1,004
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn (Hippophaë rhamnoides)

ORCID Icon, ORCID Icon, &

References

  • Aaby, K., B. K. Martinsen, G. I. Borge, and D. Røen. 2020. Bioactive compounds and color of sea buckthorn (Hippophae rhamnoides L.) purees as affected by heat treatment and high-pressure homogenization. International Journal of Food Properties 23 (1):651–64. doi: 10.1080/10942912.2020.1752715.
  • Aerts, R. J., T. N. Barry, and W. C. McNabb. 1999. Polyphenols and agriculture: Beneficial effects of proanthocyanidins in forages. Agriculture, Ecosystems & Environment 75 (1-2):1–12. doi: 10.1016/S0167-8809(99)00062-6.
  • Ahn, J., H. Lee, S. Kim, J. Park, and T. Ha. 2008. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochemical and Biophysical Research Communications 373 (4):545–9. doi: 10.1016/j.bbrc.2008.06.077.
  • Alexandrakis, Z., K. Kyriakopoulou, G. Katsaros, M. Krokida, and P. Taoukis. 2014. Selection of process conditions for high pressure pasteurization of sea buckthorn juice retaining high antioxidant activity. Food and Bioprocess Technology 7 (11):3226–34. doi: 10.1007/s11947-014-1299-5.
  • Amarowicz, R., R. Carle, G. Dongowski, A. Durazzo, R. Galensa, D. Kammerer, G. Maiani, and M. K. Piskula. 2009. Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods. Molecular Nutrition & Food Research 53 (S2):S151–S183. doi: 10.1002/mnfr.200700486.
  • Andersson, S. C., M. E. Olsson, E. Johansson, and K. Rumpunen. 2009. Carotenoids in sea buckthorn (Hippophae rhamnoides L.) berries during ripening and use of pheophytin a as a maturity marker. Journal of Agricultural and Food Chemistry 57 (1):250–8. doi: 10.1021/jf802599f.
  • Andreux, P. A., W. Blanco-Bose, D. Ryu, F. Burdet, M. Ibberson, P. Aebischer, J. Auwerx, A. Singh, and C. Rinsch. 2019. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nature Metabolism 1 (6):595–603. doi: 10.1038/s42255-019-0073-4.
  • Apers, S., Y. Huang, S. V. Miert, R. Dommisse, D. V. Berghe, L. Pieters, and A. Vlietinck. 2002. Characterisation of new oligoglycosidic compounds in two Chinese medicinal herbs. Phytochemical Analysis 13 (4):202–6. doi: 10.1002/pca.642.
  • Arimboor, R., and C. Arumughan. 2011. Sea buckthorn (Hippophae rhamnoides) proanthocyanidins inhibit in vitro enzymatic hydrolysis of protein. Journal of Food Science 76 (6):T130–T137. doi: 10.1111/j.1750-3841.2011.02238.x.
  • Arimboor, R., K. S. Kumar, and C. Arumughan. 2008. Simultaneous estimation of phenolic acids in sea buckthorn (Hippophae rhamnoides) using RP-HPLC with DAD. Journal of Pharmaceutical and Biomedical Analysis 47 (1):31–8. doi: 10.1016/j.jpba.2007.11.045.
  • Aron, P. M., and J. A. Kennedy. 2008. Flavan‐3‐ols: Nature, occurrence and biological activity. Molecular Nutrition & Food Research 52 (1):79–104. doi: 10.1002/mnfr.200700137.
  • Arrigoni, O., and M. C. De Tullio. 2002. Ascorbic acid: Much more than just an antioxidant. Biochimica et Biophysica Acta (BBA) - General Subjects 1569 (1-3):1–9. doi: 10.1016/S0304-4165(01)00235-5.
  • Baba, S., N. Osakabe, M. Natsume, and J. Terao. 2002. Absorption and urinary excretion of procyanidin B2 [epicatechin-(4β-8)-epicatechin] in rats. Free Radical Biology and Medicine 33 (1):142–8. doi: 10.1016/S0891-5849(02)00871-7.
  • Bajec, M. R., and G. J. Pickering. 2008. Astringency: Mechanisms and perception. Critical Reviews in Food Science and Nutrition 48 (9):858–75. doi: 10.1080/10408390701724223.
  • Bakkalbaşi, E., Ö. Menteş, and N. Artik. 2009. Food ellagitannins-occurrence, effects of processing and storage. Critical Reviews in Food Science and Nutrition 49 (3):283–98. doi: 10.1080/10408390802064404.
  • Bal, L. M., V. Meda, S. Naik, and S. Satya. 2011. Sea buckthorn berries: A potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Research International 44 (7):1718–27. doi: 10.1016/j.foodres.2011.03.002.
  • Basu, M., R. Prasad, P. Jayamurthy, K. Pal, C. Arumughan, and R. Sawhney. 2007. Anti-atherogenic effects of seabuckthorn (Hippophaea rhamnoides) seed oil. Phytomedicine 14 (11):770–7. doi: 10.1016/j.phymed.2007.03.018.
  • Bekker, N., and A. Glushenkova. 2001. Components of certain species of the Elaeagnaceae family. Chemistry of Natural Compounds 37 (2):97–116. doi: 10.1023/A:1012395332284.
  • Belitz, H. D., W. Grosch, and P. Schieberle. 2004. Food chemistry. 3rd revised ed., 806–60. Berlin, Germany: Springer Science & Business Media.
  • Beveridge, T., T. S. Li, B. D. Oomah, and A. Smith. 1999. Sea buckthorn products: Manufacture and composition. Journal of Agricultural and Food Chemistry 47 (9):3480–8. doi: 10.1021/jf981331m.
  • Bittová, M., E. Krejzová, V. Roblová, P. Kubáň, and V. Kubáň. 2014. Monitoring of HPLC profiles of selected polyphenolic compounds in sea buckthorn (Hippophaë rhamnoides L.) plant parts during annual growth cycle and estimation of their antioxidant potential. Central European Journal of Chemistry 12 (11):1152–61.
  • Bufe, B., T. Hofmann, D. Krautwurst, J. Raguse, and W. Meyerhof. 2002. The human TAS2R16 receptor mediates bitter taste in response to beta-glucopyranosides. Nature Genetics 32 (3):397–401. doi: 10.1038/ng1014.
  • Cerdá, B., P. Periago, J. C. Espín, and F. A. Tomás-Barberán. 2005. Identification of urolithin A as a metabolite produced by human colon microflora from ellagic acid and related compounds. Journal of Agricultural and Food Chemistry 53 (14):5571–6. doi: 10.1021/jf050384i.
  • Challacombe, C. A., E. M. Abdel-Aal, K. Seetharaman, and L. M. Duizer. 2012. Influence of phenolic acid content on sensory perception of bread and crackers made from red or white wheat. Journal of Cereal Science 56 (2):181–8. doi: 10.1016/j.jcs.2012.03.006.
  • Chan, E. W. C., Y. Y. Lim, S. K. Wong, K. Lim, S. Tan, F. Lianto, and M. Yong. 2009. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry 113 (1):166–72. doi: 10.1016/j.foodchem.2008.07.090.
  • Chen, C., H. Zhang, W. Xiao, Z.-P. Yong, and N. Bai. 2007. High-performance liquid chromatographic fingerprint analysis for different origins of sea buckthorn berries. Journal of Chromatography A 1154 (1-2):250–9. doi:10.1016/j.chroma.2007.03.097.
  • Chen, C., X. Xu, Y. Chen, M. Yu, F. Wen, and H. Zhang. 2013. Identification, quantification and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis). Food Chemistry 141 (3):1573–9. doi: 10.1016/j.foodchem.2013.03.092.
  • Cheng, J., K. Kondo, Y. Suzuki, Y. Ikeda, X. Meng, and K. Umemura. 2003. Inhibitory effects of total flavones of Hippophae Rhamnoides L on thrombosis in mouse femoral artery and in vitro platelet aggregation. Life Sciences 72 (20):2263–71. doi: 10.1016/S0024-3205(03)00114-0.
  • Ciesarová, Z., M. Murkovic, K. Cejpek, F. Kreps, B. Tobolková, R. Koplík, E. Belajová, K. Kukurová, Ľ. Daško, Z. Panovská, et al. 2020. Why is sea buckthorn (Hippophae rhamnoides L.) So exceptional? A review. Food Research International 133:109170. doi: 10.1016/j.foodres.2020.109170.
  • Clair, E., B. Yang, T. Raija, K. Heikki, H. R. Gerald, and M. A. Minihane. 2002. Effects of an antioxidant-rich juice (sea buckthorn) on risk factors for coronary heart disease in humans. The Journal of Nutritional Biochemistry 13 (6):346–54. doi: 10.1016/S0955-2863(02)00179-1.
  • Delcour, J. A., M. M. Vandenberghe, P. F. Corten, and P. Dondeyne. 1984. Flavor thresholds of polyphenolics in water. American Journal of Enology and Viticulture 35 (3):134–6.
  • Deng, G., X. Xu, Y. Zhang, D. Li, R. Gan, and H. Li. 2013. Phenolic compounds and bioactivities of pigmented rice. Critical Reviews in Food Science and Nutrition 53 (3):296–306. doi: 10.1080/10408398.2010.529624.
  • Donovan, J. L., A. Lee, C. Manach, L. Rios, C. Morand, A. Scalbert, and C. Rémésy. 2002. Procyanidins are not bioavailable in rats fed a single meal containing a grapeseed extract or the procyanidin dimer B3. British Journal of Nutrition 87 (4):299–306. doi: 10.1079/BJN2001517.
  • Du, L., M. Zhao, J. Xu, D. Qian, S. Jiang, E. Shang, J. Guo, and J. Duan. 2014. Analysis of the metabolites of isorhamnetin 3-O-glucoside produced by human intestinal flora in vitro by applying ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry. Journal of Agricultural and Food Chemistry 62 (12):2489–95. doi: 10.1021/jf405261a.
  • Fan, J., X. Ding, and W. Gu. 2007. Radical-scavenging proanthocyanidins from sea buckthorn seed. Food Chemistry 102 (1):168–77. doi: 10.1016/j.foodchem.2006.05.049.
  • Ferreira, D., and D. Slade. 2002. Oligomeric proanthocyanidins: Naturally occurring O-heterocycles. Natural Product Reports 19 (5):517–41. doi: 10.1039/b008741f.
  • Fonteles, M., M. Almeida, and J. Larner. 2000. Antihyperglycemic effects of 3-O-methyl-D-chiro-inositol and D-chiro-inositol associated with manganese in streptozotocin diabetic rats. Hormone and Metabolic Research 32 (04):129–32. doi: 10.1055/s-2007-978606.
  • Frank, O., G. Zehentbauer, and T. Hofmann. 2006. Bioresponse-guided decomposition of roast coffee beverage and identification of key bitter taste compounds. European Food Research and Technology 222 (5-6):492–508. doi: 10.1007/s00217-005-0143-6.
  • Ganju, L., Y. Padwad, R. Singh, D. Karan, S. Chanda, M. K. Chopra, P. Bhatnagar, R. Kashyap, and R. C. Sawhney. 2005. Anti-inflammatory activity of Sea buckthorn (Hippophae rhamnoides) leaves. International Immunopharmacology 5 (12):1675–84. doi: 10.1016/j.intimp.2005.03.017.
  • Gao, X., M. Ohlander, N. Jeppsson, L. Björk, and V. Trajkovski. 2000. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. Journal of Agricultural and Food Chemistry 48 (5):1485–90. doi: 10.1021/jf991072g.
  • Geertsen, J., B. H. Allesen-Holm, D. V. Byrne, and D. Giacalone. 2016. Consumer-led development of novel sea buckthorn-based beverages. Journal of Sensory Studies 31 (3):245–55. doi: 10.1111/joss.12207.
  • Geetha, S., V. Singh, M. S. Ram, G. Ilavazhagan, P. Banerjee, and R. Sawhney. 2005. Immunomodulatory effects of sea buckthorn (Hippophae rhamnoides L.) against chromium (VI) induced immunosuppression. Molecular and Cellular Biochemistry 278 (1-2):101–9. doi: 10.1007/s11010-005-7095-9.
  • Geetha, S., P. Jayamurthy, K. Pal, S. Pandey, R. Kumar, and R. Sawhney. 2008. Hepatoprotective effects of sea buckthorn (Hippophae rhamnoides L.) against carbon tetrachloride induced liver injury in rats. Journal of the Science of Food and Agriculture 88 (9):1592–7. doi: 10.1002/jsfa.3255.
  • Glabasnia, A., and T. Hofmann. 2006. Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in bourbon whiskey and oak-matured red wines. Journal of Agricultural and Food Chemistry 54 (9):3380–90. doi: 10.1021/jf052617b.
  • Glabasnia, A., and T. Hofmann. 2007. Identification and sensory evaluation of dehydro- and deoxy-ellagitannins formed upon toasting of oak wood (Quercus alba L.). Journal of Agricultural and Food Chemistry 55 (10):4109–18. doi: 10.1021/jf070151m.
  • Gonthier, M., J. L. Donovan, O. Texier, C. Felgines, C. Remesy, and A. Scalbert. 2003. Metabolism of dietary procyanidins in rats. Free Radical Biology & Medicine 35 (8):837–44. doi: 10.1016/S0891-5849(03)00394-0.
  • Graefe, E. U., J. Wittig, S. Mueller, A. Riethling, B. Uehleke, B. Drewelow, H. Pforte, G. Jacobasch, H. Derendorf, and M. Veit. 2001. Pharmacokinetics and bioavailability of quercetin glycosides in humans. Journal of Clinical Pharmacology 41 (5):492–9. doi: 10.1177/00912700122010366.
  • Grey, C., C. Widén, P. Adlercreutz, K. Rumpunen, and R. Duan. 2010. Antiproliferative effects of sea buckthorn (Hippophae rhamnoides L.) extracts on human colon and liver cancer cell lines. Food Chemistry 120 (4):1004–10. doi: 10.1016/j.foodchem.2009.11.039.
  • Guan, T. T., S. Cenkowski, and A. Hydamaka. 2006. Effect of drying on the nutraceutical quality of sea buckthorn (Hippophae rhamnoides L. ssp. sinensis) leaves. Journal of Food Science 70 (9):E514–E518. doi: 10.1111/j.1365-2621.2005.tb08312.x.
  • Guliyev, V. B., M. Gul, and A. Yildirim. 2004. Hippophae rhamnoides L.: Chromatographic methods to determine chemical composition, use in traditional medicine and pharmacological effects. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 812 (1-2):291–307. doi: 10.1016/S1570-0232(04)00720-2.
  • Guo, R., X. Guo, T. Li, X. Fu, and R. H. Liu. 2017. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries. Food Chemistry 221:997–1003. doi: 10.1016/j.foodchem.2016.11.063.
  • Gupta, A., R. Kumar, K. Pal, V. Singh, P. K. Banerjee, and R. C. Sawhney. 2006. Influence of sea buckthorn (Hippophae rhamnoides L.) flavone on dermal wound healing in rats. Molecular and Cellular Biochemistry 290 (1-2):193–8. doi: 10.1007/s11010-006-9187-6.
  • Gutzeit, D., G. Baleanu, P. Winterhalter, and G. Jerz. 2008. Vitamin C content in sea buckthorn berries (Hippophae rhamnoides L. ssp. rhamnoides) and related products: A kinetic study on storage stability and the determination of processing effects. Journal of Food Science 73 (9):C615–20. doi: 10.1111/j.1750-3841.2008.00957.x.
  • Heinonen, M. 2007. Antioxidant activity and antimicrobial effect of berry phenolics—A Finnish perspective. Molecular Nutrition & Food Research 51 (6):684–91. doi: 10.1002/mnfr.200700006.
  • Higgins, J. A., J. C. B. Miller, and G. S. Denyer. 1996. Development of insulin resistance in the rat is dependent on the rate of glucose absorption from the diet. The Journal of Nutrition 126 (3):596–602. doi: 10.1093/jn/126.3.596.
  • Hofmann, T., A. Glabasnia, B. Schwarz, K. N. Wisman, K. A. Gangwer, and A. E. Hagerman. 2006. Protein binding and astringent taste of a polymeric procyanidin, 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose, castalagin, and grandinin. Journal of Agricultural and Food Chemistry 54 (25):9503–9. doi: 10.1021/jf062272c.
  • Hollman, P., and M. Katan. 1997. Absorption, metabolism and health effects of dietary flavonoids in man. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 51 (8):305–10. doi: 10.1016/S0753-3322(97)88045-6.
  • Hraš, A. R., M. Hadolin, Ž. Knez, and D. Bauman. 2000. Comparison of antioxidative and synergistic effects of rosemary extract with α-tocopherol, ascorbyl palmitate and citric acid in sunflower oil. Food Chemistry 71 (2):229–33. doi: 10.1016/S0308-8146(00)00161-8.
  • Hufnagel, J. C., and T. Hofmann. 2008. Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine. Journal of Agricultural and Food Chemistry 56 (4):1376–86. doi: 10.1021/jf073031n.
  • Jacques, P. F., A. Cassidy, G. Rogers, J. J. Peterson, J. B. Meigs, and J. T. Dwyer. 2013. Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes. The Journal of Nutrition 143 (9):1474–80. doi: 10.3945/jn.113.177212.
  • Jaroszewska, A., and W. Biel. 2017. Chemical composition and antioxidant activity of leaves of mycorrhized sea-buckthorn (Hippophae rhamnoides L.). Chilean Journal of Agricultural Research 77 (2):155–62. doi: 10.4067/S0718-58392017000200155.
  • Jiménez-Aspee, F., C. Quispe, M. d Pilar, C. Soriano, J. F. Gonzalez, E. Hüneke, C. Theoduloz, and G. Schmeda-Hirschmann. 2014. Antioxidant activity and characterization of constituents in copao fruits (Eulychnia acida Phil., Cactaceae) by HPLC–DAD–MS/MSn. Food Research International 62:286–98. doi: 10.1016/j.foodres.2014.03.013.
  • Johansson, A. K., H. Korte, B. Yang, J. C. Stanley, and H. P. Kallio. 2000. Sea buckthorn berry oil inhibits platelet aggregation. The Journal of Nutritional Biochemistry 11 (10):491–5. doi: 10.1016/S0955-2863(00)00105-4.
  • Kahle, K., M. Kraus, W. Scheppach, M. Ackermann, F. Ridder, and E. Richling. 2006. Studies on apple and blueberry fruit constituents: Do the polyphenols reach the colon after ingestion? Molecular Nutrition & Food Research 50 (4-5):418–23. doi: 10.1002/mnfr.200500211.
  • Kallio, H., B. Yang, and P. Peippo. 2002. Effects of different origins and harvesting time on vitamin C, tocopherols, and tocotrienols in sea buckthorn (Hippophaë rhamnoides) berries. Journal of Agricultural and Food Chemistry 50 (21):6136–42. doi: 10.1021/jf020421v.
  • Kallio, H., B. Yang, P. Peippo, R. Tahvonen, and R. Pan. 2002. Triacylglycerols, glycerophospholipids, tocopherols, and tocotrienols in berries and seeds of two subspecies (ssp. sinensis and mongolica) of sea buckthorn (Hippophaë rhamnoides). Journal of Agricultural and Food Chemistry 50 (10):3004–9. doi: 10.1021/jf011556o.
  • Kallio, H., M. Lassila, E. Järvenpää, G. G. Haraldsson, S. Jonsdottir, and B. Yang. 2009. Inositols and methylinositols in sea buckthorn (Hippophaë rhamnoides) berries. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 877 (14-15):1426–32. doi: 10.1016/j.jchromb.2009.03.027.
  • Kallio, H., W. Yang, P. Liu, and B. Yang. 2014. Proanthocyanidins in wild sea buckthorn (Hippophaë rhamnoides) berries analyzed by reversed-phase, normal-phase, and hydrophilic interaction liquid chromatography with UV and MS detection. Journal of Agricultural and Food Chemistry 62 (31):7721–9. doi: 10.1021/jf502056f.
  • Kampa, M., V.-I. Alexaki, G. Notas, A.-P. Nifli, A. Nistikaki, A. Hatzoglou, E. Bakogeorgou, E. Kouimtzoglou, G. Blekas, D. Boskou, et al. 2004. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: Potential mechanisms of action. Breast Cancer Research 6 (2):R63–R74. doi: 10.1186/bcr752.
  • Kim, J., Y. Kwon, Y. Sa, and M. Kim. 2011. Isolation and identification of sea buckthorn (Hippophae rhamnoides) phenolics with antioxidant activity and α-glucosidase inhibitory effect. Journal of Agricultural and Food Chemistry 59 (1):138–44. doi: 10.1021/jf103130a.
  • Korekar, G., P. Dolkar, H. Singh, R. B. Srivastava, and T. Stobdan. 2014. Variability and the genotypic effect on antioxidant activity, total phenolics, carotenoids and ascorbic acid content in seventeen natural population of Seabuckthorn (Hippophae rhamnoides L.) from trans-Himalaya. Lwt - Food Science and Technology 55 (1):157–62. doi: 10.1016/j.lwt.2013.09.006.
  • Korekar, G., T. Stobdan, H. Singh, O. Chaurasia, and S. Singh. 2011. Phenolic content and antioxidant capacity of various solvent extracts from sea buckthorn (Hippophae rhamnoides L.) fruit pulp, seeds, leaves and stem bark. Acta Alimentaria 40 (4):449–58. doi: 10.1556/AAlim.40.2011.4.4.
  • Kortesniemi, M., J. Sinkkonen, B. Yang, and H. Kallio. 2014. H-1 NMR spectroscopy reveals the effect of genotype and growth conditions on composition of sea buckthorn (Hippophae rhamnoides L.) berries. Food Chemistry 147:138–46. doi: 10.1016/j.foodchem.2013.09.133.
  • Kortesniemi, M., J. Sinkkonen, B. Yang, and H. Kallio. 2017. NMR metabolomics demonstrates phenotypic plasticity of sea buckthorn (Hippophaë rhamnoides) berries with respect to growth conditions in Finland and Canada. Food Chemistry 219:139–47. doi: 10.1016/j.foodchem.2016.09.125.
  • Kyriakopoulou, K., A. Pappa, M. Krokida, A. Detsi, and P. Kefalas. 2013. Effects of drying and extraction methods on the quality and antioxidant activity of sea buckthorn (Hippophae rhamnoides) berries and leaves. Drying Technology 31 (9):1063–76. doi: 10.1080/07373937.2013.773907.
  • Laaksonen, O., A. Knaapila, T. Niva, K. C. Deegan, and M. Sandell. 2016. Sensory properties and consumer characteristics contributing to liking of berries. Food Quality and Preference 53:117–26. doi: 10.1016/j.foodqual.2016.06.004.
  • Laaksonen, O., J. Ahola, and M. Sandell. 2013. Explaining and predicting individually experienced liking of berry fractions by the hTAS2R38 taste receptor genotype. Appetite 61 (1):85–96. doi: 10.1016/j.appet.2012.10.023.
  • Laaksonen, O. A., J.-P. Salminen, L. Mäkilä, H. P. Kallio, and B. Yang. 2015. Proanthocyanidins and their contribution to sensory attributes of black currant juices. Journal of Agricultural and Food Chemistry 63 (22):5373–80. doi: 10.1021/acs.jafc.5b01287.
  • Lafay, S., and A. Gil-Izquierdo. 2008. Bioavailability of phenolic acids. Phytochemistry Reviews 7 (2):301–11. doi: 10.1007/s11101-007-9077-x.
  • Landete, J. 2011. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Research International 44 (5):1150–60. doi: 10.1016/j.foodres.2011.04.027.
  • Langhans, W. 2018. Food components in health promotion and disease prevention. Journal of Agricultural and Food Chemistry 66 (10):2287–94. doi: 10.1021/acs.jafc.7b02121.
  • Larmo, P. S., B. Yang, J. Hyssälä, H. P. Kallio, and R. Erkkola. 2014. Effects of sea buckthorn oil intake on vaginal atrophy in postmenopausal women: A randomized, double-blind, placebo-controlled study. Maturitas 79 (3):316–21. doi: 10.1016/j.maturitas.2014.07.010.
  • Larmo, P., R. Järvinen, J. Laihia, E. Löyttyniemi, L. Maavirta, B. Yang, H. Kallio, and M. Sandberg-Lall. 2019. Effects of a sea buckthorn oil spray emulsion on dry eye. Contact Lens & Anterior Eye : The Journal of the British Contact Lens Association 42 (4):428–33. doi: 10.1016/j.clae.2018.11.011.
  • Lawless, H. T., J. Horne, and P. Giasi. 1996. Astringency of organic acids is related to pH. Chemical Senses 21 (4):397–403. doi: 10.1093/chemse/21.4.397.
  • Lee, S. K., and A. A. Kader. 2000. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology 20 (3):207–20. doi: 10.1016/S0925-5214(00)00133-2.
  • Lesjak, M., I. Beara, N. Simin, D. Pintać, T. Majkić, K. Bekvalac, D. Orčić, and N. Mimica-Dukić. 2018. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. Journal of Functional Foods 40:68–75. doi: 10.1016/j.jff.2017.10.047.
  • Lesschaeve, I., and A. C. Noble. 2005. Polyphenols: Factors influencing their sensory properties and their effects on food and beverage preferences. The American Journal of Clinical Nutrition 81 (1 Suppl):330S–5S. doi: 10.1093/ajcn/81.1.330S.
  • Levavasseur, M., C. Becquart, E. Pape, M. Pigeyre, J. Rousseaux, D. Staumont-Sallé, and E. Delaporte. 2015. Severe scurvy: An underestimated disease. European Journal of Clinical Nutrition 69 (9):1076–7. doi: 10.1038/ejcn.2015.99.
  • Li, C., X. Yang, C. Chen, S. Cai, and J. Hu. 2014. Isorhamnetin suppresses colon cancer cell growth through the PI3K-Akt-mTOR pathway . Molecular Medicine Reports 9 (3):935–40. doi: 10.3892/mmr.2014.1886.
  • Li, T. S., T. H. Beveridge, and J. C. Drover. 2007. Phytosterol content of sea buckthorn (Hippophae rhamnoides L.) seed oil: Extraction and identification. Food Chemistry 101 (4):1633–9. doi: 10.1016/j.foodchem.2006.04.033.
  • Lindstedt, A., R. Järvinen, J. Sinkkonen, H. Lehtonen, G. Graça, M. Viitanen, A. M. Gil, and H. Kallio. 2014. Postprandial response on fatty meal is affected by sea buckthorn (Hippophaë rhamnoides) supplementation: NMR metabolomics study. Food Research International 58:23–34. doi: 10.1016/j.foodres.2013.12.010.
  • Ludwig, I. A., P. Mena, L. Calani, G. Borges, G. Pereira-Caro, L. Bresciani, D. Del Rio, M. E. Lean, and A. Crozier. 2015. New insights into the bioavailability of red raspberry anthocyanins and ellagitannins. Free Radical Biology & Medicine 89:758–69. doi: 10.1016/j.freeradbiomed.2015.10.400.
  • Luo, Y., G. Sun, X. Dong, M. Wang, M. Qin, Y. Yu, and X. Sun. 2015. Isorhamnetin attenuates atherosclerosis by inhibiting macrophage apoptosis via PI3K/AKT activation and HO-1 induction. PLoS One 10 (3):e0120259. doi: 10.1371/journal.pone.0120259.
  • Ma, W., A. Guo, Y. Zhang, H. Wang, Y. Liu, and H. Li. 2014. A review on astringency and bitterness perception of tannins in wine. Trends in Food Science & Technology 40 (1):6–19. doi: 10.1016/j.tifs.2014.08.001.
  • Ma, X., J. Moilanen, O. Laaksonen, W. Yang, E. Tenhu, and B. Yang. 2019. Phenolic compounds and antioxidant activities of tea-type infusions processed from sea buckthorn (Hippophaë rhamnoides) leaves. Food Chemistry 272:1–11. doi: 10.1016/j.foodchem.2018.08.006.
  • Ma, X., O. Laaksonen, J. Heinonen, T. Sainio, H. Kallio, and B. Yang. 2017. Sensory profile of ethyl β-D-glucopyranoside and its contribution to quality of sea buckthorn (Hippophaë rhamnoides L.). Food Chem 233:263–72. doi: 10.1016/j.foodchem.2017.04.073.
  • Ma, X., O. Laaksonen, J. Zheng, W. Yang, M. Trépanier, H. Kallio, and B. Yang. 2016. Flavonol glycosides in berries of two major subspecies of sea buckthorn (Hippophaë rhamnoides L.) and influence of growth sites. Food Chemistry 200:189–98. doi: 10.1016/j.foodchem.2016.01.036.
  • Ma, X., W. Yang, O. A. Laaksonen, M. Nylander, H. Kallio, and B. Yang. 2017. Role of flavonols and proanthocyanidins in the sensory quality of sea buckthorn (Hippophaë rhamnoides L.) berries. Journal of Agricultural and Food Chemistry 65 (45):9871–9. doi: 10.1021/acs.jafc.7b04156.
  • Ma, X., W. Yang, A. Marsol-Vall, O. Laaksonen, and B. Yang. 2020. Analysis of flavour compounds and prediction of sensory properties in sea buckthorn (Hippophaë rhamnoides L.) berries. International Journal of Food Science & Technology 55 (4):1705–15. doi: 10.1111/ijfs.14442.
  • Maga, J., and K. Lorenz. 1973. Taste threshold values for phenolic acids which can influence flavor properties of certain flours, grains and oilseeds. Cereal Science Today 18:326–8.
  • Malinowska, P., and B. Olas. 2016. Sea buckthorn–valuable plant for health. Kosmos 2:285–92.
  • Manach, C., G. Williamson, C. Morand, A. Scalbert, and C. Remesy. 2005. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition 81 (1 Suppl):230S–42S. doi: 10.1093/ajcn/81.1.230S.
  • Markkinen, N., O. Laaksonen, R. Nahku, R. Kuldjärv, and B. Yang. 2019. Impact of lactic acid fermentation on acids, sugars, and phenolic compounds in black chokeberry and sea buckthorn juices. Food Chemistry 286:204–15. doi: 10.1016/j.foodchem.2019.01.189.
  • Marles, M. S., H. Ray, and M. Y. Gruber. 2003. New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64 (2):367–83. doi: 10.1016/S0031-9422(03)00377-7.
  • Marnila, P., J. Hellström, J. Pihlava, S. Örling, P. Mattila, and S. Kauppinen. 2013. Sea buckthorn leaves–processing waste with anti-inflammatory properties. Proceedings of the 6th Conference of the International Seabuckthorn Association, SBT-a Fresh Look at Technology, Health and Environment, 96–100.
  • Martin, C., Y. Zhang, C. Tonelli, and K. Petroni. 2013. Plants, diet, and health. Annual Review of Plant Biology 64 (1):19–46. doi: 10.1146/annurev-arplant-050312-120142.
  • Matsubara, Y., T. Mizuno, A. Sawabe, Y. Iizuka, and K. Okamoto. 1989. Structure and physiological activity of nitrogenous compounds and alkyl glycosides in lemon (Citrus limon Burm. f.), unshiu (Citrus unshiu MARCOV.), Hassaku (Citrus hassaku HORT.), yuzu (Citrus junos SIEB.) and iyokan (Citrus iyo) peelings. Journal of the Agricultural Chemical Society of Japan 63 (8):1373–7. doi: 10.1271/nogeikagaku1924.63.1373.
  • Mcdougall, G. J., and D. Stewart. 2005. The inhibitory effects of berry polyphenols on digestive enzymes. BioFactors 23 (4):189–95. doi: 10.1002/biof.5520230403.
  • McKay, D. L., C. O. Chen, C. A. Zampariello, and J. B. Blumberg. 2015. Flavonoids and phenolic acids from cranberry juice are bioavailable and bioactive in healthy older adults. Food Chemistry 168:233–40. doi: 10.1016/j.foodchem.2014.07.062.
  • Mertens-Talcott, S. U., P. Jilma-Stohlawetz, J. Rios, L. Hingorani, and H. Derendorf. 2006. Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum L.) polyphenols after ingestion of a standardized extract in healthy human volunteers. Journal of Agricultural and Food Chemistry 54 (23):8956–61. doi: 10.1021/jf061674h.
  • Meyerhof, W., C. Batram, C. Kuhn, A. Brockhoff, E. Chudoba, B. Bufe, G. Appendino, and M. Behrens. 2010. The molecular receptive ranges of human TAS2R bitter taste receptors. Chemical Senses 35 (2):157–70. doi: 10.1093/chemse/bjp092.
  • Mikulic-Petkovsek, M., A. Slatnar, F. Stampar, and R. Veberic. 2012. HPLC-MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chemistry 135 (4):2138–46. doi: 10.1016/j.foodchem.2012.06.115.
  • Mishima, T., S. Harino, J. Sugita, M. Nakahara, T. Suzuki, and T. Hayakawa. 2008. Plasma kinetics and urine profile of ethyl glucosides after oral administration in the rat. Bioscience, Biotechnology, and Biochemistry 72 (2):393–7. doi: 10.1271/bbb.70485.
  • Moilanen, J., M. Karonen, P. Tähtinen, R. Jacquet, S. Quideau, and J. Salminen. 2016. Biological activity of ellagitannins: Effects as anti-oxidants, pro-oxidants and metal chelators. Phytochemistry 125:65–72. doi: 10.1016/j.phytochem.2016.02.008.
  • Moilanen, J., P. Koskinen, and J. Salminen. 2015. Distribution and content of ellagitannins in Finnish plant species. Phytochemistry 116:188–97. doi: 10.1016/j.phytochem.2015.03.002.
  • Muscogiuri, G., S. Palomba, A. S. Laganà, and F. Orio. 2016. Inositols in the treatment of insulin-mediated diseases. International Journal of Endocrinology 2016:6189820. doi: 10.1155/2016/6189820.
  • Nabavi, S. M., S. F. Nabavi, S. Eslami, and A. H. Moghaddam. 2012. In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chemistry 132 (2):931–5. doi: 10.1016/j.foodchem.2011.11.070.
  • Nardini, M., M. Forte, U. Vrhovsek, F. Mattivi, R. Viola, and C. Scaccini. 2009. White wine phenolics are absorbed and extensively metabolized in humans. Journal of Agricultural and Food Chemistry 57 (7):2711–8. doi: 10.1021/jf8034463.
  • Nascimento, N. R., L. M. Lessa, M. R. Kerntopf, C. M. Sousa, R. S. Alves, M. G. Queiroz, J. Price, D. B. Heimark, J. Larner, X. Du, et al. 2006. Inositols prevent and reverse endothelial dysfunction in diabetic rat and rabbit vasculature metabolically and by scavenging superoxide. Proceedings of the National Academy of Sciences of the United States of America 103 (1):218–23. doi: 10.1073/pnas.0509779103.
  • Olas, B. 2018. The beneficial health aspects of sea buckthorn (Elaeagnus rhamnoides (L.) A.Nelson) oil. Journal of Ethnopharmacology 213:183–90. doi: 10.1016/j.jep.2017.11.022.
  • Olas, B. 2016. Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases. Food and Chemical Toxicology 97:199–204. doi: 10.1016/j.fct.2016.09.008.
  • Ou, K., and L. Gu. 2014. Absorption and metabolism of proanthocyanidins. Journal of Functional Foods 7:43–53. doi: 10.1016/j.jff.2013.08.004.
  • Paterson, J., and J. Lawrence. 2001. Salicylic acid: A link between aspirin, diet and the prevention of colorectal cancer. QJM: An International Journal of Medicine 94 (8):445–8. doi: 10.1093/qjmed/94.8.445.
  • Peleg, H., K. Gacon, P. Schlich, and A. C. Noble. 1999. Bitterness and astringency of flavan‐3‐ol monomers, dimers and trimers. Journal of the Science of Food and Agriculture 79 (8):1123–8. doi: 10.1002/(SICI)1097-0010(199906)79:8<1123::AID-JSFA336>3.0.CO;2-D.
  • Peleg, H., and A. Noble. 1999. Effect of viscosity, temperature and pH on astringency in cranberry juice. Food Quality and Preference 10 (4-5):343–7. doi: 10.1016/S0950-3293(99)00009-9.
  • Petersen, B., S. Egert, A. Bosy-Westphal, M. J. Müller, S. Wolffram, E. M. Hubbermann, G. Rimbach, and K. Schwarz. 2016. Bioavailability of quercetin in humans and the influence of food matrix comparing quercetin capsules and different apple sources. Food Research International 88 (Pt A):159–65. doi: 10.1016/j.foodres.2016.02.013.
  • Pop, R. M., C. Socaciu, A. Pintea, A. D. Buzoianu, M. G. Sanders, H. Gruppen, and J. Vincken. 2013. UHPLC/PDA-ESI/MS analysis of the main berry and leaf flavonol glycosides from different Carpathian Hippophaë rhamnoides L. varieties . Phytochemical Analysis 24 (5):484–92. doi: 10.1002/pca.2460.
  • Pop, R. M., Y. Weesepoel, C. Socaciu, A. Pintea, J. Vincken, and H. Gruppen. 2014. Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Food Chemistry 147:1–9. doi: 10.1016/j.foodchem.2013.09.083.
  • Puganen, A., H. Kallio, K. M. Schaich, J. Suomela, and B. Yang. 2018. Red/green currant and sea buckthorn berry press residues as potential sources of antioxidants for food use. Journal of Agricultural and Food Chemistry 66 (13):3426–34. doi: 10.1021/acs.jafc.8b00177.
  • Püssa, T., D. Anton, and P. Raudsepp. 2015. Stability of sea buckthorn berry polyphenols during cooking of enriched sausages. 61st International Congress of Meat Science and Technology. Clermont-Ferrand, France.
  • Puupponen-Pimiä, R., T. Seppänen-Laakso, M. Kankainen, J. Maukonen, R. Törrönen, M. Kolehmainen, T. Leppänen, E. Moilanen, L. Nohynek, A.-M. Aura, et al. 2013. Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Molecular Nutrition & Food Research 57 (12):2258–63. doi: 10.1002/mnfr.201300280.
  • Quijada-Morín, N., J. Regueiro, J. Simal-Gándara, E. Tomás, J. C. Rivas-Gonzalo, and M. T. Escribano-Bailón. 2012. Relationship between the sensory-determined astringency and the flavanolic composition of red wines. Journal of Agricultural and Food Chemistry 60 (50):12355–61. doi: 10.1021/jf3044346.
  • Radenkovs, V., T. Püssa, K. Juhnevica-Radenkova, D. Anton, and D. Seglina. 2018. Phytochemical characterization and antimicrobial evaluation of young leaf/shoot and press cake extracts from Hippophae rhamnoides L. Food Bioscience 24:56–66. doi: 10.1016/j.fbio.2018.05.010.
  • Ranard, K. M., M. J. Kuchan, and J. W. Erdman, Jr. 2019. α‐tocopherol, but not γ-tocopherol, attenuates the expression of selective tumor necrosis factor-alpha-induced genes in primary human aortic cell lines. Lipids 54 (5):289–99. doi: 10.1002/lipd.12149.
  • Rodríguez-Roque, M. J., B. de Ancos, C. Sánchez-Moreno, M. P. Cano, P. Elez-Martínez, and O. Martín-Belloso. 2015. Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. Journal of Functional Foods 14:33–43. doi: 10.1016/j.jff.2015.01.020.
  • Roland, W. S., R. J. Gouka, H. Gruppen, M. Driesse, L. van Buren, G. Smit, and J. Vincken. 2014. 6-Methoxyflavanones as bitter taste receptor blockers for hTAS2R39. PLoS One 9 (4):e94451. doi: 10.1371/journal.pone.0094451.
  • Roland, W. S., L. van Buren, H. Gruppen, M. Driesse, R. J. Gouka, G. Smit, and J. Vincken. 2013. Bitter taste receptor activation by flavonoids and isoflavonoids: Modeled structural requirements for activation of hTAS2R14 and hTAS2R39. Journal of Agricultural and Food Chemistry 61 (44):10454–66. doi: 10.1021/jf403387p.
  • Rønning, S. B., V. Voldvik, S. K. Bergum, K. Aaby, and G. I. A. Borge. 2020. Ellagic acid and urolithin A modulate the immune response in LPS-stimulated U937 monocytic cells and THP-1 differentiated macrophages. Food & Function 11 (9):7946–59. doi: 10.1039/c9fo03008e.
  • Rösch, D., A. Krumbein, and L. W. Kroh. 2004. Antioxidant gallocatechins, dimeric and trimeric proanthocyanidins from sea buckthorn (Hippophae rhamnoides) pomace. European Food Research and Technology 219 (6):605–13. doi: 10.1007/s00217-004-1002-6.
  • Rösch, D., C. Mügge, V. Fogliano, and L. W. Kroh. 2004. Antioxidant oligomeric proanthocyanidins from sea buckthorn (Hippophae rhamnoides) Pomace. Journal of Agricultural and Food Chemistry 52 (22):6712–8. doi: 10.1021/jf040241g.
  • Rösch, D., M. Bergmann, D. Knorr, and L. W. Kroh. 2003. Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activity of sea buckthorn juice. Journal of Agricultural and Food Chemistry 51 (15):4233–9. doi: 10.1021/jf0300339.
  • Rossi, J. A., and V. L. Singleton. 1966. Flavor effects and adsorptive properties of purified fractions of grape-seed phenols. American Journal of Enology and Viticulture 17 (4):240–6.
  • Rotzoll, N., A. Dunkel, and T. Hofmann. 2006. Quantitative studies, taste reconstitution, and omission experiments on the key taste compounds in morel mushrooms (Morchella deliciosa Fr.). Journal of Agricultural and Food Chemistry 54 (7):2705–11. doi: 10.1021/jf053131y.
  • Russell, W., and G. Duthie. 2011. Plant secondary metabolites and gut health: The case for phenolic acids. The Proceedings of the Nutrition Society 70 (3):389–96. doi: 10.1017/S0029665111000152.
  • Russell, W. R., L. Scobbie, A. Chesson, A. J. Richardson, C. S. Stewart, S. H. Duncan, J. E. Drew, and G. G. Duthie. 2008. Anti-inflammatory implications of the microbial transformation of dietary phenolic compounds. Nutrition and Cancer 60 (5):636–42. doi: 10.1080/01635580801987498.
  • Russo, M., C. Spagnuolo, I. Tedesco, S. Bilotto, and G. L. Russo. 2012. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochemical Pharmacology 83 (1):6–15. doi: 10.1016/j.bcp.2011.08.010.
  • Sajfrtová, M., I. Ličková, M. Wimmerová, H. Sovová, and Z. Wimmer. 2010. β-Sitosterol: Supercritical carbon dioxide extraction from sea buckthorn (Hippophae rhamnoides L.) seeds. International Journal of Molecular Sciences 11 (4):1842–50. doi: 10.3390/ijms11041842.
  • Sakurai, T., T. Misaka, M. Ishiguro, K. Masuda, T. Sugawara, K. Ito, T. Kobayashi, S. Matsuo, Y. Ishimaru, T. Asakura, et al. 2010. Characterization of the beta-D-glucopyranoside binding site of the human bitter taste receptor hTAS2R16. The Journal of Biological Chemistry 285 (36):28373–8. doi: 10.1074/jbc.M110.144444.
  • Sawabe, A., and Y. Matsubara. 1999. Bioactive glycosides in citrus fruit peels. In Anonymous studies in plant science, ed. Chong-Ren Yang and Osamu Tanaka, vol. 6 ed., 261–74. Amsterdam: Elsevier Science.
  • Scharbert, S., and T. Hofmann. 2005. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. Journal of Agricultural and Food Chemistry 53 (13):5377–84. doi: 10.1021/jf050294d.
  • Scharbert, S., N. Holzmann, and T. Hofmann. 2004. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. Journal of Agricultural and Food Chemistry 52 (11):3498–508. doi: 10.1021/jf049802u.
  • Schwarz, B., and T. Hofmann. 2007. Sensory-guided decomposition of red currant juice (Ribes rubrum) and structure determination of key astringent compounds. Journal of Agricultural and Food Chemistry 55 (4):1394–404. doi: 10.1021/jf0629078.
  • Seeram, N. P., R. Lee, and D. Heber. 2004. Bioavailability of ellagic acid in human plasma after consumption of ellagitannins from pomegranate (Punica granatum L.) juice. Clinica Chimica Acta; International Journal of Clinical Chemistry 348 (1-2):63–8. doi: 10.1016/j.cccn.2004.04.029.
  • Seglina, D., D. Karklina, S. Ruisa, and I. Krasnova. 2006. The effect of processing on the composition of sea buckthorn juice. Journal of Fruit and Ornamental Plant Research 14:257–64.
  • Selvamuthukumaran, M., F. Khanum, and A. S. Bawa. 2007. Development of sea buckthorn mixed fruit jelly. International Journal of Food Science & Technology 42 (4):403–10. doi: 10.1111/j.1365-2621.2006.01233.x.
  • Setayesh, T., A. Nersesyan, M. Mišík, R. Noorizadeh, E. Haslinger, T. Javaheri, E. Lang, M. Grusch, W. Huber, A. Haslberger, et al. 2019. Gallic acid, a common dietary phenolic protects against high fat diet induced DNA damage. European Journal of Nutrition 58 (6):2315–26. doi: 10.1007/s00394-018-1782-2.
  • Sharma, U. K., K. Sharma, N. Sharma, A. Sharma, H. P. Singh, and A. K. Sinha. 2008. Microwave-assisted efficient extraction of different parts of Hippophae rhamnoides for the comparative evaluation of antioxidant activity and quantification of its phenolic constituents by reverse-phase high-performance liquid chromatography (RP-HPLC). Journal of Agricultural and Food Chemistry 56 (2):374–9. doi: 10.1021/jf072510j.
  • Shi, H., J. He, X. Li, J. Han, R. Wu, D. Wang, F. Yang, and E. Sun. 2018. Isorhamnetin, the active constituent of a Chinese herb Hippophae rhamnoides L, is a potent suppressor of dendritic-cell maturation and trafficking. International Immunopharmacology 55:216–22. doi: 10.1016/j.intimp.2017.12.014.
  • Skalski, B., B. Lis, Ł. Pecio, B. Kontek, B. Olas, J. Żuchowski, and A. Stochmal. 2019. Isorhamnetin and its new derivatives isolated from sea buckthorn berries prevent H2O2/Fe—Induced oxidative stress and changes in hemostasis. Food and Chemical Toxicology 125:614–20. doi: 10.1016/j.fct.2019.02.014.
  • Soares, S., E. Brandão, N. Mateus, and V. De Freitas. 2017. Sensorial properties of red wine polyphenols: Astringency and bitterness. Critical Reviews in Food Science and Nutrition 57 (5):937–48. doi: 10.1080/10408398.2014.946468.
  • Soares, S., S. Kohl, S. Thalmann, N. Mateus, W. Meyerhof, and V. De Freitas. 2013. Different phenolic compounds activate distinct human bitter taste receptors. Journal of Agricultural and Food Chemistry 61 (7):1525–33. doi: 10.1021/jf304198k.
  • Stewart, A. J., S. Bozonnet, W. Mullen, G. I. Jenkins, M. E. Lean, and A. Crozier. 2000. Occurrence of flavonols in tomatoes and tomato-based products. Journal of Agricultural and Food Chemistry 48 (7):2663–9. doi: 10.1021/jf000070p.
  • Stobdan, T., G. Korekar, and R. B. Srivastava. 2013. Nutritional attributes and health application of sea buckthorn (Hippophae rhamnoides L.)—A review. Current Nutrition & Food Science 9 (2):151–65. doi: 10.2174/1573401311309020008.
  • Storlien, L. H., D. E. James, K. M. Burleigh, D. J. Chisholm, and E. W. Kraegen. 1986. Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. The American Journal of Physiology 251 (5 Pt 1):E576–83. doi: 10.1152/ajpendo.1986.251.5.E576.
  • Su, Y. W., E. Tan, J. Zhang, J. L. You, Y. Liu, C. Liu, X. D. Zhou, and Y. Zhang. 2014. Study on three different species tibetan medicine sea buckthorn by 1H-NMR-based metabonomics. Zhongguo Zhong Yao Za Zhi 39 (21):4234–9.
  • Suomela, J., M. Ahotupa, B. Yang, T. Vasankari, and H. Kallio. 2006. Absorption of flavonols derived from sea buckthorn (Hippophae rhamnoides L.) and their effect on emerging risk factors for cardiovascular disease in humans. Journal of Agricultural and Food Chemistry 54 (19):7364–9. doi: 10.1021/jf061889r.
  • Suryakumar, G., and A. Gupta. 2011. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). Journal of Ethnopharmacology 138 (2):268–78. doi: 10.1016/j.jep.2011.09.024.
  • Suvanto, J., P. Tähtinen, S. Valkamaa, M. T. Engström, M. Karonen, and J. Salminen. 2018. Variability in foliar ellagitannins of Hippophaë rhamnoides L. and identification of a new ellagitannin, hippophaenin C. Journal of Agricultural and Food Chemistry 66 (3):613–20. doi: 10.1021/acs.jafc.7b04834.
  • Sytařová, I., J. Orsavová, L. Snopek, J. Mlček, Ł. Byczyński, and L. Mišurcová. 2020. Impact of phenolic compounds and vitamins C and E on antioxidant activity of sea buckthorn (Hippophaë rhamnoides L.) berries and leaves of diverse ripening times. Food Chemistry 310:125784. doi: 10.1016/j.foodchem.2019.125784.
  • Tang, X. 2002. Intrinsic change of physical and chemical properties of sea buckthorn (Hippophae rhamnoides) and implications for berry maturity and quality. The Journal of Horticultural Science and Biotechnology 77 (2):177–85. doi: 10.1080/14620316.2002.11511476.
  • Tang, X., N. Kälviäinen, and H. Tuorila. 2001. Sensory and hedonic characteristics of juice of sea buckthorn (Hippophae rhamnoides L.) origins and hybrids. LWT - Food Science and Technology 34 (2):102–10. doi: 10.1006/fstl.2000.0751.
  • Teleszko, M., A. Wojdyło, M. Rudzińska, J. Oszmiański, and T. Golis. 2015. Analysis of lipophilic and hydrophilic bioactive compounds content in sea buckthorn (Hippophaë rhamnoides L.) berries. Journal of Agricultural and Food Chemistry 63 (16):4120–9. doi: 10.1021/acs.jafc.5b00564.
  • Teng, B., Y. Lu, Z. Wang, X. Tao, and D. Wei. 2006. In vitro anti-tumor activity of isorhamnetin isolated from Hippophae rhamnoides L. against BEL-7402 cells. Pharmacological Research 54 (3):186–94. doi: 10.1016/j.phrs.2006.04.007.
  • Terpou, A., A. Papadaki, L. Bosnea, M. Kanellaki, and N. Kopsahelis. 2019. Novel frozen yogurt production fortified with sea buckthorn berries and probiotics. LWT 105:242–9. doi: 10.1016/j.lwt.2019.02.024.
  • Tiitinen, K., M. Vahvaselkä, M. Hakala, S. Laakso, and H. Kallio. 2006. Malolactic fermentation in sea buckthorn (Hippophaë rhamnoides L.) juice processing. European Food Research and Technology 222 (5-6):686–91. doi: 10.1007/s00217-005-0163-2.
  • Tiitinen, K., M. Vahvaselkä, S. Laakso, and H. Kallio. 2007. Malolactic fermentation in four varieties of sea buckthorn (Hippophaë rhamnoides L.). European Food Research and Technology 224 (6):725–32. doi: 10.1007/s00217-006-0365-2.
  • Tiitinen, K. M., B. Yang, G. G. Haraldsson, S. Jonsdottir, and H. P. Kallio. 2006. Fast analysis of sugars, fruit acids, and vitamin C in sea buckthorn (Hippophaë rhamnoides L.) varieties. Journal of Agricultural and Food Chemistry 54 (7):2508–13. doi: 10.1021/jf053177r.
  • Tiitinen, K. M., M. A. Hakala, and H. P. Kallio. 2005. Quality components of sea buckthorn (Hippophae rhamnoides) varieties. Journal of Agricultural and Food Chemistry 53 (5):1692–9. doi: 10.1021/jf0484125.
  • Tkacz, K., A. Wojdyło, I. P. Turkiewicz, F. Ferreres, D. A. Moreno, and P. Nowicka. 2020. UPLC-PDA-Q/TOF-MS profiling of phenolic and carotenoid compounds and their influence on anticholinergic potential for AChE and BuChE inhibition and on-line antioxidant activity of selected Hippophaë rhamnoides L. cultivars. Food Chemistry 309:125766. doi: 10.1016/j.foodchem.2019.125766.
  • Ursache, F., I. O. Ghinea, M. Turturică, I. Aprodu, G. Râpeanu, and N. Stănciuc. 2017. Phytochemicals content and antioxidant properties of sea buckthorn (Hippophae rhamnoides L.) as affected by heat treatment—Quantitative spectroscopic and kinetic approaches. Food Chemistry 233:442–9. doi: 10.1016/j.foodchem.2017.04.107.
  • Ursin, V. M. 2003. Modification of plant lipids for human health: Development of functional land-based omega-3 fatty acids. The Journal of Nutrition 133 (12):4271–4. doi: 10.1093/jn/133.12.4271.
  • Valentová, H., S. Skrovánková, Z. Panovská, and J. Pokorný. 2002. Time–intensity studies of astringent taste. Food Chemistry 78 (1):29–37. doi: 10.1016/S0308-8146(01)00330-2.
  • Verbeke, W. 2006. Functional foods: Consumer willingness to compromise on taste for health? Food Quality and Preference 17 (1-2):126–31. doi: 10.1016/j.foodqual.2005.03.003.
  • Walle, T., Y. Otake, U. K. Walle, and F. A. Wilson. 2000. Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption. The Journal of Nutrition 130 (11):2658–61. doi: 10.1093/jn/130.11.2658.
  • Wang, Y., L. Zhao, Y. Huo, F. Zhou, W. Wu, F. Lu, X. Yang, X. Guo, P. Chen, Q. Deng, et al. 2016. Protective effect of proanthocyanidins from sea buckthorn (Hippophae rhamnoides L.) seed against visible light-induced retinal degeneration in vivo. Nutrients 8 (5):245. doi: 10.3390/nu8050245.
  • Wolffram, S., M. Block, and P. Ader. 2002. Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. The Journal of Nutrition 132 (4):630–5. doi: 10.1093/jn/132.4.630.
  • Wu, Q., P. A. Kroon, H. Shao, P. W. Needs, and X. Yang. 2018. Differential effects of quercetin and Two of Its Derivatives, Isorhamnetin and Isorhamnetin-3-glucuronide, in Inhibiting the Proliferation of Human Breast-Cancer MCF-7 Cells. Journal of Agricultural and Food Chemistry 66 (27):7181–9. doi: 10.1021/acs.jafc.8b02420.
  • Xiao, J., E. Capanoglu, A. R. Jassbi, and A. Miron. 2016. Advance on the flavonoid C-glycosides and health benefits. Critical Reviews in Food Science and Nutrition 56 (sup1):S29–S45. doi: 10.1080/10408398.2015.1067595.
  • Xiao, Y., L. Xin, L. Li, G. Li, X. Shi, G. Ji, J. Mi, and Y. Xie. 2019. Quercetin and kaempferol increase the intestinal absorption of isorhamnetin coexisting in Elaeagnus rhamnoides (L.) A. Nelson (Elaeagnaceae) extracts via regulating multidrug resistance-associated protein 2. Phytomedicine 53:154–62. doi: 10.1016/j.phymed.2018.09.028.
  • Xing, J., B. Yang, Y. Dong, B. Wang, J. Wang, and H. P. Kallio. 2002. Effects of sea buckthorn (Hippophae rhamnoides L.) seed and pulp oils on experimental models of gastric ulcer in rats. Fitoterapia 73 (7-8):644–50. doi: 10.1016/S0367-326X(02)00221-6.
  • Xu, H., Q. Hao, F. Yuan, and Y. Gao. 2015. Nonenzymatic browning criteria to sea buckthorn juice during thermal processing. Journal of Food Process Engineering 38 (1):67–75. doi: 10.1111/jfpe.12128.
  • Xu, Y., M. Kaur, R. S. Dhillon, P. S. Tappia, and N. S. Dhalla. 2011. Health benefits of sea buckthorn for the prevention of cardiovascular diseases. Journal of Functional Foods 3 (1):2–12. doi: 10.1016/j.jff.2011.01.001.
  • Xue, Y., Q. Miao, A. Zhao, Y. Zheng, Y. Zhang, P. Wang, H. Kallio, and B. Yang. 2015. Effects of sea buckthorn (Hippophaë rhamnoides) juice and L-quebrachitol on Type 2 diabetes mellitus in db/db mice. Journal of Functional Foods 16:223–33. doi: 10.1016/j.jff.2015.04.041.
  • Yang, B. 2001. Lipophilic components of sea buckthorn (Hippophaë rhamnoides) seeds and berries and physiological effects of sea buckthorn oils. PhD diss., University of Turku.
  • Yang, B. 2009. Sugars, acids, ethyl β-D-glucopyranose and a methyl inositol in sea buckthorn (Hippophae rhamnoides) berries. Food Chemistry 112 (1):89–97. doi: 10.1016/j.foodchem.2008.05.042.
  • Yang, B., and H. Kallio. 2002. Composition and physiological effects of sea buckthorn (Hippophaë) lipids. Trends in Food Science & Technology 13 (5):160–7. doi: 10.1016/S0924-2244(02)00136-X.
  • Yang, B., and H. P. Kallio. 2001. Fatty acid composition of lipids in sea buckthorn (Hippophaë rhamnoides L.) berries of different origins. Journal of Agricultural and Food Chemistry 49 (4):1939–47. doi: 10.1021/jf001059s.
  • Yang, B., H. Liu, J. Yang, V. K. Gupta, and Y. Jiang. 2018. New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends in Food Science & Technology 79:116–24. doi: 10.1016/j.tifs.2018.07.006.
  • Yang, B., M. Ahotupa, P. Määttä, and H. Kallio. 2011. Composition and antioxidative activities of supercritical CO2-extracted oils from seeds and soft parts of northern berries. Food Research International 44 (7):2009–17. doi: 10.1016/j.foodres.2011.02.025.
  • Yang, B., and M. Kortesniemi. 2015. Clinical evidence on potential health benefits of berries. Current Opinion in Food Science 2:36–42. doi: 10.1016/j.cofs.2015.01.002.
  • Yang, B., R. M. Karlsson, P. H. Oksman, and H. P. Kallio. 2001. Phytosterols in sea buckthorn (Hippophaë rhamnoides L.) berries: Identification and effects of different origins and harvesting times. Journal of Agricultural and Food Chemistry 49 (11):5620–9. doi: 10.1021/jf010813m.
  • Yang, B., T. Halttunen, O. Raimo, K. Price, and H. Kallio. 2009. Flavonol glycosides in wild and cultivated berries of three major subspecies of Hippophaë rhamnoides and changes during harvesting period. Food Chemistry 115 (2):657–64. doi: 10.1016/j.foodchem.2008.12.073.
  • Yang, J. H., B. Y. Shin, J. Y. Han, M. G. Kim, J. E. Wi, Y. W. Kim, I. J. Cho, S. C. Kim, S. M. Shin, and S. H. Ki. 2014. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes. Toxicology and Applied Pharmacology 274 (2):293–301. doi: 10.1016/j.taap.2013.10.026.
  • Yang, J. H., S. C. Kim, B. Y. Shin, S. H. Jin, M. J. Jo, K. H. Jegal, Y. W. Kim, J. R. Lee, S. K. Ku, I. J. Cho, et al. 2013. O-methylated flavonol isorhamnetin prevents acute inflammation through blocking of NF-κB activation. Food and Chemical Toxicology 59:362–72. doi: 10.1016/j.fct.2013.05.049.
  • Yang, W., O. Laaksonen, H. Kallio, and B. Yang. 2016. Proanthocyanidins in sea buckthorn (Hippophaë rhamnoides L.) berries of different origins with special reference to the influence of genetic background and growth location. Journal of Agricultural and Food Chemistry 64 (6):1274–82. doi: 10.1021/acs.jafc.5b05718.
  • Yang, W., O. Laaksonen, H. Kallio, and B. Yang. 2017. Effects of latitude and weather conditions on proanthocyanidins in berries of Finnish wild and cultivated sea buckthorn (Hippophaë rhamnoides L. ssp. rhamnoides). Food Chemistry 216:87–96. doi: 10.1016/j.foodchem.2016.08.032.
  • Zadernowski, R., M. Naczk, and R. Amarowicz. 2003. Tocopherols in sea buckthorn (Hippophae rhamnoides L.) berry oil. Journal of the American Oil Chemists' Society 80 (1):55–8. doi: 10.1007/s11746-003-0650-z.
  • Zadernowski, R., M. Naczk, S. Czaplicki, M. Rubinskiene, and M. Szałkiewicz. 2005. Composition of phenolic acids in sea buckthorn (Hippophae rhamnoides L.) berries. Journal of the American Oil Chemists' Society 82 (3):175–9. doi: 10.1007/s11746-005-5169-1.
  • Zang, Y., L. Zhang, K. Igarashi, and C. Yu. 2015. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food & Function 6 (3):834–41. doi: 10.1039/c4fo00844h.
  • Zheng, J., H. Kallio, K. Linderborg, and B. Yang. 2011. Sugars, sugar alcohols, fruit acids, and ascorbic acid in wild Chinese sea buckthorn (Hippophae rhamnoides ssp sinensis) with special reference to influence of latitude and altitude. Food Research International 44 (7):2018–26. doi: 10.1016/j.foodres.2010.10.007.
  • Zheng, J., H. Kallio, and B. Yang. 2016. Sea buckthorn (Hippophaë rhamnoides ssp. rhamnoides) berries in Nordic environment: Compositional response to latitude and weather conditions. Journal of Agricultural and Food Chemistry 64 (24):5031–44. doi: 10.1021/acs.jafc.6b00682.
  • Zheng, J., B. Yang, M. Trepanier, and H. Kallio. 2012. Effects of genotype, latitude, and weather conditions on the composition of sugars, sugar alcohols, fruit acids, and ascorbic acid in sea buckthorn (Hippophaë rhamnoides ssp. mongolica) berry juice. Journal of Agricultural and Food Chemistry 60 (12):3180–9. doi: 10.1021/jf204577g.
  • Zvaigzne, G. 2018. Effect of UHT processing on the bioactive compounds and antioxidant capacity in orange and sea buckthorn juices. PhD diss., Latvia University of Life Sciences and Technologies.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.