.1038/s41438-020-0288-2.
  • Cheng, S. H. 2019. Study on mechanisms of accumulation of specialized metabolite L-theanine in tea (Camellia sinensis) plants. PhD diss. University of Chinese Academy of Sciences. (in Chinese).
  • Cheng, S. H., X. M. Fu, X. Q. Wang, Y. Y. Liao, L. T. Zeng, F. Dong, and Z. Y. Yang. 2017. Studies on the biochemical formation pathway of the amino acid L-theanine in tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry 65 (33):7210–7216. doi: 10.1021/acs.jafc.7b02437.
  • Chilton, M. D., M. H. Drummond, D. J. Merio, D. Sciaky, A. L. Montoya, M. P. Gordon, and E. W. Nester. 1977. Stable incorporation of plasmid DNA into higher plant cells: The molecular basis of crown gall tumorigenesis. Cell 11 (2):263–271. doi: 10.1016/0092-8674(77)90043-5.
  • Dai, X. L., Y. J. Liu, J. H. Zhuang, S. B. Yao, L. Liu, X. L. Jiang, K. Zhou, Y. S. Wang, D. Y. Xie, J. L. Bennetzen, et al. 2020. Discovery and characterization of tannase genes in plants: Roles in hydrolysis of tannins. The New Phytologist 226 (4):1104–1116. doi: 10.1111/nph.16425.
  • Deng, W. W., S. Ogita, and H. Ashihara. 2009. Ethylamine content and theanine biosynthesis in different organs of Camellia sinensis seedlings. Zeitschrift fur Naturforschung. C 64 (5-6):387–390. doi: 10.1515/znc-2009-5-614.
  • Deng, W. W., S. Ogita, and H. Ashihara. 2010. Distribution and biosynthesis of theanine in Theaceae plants. Plant Physiology and Biochemistry 48 (1):70–2. doi: 10.1016/j.plaphy.2009.09.009.
  • Dong, C., F. Li, T. Yang, L. Feng, S. Zhang, F. Li, W. Li, G. Xu, S. Bao, X. Wan, et al. 2020. Theanine transporters identified in tea plants (Camellia sinensis L.). The Plant Journal 101 (1):57–70. doi: 10.1111/tpj.14517.
  • Dubey, H., H. C. Rawal, M. Rohilla, U. Lama, P. M. Kumar, T. Bandyopadhyay, M. Gogoi, N. K. Singh, and T. K. Mondal. 2020. TeaMiD: A comprehensive database of simple sequence repeat markers of tea. Database 2020:1–14. doi: 10.1093/database/baaa013.
  • Fu, X. M., S. H. Cheng, Y. Y. Liao, X. L. Xu, X. C. Wang, X. Y. Hao, P. Xu, F. Dong, and Z. Y. Yang. 2020. Characterization of L-theanine hydrolase in vitro and subcellular distribution of its specific product ethylamine in tea (Camellia sinensis). Journal of Agricultural and Food Chemistry 68 (39):10842–10851. doi: 10.1021/acs.jafc.0c01796.
  • Fu, X. M., Y. Y. Liao, S. H. Cheng, X. L. Xu, D. Grierson, and Z. Y. Yang. 2021. Nonaqueous fractionation and overexpression of fluorescent tagged enzymes reveals the subcellular sites of L-theanine biosynthesis in tea. Plant Biotechnology Journal 19 (1):98–108. doi: 10.1111/pbi.13445.
  • Furuyama, T., T. Yamashita, and S. Senoh. 1964. The synthesis of L-theanine. Bulletin of the Chemical Society of Japan 37 (7):1078. doi: 10.1246/bcsj.37.1078.
  • Gui, J. D., X. M. Fu, Y. Zhou, T. Katsuno, X. Mei, R. F. Deng, X. L. Xu, L. Y. Zhang, F. Dong, N. Watanabe, et al. 2015. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process? Journal of Agricultural and Food Chemistry 63 (31):6905–6914. doi: 10.1021/acs.jafc.5b02741.
  • Jing, T. T., N. Zhang, T. Gao, M. Y. Zhao, J. Y. Jin, Y. X. Chen, M. J. Xu, X. C. Wan, W. Schwab, and C. K. Song. 2019. Glucosylation of (Z)-3-hexenol informs intraspecies interactions in plants: A case study in Camellia sinensis. Plant, Cell & Environment 42 (4):1352–1367. doi: 10.1111/pce.13479.
  • Kato, A., A. Crozier, and H. Ashihara. 1998. Subcellular localization of the N-3 methyltransferase involved in caffeine biosynthesis in tea. Phytochemistry 48 (5):777–779. doi: 10.1016/S0031-9422(97)00975-8.
  • Kato, M., K. Mizuno, A. Crozier, T. Fujimura, and H. Ashihara. 2000. Caffeine synthase gene from tea leaves. Nature 406 (6799):956–957. doi: 10.1038/35023072.
  • Kato, M., K. Mizuno, T. Fujimura, M. Iwama, M. Irie, A. Crozier, and H. Ashihara. 1999. Purification and characterization of caffeine synthase from tea leaves. Plant Physiology 120 (2):579–586. doi: 10.1104/pp.120.2.579.
  • Kato, M., T. Kanehara, H. Shimizu, T. Suzuki, F. M. Gillies, A. Crozier, and H. Ashihara. 1996. Caffeine biosynthesis in young leaves of Camellia sinensis in vitro studies on N-methyltransferase activity involved in the conversion of xanthosine to caffeine. Physiologia Plantarum 98 (3):629–636. doi: 10.1111/j.1399-3054.1996.tb05720.x.
  • Kim, J., J. Kim, J. Shim, C. Y. Lee, K. W. Lee, and H. J. Lee. 2014. Cocoa phytochemicals: Recent advances in molecular mechanisms on health. Critical Reviews in Food Science and Nutrition 54 (11):1458–1472. doi: 10.1080/10408398.2011.641041.
  • Kim, S. Y., B. H. Ahn, K. J. Min, Y. H. Lee, E. H. Joe, and D. S. Min. 2004. Phospholipase D isozymes mediate epigallocatechin gallate-induced cyclooxygenase-2 expression in astrocyte cells. The Journal of Biological Chemistry 279 (37):38125–38133. doi: 10.1074/jbc.M402085200.
  • Kirita, M., D. Honma, Y. Tanaka, S. Usui, T. Shoji, M. Sami, T. Yokota, M. Tagashira, A. Muranaka, M. Uchiyama, et al. 2010. Cloning of a novel O-methyltransferase from Camellia sinensis and synthesis of O-methylated EGCG and evaluation of their bioactivity. Journal of Agricultural and Food Chemistry 58 (12):7196–7201. doi: 10.1021/jf100493s.
  • Konishi, S., and R. Yamaji. 1982. Metabolism of theanine, glutamine, and asparagine in tea shoots. Nippon Dojouhiryougaku Zasshi 53:241–246. doi: 10.20710/dojo.53.3_241.
  • Koshiishi, C., A. Kato, S. Yama, A. Crozier, and H. Ashihara. 2001. A new caffeine biosynthetic pathway in tea leaves: Utilization of adenosine released from the S-adenosyl-L-methionine cycle. FEBS Letters 499 (1-2):50–54. doi: 10.1016/S0014-5793(01)02512-1.
  • Kumar, N., A. Gulati, and A. Bhattacharya. 2013. L-Glutamine and L-glutamic acid facilitate successful Agrobacterium infection of recalcitrant tea cultivars. Applied Biochemistry and Biotechnology 170 (7):1649–1664. doi: 10.1007/s12010-013-0286-z.
  • Liao, Y. Y., X. M. Fu, L. T. Zeng, and Z. Y. Yang. 2020a. Strategies for studying in vivo biochemical formation pathways and multilevel distributions of quality or function-related specialized metabolites in tea (Camellia sinensis). Critical Reviews in Food Science and Nutrition. Advance online publication. doi: 10.1080/10408398.2020.1819195.
  • Liao, Y. Y., Z. L. Zeng, H. B. Tan, S. H. Cheng, F. Dong, and Z. Y. Yang. 2020b. Biochemical pathway of benzyl nitrile derived from L-phenylalanine in tea (Camellia sinensis) and its formation in response to postharvest stresses. Journal of Agricultural and Food Chemistry 68 (5):1397–1404. doi: 10.1021/acs.jafc.9b06436.
  • Liao, Y. Y., X. M. Fu, H. Y. Zhou, W. Rao, L. T. Zeng, and Z. Y. Yang. 2019. Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry. Food Chemistry 292:204–210. doi: 10.1016/j.foodchem.2019.04.055.
  • Lin, Y. L., I. M. Juan, Y. L. Chen, Y. C. Liang, and J. K. Lin. 1996. Composition of polyphenols in fresh tea leaves and associations of their oxygen-radical-absorbing capacity with antiproliferative actions in fibroblast cells. Journal of Agricultural and Food Chemistry 44 (6):1387–1394. doi: 10.1021/jf950652k.
  • Liu, C. G., X. Q. Wang, V. Shulaev, and R. A. Dixon. 2016. A role for leucoanthocyanidin reductase in the extension of proanthocyanidins. Nature Plants 2 (12):1–7. doi: 10.1038/nplants.2016.182.
  • Liu, G. F., J. J. Liu, Z. R. He, F. M. Wang, H. Yang, Y. F. Yan, M. J. Gao, M. Y. Gruber, X. C. Wan, and S. Wei. 2018. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Plant, Cell & Environment 41 (1):176–186. doi: 10.1111/pce.13080.
  • Liu, Y. J., L. P. Gao, L. Liu, Q. Yang, Z. W. Lu, Z. Y. Nie, Y. S. Wang, and T. Xia. 2012. Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis). The Journal of Biological Chemistry 287 (53):44406–44417. doi: 10.1074/jbc.M112.403071.
  • Liu, Y. L., X. F. Jin, L. L. Ma, D. Cao, Z. M. Gong, and C. L. Wei. 2017. Isolation and purification of mesophyll protoplasts from the leaves of Camellia sinensis. Plant Science Journal 35:908–911. (in Chinese).
  • Lopez, S. J., R. R. Kumar, P. K. Pius, and N. Muraleedharan. 2004. Agrobacterium tumefaciens-mediated genetic transformation in tea (Camellia sinensis (L.) O. Kuntze). Plant Molecular Biology Reporter 22 (2):201–202. doi: 10.1007/BF02772730.
  • Mizutani, M.,. H. Nakanishi, J. Ema, S. J. Ma, E. Noguchi, M. Inohara-Ochiai, M. Fukuchi-Mizutani, M. Nakao, and K. Sakata. 2002. Cloning of beta-primeverosidase from tea leaves, a key enzyme in tea aroma formation. Plant Physiology 130 (4):2164–2176. doi: 10.1104/pp.102.011023.
  • Mohanpuria, P., V. Kumar, P. S. Ahuja, and S. K. Yadav. 2011. Agrobacterium-mediated silencing of caffeine synthesis through root transformation in Camellia sinensis L. Molecular Biotechnology 48 (3):235–243. doi: 10.1007/s12033-010-9364-4.
  • Mohanpuria, P., V. Kumar, R. Joshi, A. Gulati, P. S. Ahuja, and S. K. Yadav. 2009. Caffeine biosynthesis and degradation in tea [Camellia sinensis (L.) O. Kuntze] is under developmental and seasonal regulation. Molecular Biotechnology 43 (2):104–111. doi: 10.1007/s12033-009-9188-2.
  • Mondal, T. K., A. Bhattacharya, P. S. Ahuja, and P. K. Chand. 2001. Transgenic tea (Camellia sinensis (L.) O. Kuntze cv. Kangra Jat) plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Reports 20 (8):712–720. doi: 10.1007/s002990100382.
  • Mondal, T. K., H. C. Rawal, B. Bera, P. M. Humar, M. Choubey, G. Saha, B. Das, T. Bandyopadhyay, R. V. J. Ilango, and T. R. Sharma. 2019. Draft genome sequence of a popular Indian tea genotype TV-1 [Camellia assamica L. (O). Kunze]. BioRxiv. doi: 10.1101/762161.
  • Mu, W. M., T. Zhang, and B. Jiang. 2015. An overview of biological production of L-theanine. Biotechnology Advances 33 (3-4):335–342. doi: 10.1016/j.biotechadv.2015.04.004.
  • Naz, S., A. Ali, and J. Iqbal. 2008. Phenolic content in vitro cultures of chick pea (Cicer arietinum L.) during callogenesis and organogenesis. Pakistan Journal of Botany 40 (6):2525–2539.
  • Ohgami, S., E. Ono, M. Horikawa, J. Murata, K. Totsuka, H. Toyonaga, Y. Ohba, H. Dohra, T. Asai, K. Matsui, et al. 2015. Volatile glycosylation in tea plants: Sequential glycosylations for the biosynthesis of aroma β-primeverosides are catalyzed by two Camellia sinensis glycosyltransferases. Plant Physiology 168 (2):464–477. doi: 10.1104/pp.15.00403.
  • Okada, Y., M. Kozeki, S. Shu, N. Aoi, and I. Abe. 2006. Theanine synthetase. Japan Patent, JP 2006-254780A, filed Mar 17, 2005, and issued Sep 28, 2006.
  • Panchal, S. K., H. Poudyal, J. Waanders, and L. Brown. 2012. Coffee extract attenuates changes in cardiovascular and hepatic structure and function without decreasing obesity in high-carbohydrate, high-fat diet-fed male rats. The Journal of Nutrition 142 (4):690–697. doi: 10.3945/jn.111.153577.
  • Pang, Y., G. J. Peel, S. B. Sharma, Y. Tang, and R. A. Dixon. 2008. A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America 105 (37):14210–14215. doi: 10.1073/pnas.0805954105.
  • Pang, Y., I. S. B. Abeysinghe, J. He, X. He, D. Huhman, K. M. Mewan, L. W. Sumner, J. Yun, and R. A. Dixon. 2013. Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering. Plant Physiology 161 (3):1103–1116. doi: 10.1104/pp.112.212050.
  • Peng, Z., H. Tong, G. Liang, Y. Shi, and L. Yuan. 2018. Protoplast isolation and fusion induced by PEG with leaves and roots of tea plant (Camellia sinensis L. O. Kuntze). Acta Agronomica Sinica 44 (3):463–470. (in Chinese) doi: 10.3724/SP.J.1006.2018.00463.
  • Punyasiri, P. A. N., I. S. B. Abeysinghe, V. Kumar, D. Treutter, D. Duy, C. Gosch, S. Martens, G. Forkmann, and T. C. Fischer. 2004. Flavonoid biosynthesis in the tea plant Camellia sinensis: Properties of enzymes of the prominent epicatechin and catechin pathways. Archives of Biochemistry and Biophysics 431 (1):22–30. doi: 10.1016/j.abb.2004.08.003.
  • Rana, M. M., Z. Han, D. Song, G. Liu, D. Li, X. Wan, A. Karthikeyan, and S. Wei. 2016. Effect of medium supplements on Agrobacterium rhizogenes mediated hairy root induction from the callus tissues of Camellia sinensis var. sinensis. International Journal of Molecular Sciences 17 (7):1132. doi: 10.3390/ijms17071132.
  • Ru, Z., Y. Lai, C. Xu, and L. Li. 2013. Polyphenol oxidase (PPO) in early stage of browning of Phalaenopsis leaf explants. Journal of Agricultural Science 5 (9):57–64. doi: 10.5539/jas.v5n9p57.
  • Saijo, R. 1982. Isolation and chemical structures of two new catechins from fresh tea leaf. Agricultural and Biological Chemistry 46 (7):1969–1970. doi: 10.1080/00021369.1982.10865368.
  • Saijo, R. 1983. Pathway of gallic acid biosynthesis and its esterification with catechins in young tea shoots. Agricultural and Biological Chemistry 47 (3):455–460. doi: 10.1080/00021369.1983.10865673.
  • Sakato, Y. 1949. The chemical constituents of tea: A new amide theanine. Journal of Agricultural and Food Chemistry 23:262–267.
  • Sandal, I., U. Saini, B. Lacroix, A. Bhattacharya, P. S. Ahuja, and V. Citovsky. 2007. Agrobacterium-mediated genetic transformation of tea leaf explants: Effects of counteracting bactericidity of leaf polyphenols without loss of bacterial virulence. Plant Cell Reports 26 (2):169–176. doi: 10.1007/s00299-006-0211-9.
  • Sano, M., M. Suzuki, T. Miyase, K. Yoshino, and M. Maeda-Yamamoto. 1999. Novel antiallergic catechin derivatives isolated from oolong tea. Journal of Agricultural and Food Chemistry 47 (5):1906–1910. doi: 10.1021/jf981114l.
  • Sasaoka, K., M. Kito, and Y. Onishi. 1965. Some properties of the theanine synthesizing enzyme in tea seedlings. Agricultural and Biological Chemistry 29 (11):984–988. doi: 10.1080/00021369.1965.10858501.
  • Singh, H. R., P. Hazarika, N. Agarwala, N. Bhattacharyya, P. Bhagawati, B. Gohain, T. Bandyopadhyay, R. Bharalee, S. Gupta, M. Deka, et al. 2018. Transgenic tea over-expressing Solanum tuberosum endo-1,3-beta-D-glucanase gene conferred resistance against blister blight disease. Plant Molecular Biology Reporter 36 (1):107–116. doi: 10.1007/s11105-017-1063-x.
  • Song, D., L. Feng, M. Rana, M. Gao, and S. Wei. 2014. Effects of catechins on Agrobacterium-mediated genetic transformation of Camellia sinensis. Plant Cell, Tissue and Organ Culture (PCTOC) 119 (1):27–37. doi: 10.1007/s11240-014-0511-7.
  • Suzuki, T., and E. Takahashi. 1975. Metabolism of xanthine and hypoxanthine in the tea plant (Thea sinensis L.). The Biochemical Journal 146 (1):79–85. doi: 10.1042/bj1460079.
  • Takeo, T. 1974. L-Alanine as a precursor of ethylamine in Camellia sinensis. Phytochemistry 13 (8):1401–1406. doi: 10.1016/0031-9422(74)80299-2.
  • Takeo, T. 1978. L-Alanine decarboxylase in Camellia sinensis. Phytochemistry 17 (2):313–314. doi: 10.1016/S0031-9422(00)94173-6.
  • Tanner, G. J., K. T. Francki, S. Abrahams, J. M. Watson, P. J. Larkin, and A. R. Ashton. 2003. Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. The Journal of Biological Chemistry 278 (34):31647–31656. doi: 10.1074/jbc.M302783200.
  • Tsushida, T., and T. Takeo. 1985. An enzyme hydrolyzing L-theanine in tea leaves. Agricultural and Biological Chemistry 49 (10):2913–2917. doi: 10.1080/00021369.1985.10867191.
  • Wan, X., and T. Xia. 2015. Secondary metabolism of tea plant. 1st ed. Beijing: Science Press (in Chinese).
  • Wang, L., Y. Shi, X. Chang, S. Jing, Q. Zhang, C. You, H. Yuan, and H. Wang. 2019. DNA methylome analysis provides evidence that the expansion of the tea genome is linked to TE bursts. Plant Biotechnology Journal 17 (4):826–835. doi: 10.1111/pbi.13018.
  • Wang, P., L. Zhang, X. Jiang, X. Dai, L. Xu, T. Li, D. Xing, Y. Li, M. Li, L. Gao, et al. 2018. Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis. Planta 247 (1):139–154. doi: 10.1007/s00425-017-2771-z.
  • Wang, P., Y. Liu, L. Zhang, W. Wang, H. Hou, Y. Zhao, X. Jiang, J. Yu, H. Tan, Y. Wang, et al. 2020a. Functional demonstration of plant flavonoid carbocations proposed to be involved in the biosynthesis of proanthocyanidins. The Plant Journal : For Cell and Molecular Biology 101 (1):18–36. doi: 10.1111/tpj.14515.
  • Wang, X., H. Feng, Y. Chang, C. Ma, L. Wang, X. Hao, A. Li, H. Cheng, L. Wang, P. Cui, et al. 2020b. Population sequencing enhances understanding of tea plant evolution. Nature Communications 11 (1):4447.doi: 10.1038/s41467-020-18228-8.
  • Wei, C. L., H. Yang, S. B. Wang, J. Zhao, C. Liu, L. P. Gao, E. H. Xia, Y. Lu, Y. L. Tai, G. B. She, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America 115 (18):E4151–E4158. doi: 10.1073/pnas.1719622115.
  • Wei, K., L. Wang, Y. Zhang, L. Ruan, H. Li, L. Wu, L. Xu, C. Zhang, X. Zhou, H. Cheng, et al. 2019. A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. The Plant Journal 97 (5):825–840. doi: 10.1111/tpj.14161.
  • Wickremasinghe, R. L., and K. P. W. C. Perera. 1972. Site of biosynthesis and translocation of theanine in the tea plant. Tea Quarterly 43:175–179.
  • Xia, E. H., F. D. Li, W. Tong, H. Yang, S. B. Wang, J. Zhao, C. Liu, L. P. Gao, Y. L. Tai, G. B. She, et al. 2019a. The tea plant reference genome and improved gene annotation using long-read and paired-end sequencing data. Scientific Data 6 (1):122. doi: 10.1038/s41597-019-0127-1.
  • Xia, E. H., F. D. Li, W. Tong, P. H. Li, Q. Wu, H. J. Zhao, R. H. Ge, R. P. Li, Y. Y. Li, Z. Z. Zhang, et al. 2019b. Tea Plant Information Archive: A comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnology Journal 17 (10):1938–1953. doi: 10.1111/pbi.13111.
  • Xia, E. H., H. B. Zhang, J. Sheng, K. Li, Q. J. Zhang, C. Kim, Y. Zhang, Y. Liu, T. Zhu, W. Li, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10 (6):866–877. doi: 10.1016/j.molp.2017.04.002.
  • Xia, E. H., W. Tong, Y. Hou, Y. L. An, L. B. Chen, Q. Wu, Y. L. Liu, J. Yu, F. D. Li, R. P. Li, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant 13 (7):1013–1026. doi: 10.1016/j.molp.2020.04.010.
  • Xie, D. Y., S. B. Sharma, N. L. Paiva, D. Ferreira, and R. A. Dixon. 2003. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science (New York, N.Y.) 299 (5605):396–399. doi: 10.1126/science.1078540.
  • Xu, Y., W. Chen, C. Ma, S. Shen, Y. Zhou, L. Zhou, and L. Chen. 2017. Proteome and acetyl-proteome profiling of Camellia sinensis cv. 'Anjin Baicha' during periodic albinism reveals alterations in photosynthetic and secondary metabolite biosynthetic pathways. Frontiers in Plant Science 8:2104. doi: 10.3389/fpls.2017.02104.
  • Yang, J., and Y. Y. Xiao. 2013. Grape phytochemicals and associated health benefits. Critical Reviews in Food Science and Nutrition 53 (11):1202–1225. doi: 10.1080/10408398.2012.692408.
  • Yang, Z. Y., S. Baldermann, and N. Watanabe. 2013. Recent studies of the volatile compounds in tea. Food Research International 53 (2):585–599. doi: 10.1016/j.foodres.2013.02.011.
  • Yu, X., J. Xiao, S. Chen, Y. Yu, J. Ma, Y. Lin, R. Li, J. Lin, Z. Fu, Q. Zhou, et al. 2020. Metabolite signatures of diverse Camellia sinensis tea populations. Nature Communications 11 (1):1–14. doi: 10.1038/s41467-020-19441-1.
  • Yu, Z. M., and Z. Y. Yang. 2020. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Critical Reviews in Food Science and Nutrition 60 (5):844–858. doi: 10.1080/10408398.2018.1552245.
  • Zeng, L. T., H. B. Tan, Y. Y. Liao, G. T. Jian, M. Kang, F. Dong, N. Watanabe, and Z. Y. Yang. 2019a. Increasing temperature changes flux into multiple biosynthetic pathways for 2-phenylethanol in model systems of tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry 67 (36):10145–10154. doi: 10.1021/acs.jafc.9b03749.
  • Zeng, L. T., N. Watanabe, and Z. Y. Yang. 2019. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition 59 (14):2321–2334. doi: 10.1080/10408398.2018.1506907.
  • Zeng, L. T., X. C. Zhou, X. G. Su, and Z. Y. Yang. 2020a. Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends in Food Science & Technology 106:242–253. doi: 10.1016/j.tifs.2020.10.001.
  • Zeng, L. T., X. C. Zhou, Y. Y. Liao, and Z. Y. Yang. 2020b. Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. Journal of Advanced Research. Advance online publication. doi: 10.1016/j.jare.2020.11.004.
  • Zeng, L. T., X. Q. Wang, H. B. Tan, Y. Y. Liao, P. Xu, M. Kang, F. Dong, and Z. Y. Yang. 2020c. Alternative pathway to the formation of trans-cinnamic acid derived from L-phenylalanine in tea (Camellia sinensis) plants and other plants. Journal of Agricultural and Food Chemistry 68 (11):3415–3424. doi: 10.1021/acs.jafc.9b07467.
  • Zeng, L. T., X. Q. Wang, Y. Y. Xiao, D. C. Gu, Y. Y. Liao, X. L. Xu, Y. X. Jia, R. F. Deng, C. K. Song, and Z. Y. Yang. 2019b. Elucidation of (Z)-3-hexenyl-β-glucopyranoside enhancement mechanism under stresses from the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry 67 (23):6541–6550. doi: 10.1021/acs.jafc.9b02228.
  • Zeng, L. T., X. W. Wang, Y. Y. Liao, D. C. Gu, F. Dong, and Z. Y. Yang. 2019c. Formation of and changes in phytohormone levels in response to stress during the manufacturing process of oolong tea (Camellia sinensis). Postharvest Biology and Technology 157:110974. doi: 10.1016/j.postharvbio.2019.110974.
  • Zeng, L. T., Y. Zhou, X. M. Fu, X. Mei, S. H. Cheng, J. D. Gui, F. Dong, J. C. Tang, S. Z. Ma, and Z. Y. Yang. 2017. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food Chemistry 237:488–498. doi: 10.1016/j.foodchem.2017.05.137.
  • Zeng, L. T., Y. Zhou, X. M. Fu, Y. Y. Liao, Y. F. Yuan, Y. X. Jia, F. Dong, and Z. Y. Yang. 2018. Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. Journal of Agricultural and Food Chemistry 66 (15):3899–3909. doi: 10.1021/acs.jafc.8b00515.
  • Zeng, L., Y. Zhou, J. Gui, X. Fu, X. Mei, Y. Zhen, T. Ye, B. Du, F. Dong, N. Watanabe, et al. 2016. Formation of volatile tea constituent indole during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry 64 (24):5011–5019. doi: 10.1021/acs.jafc.6b01742.
  • Zhang, Q. J., W. Li, K. Li, H. Nan, C. Shi, Y. Zhang, Z. Y. Dai, Y. L. Lin, X. L. Yang, Y. Tong, et al. 2020a. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in Driving Genome Size Evolution. Molecular Plant 13 (7):935–938. doi: 10.1016/j.molp.2020.04.009.
  • Zhang, W., Y. Zhang, H. Qiu, Y. Guo, H. Wan, X. Zhang, F. Scossa, S. Alseekh, Q. Zhang, P. Wang, et al. 2020b. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications 11 (1):1–12. doi: 10.1038/s41467-020-17498-6.
  • Zhang, Y. H., Y. F. Li, Y. J. Wang, L. Tan, Z. Q. Cao, C. Xie, G. Xie, H. B. Gong, W. Y. Sun, S. H. Ouyang, et al. 2020c. Identification and characterization of N9-methyltransferase involved in converting caffeine into non-stimulatory theacrine in tea. Nature Communications 11 (1):1–8. doi: 10.1038/s41467-020-15324-7.
  • Zhao, M., J. Jin, T. Gao, N. Zhang, T. Jing, J. Wang, Q. Ban, W. Schwab, and C. Song. 2019. Glucosyltransferase CsUGT78A14 regulates flavonols accumulation and reactive oxygen species scavenging in response to cold stress in Camellia sinensis. Frontiers in Plant Science 10:1675 doi: 10.3389/fpls.2019.01675.
  • Zhao, M., N. Zhang, T. Gao, J. Jin, T. Jing, J. Wang, Y. Wu, X. Wan, W. Schwab, and C. Song. 2020. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. The New Phytologist 226 (2):362–372. doi: 10.1111/nph.16364.
  • Zhou, Y., L. T. Zeng, J. D. Gui, Y. Y. Liao, J. L. Li, J. C. Tang, Q. Meng, F. Dong, and Z. Y. Yang. 2017. Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis). Food Research International 96:206–214. doi: 10.1016/j.foodres.2017.03.049.
  • Zhou, Y., L. T. Zeng, X. L. Hou, Y. Y. Liao, and Z. Y. Yang. 2020a. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany 71 (6):2172–2185. doi: 10.1093/jxb/erz570.
  • Zhou, Y., R. F. Deng, X. L. Xu, and Z. Y. Yang. 2020b. Enzyme catalytic efficiencies and relative gene expression levels of (R)-linalool synthase and (S)-linalool synthase determine the proportion of linalool enantiomers in Camellia sinensis var. sinensis. Journal of Agricultural and Food Chemistry 68 (37):10109–10117. doi: 10.1021/acs.jafc.0c04381.
  • Zhu, B. Y., L. B. Chen, M. Q. Lu, J. Zhang, J. Y. Han, W. W. Deng, and Z. Z. Zhang. 2019. Caffeine content and related gene expression: Novel insight into caffeine metabolism in Camellia plants containing low, normal, and high caffeine concentrations. Journal of Agricultural and Food Chemistry 67 (12):3400–3411. doi: 10.1021/acs.jafc.9b00240.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.