2,409
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels

ORCID Icon, ORCID Icon, , , , ORCID Icon, , & show all

References

  • Aalbersberg, W. Y., R. J. Hamer, P. Jasperse, H. H. J. De Jongh, C. G. De Kruif, P. Walstra, et al. 2003. Industrial proteins in perspective, Vol. 23 (1st ed.). Amsterdam: Elsevier Science.
  • Abaee, A., and A. Madadlou. 2016. Niosome-loaded cold-set whey protein hydrogels. Food Chemistry 196:106–13. doi: 10.1016/j.foodchem.2015.09.037.
  • Abaee, A., M. Mohammadian, and S. M. Jafari. 2017. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends in Food Science & Technology 70:69–81. doi: 10.1016/j.tifs.2017.10.011.
  • Abreu, F. O. M. S., C. Bianchini, M. M. C. Forte, and T. B. L. Kist. 2008. Influence of the composition and preparation method on the morphology and swelling behavior of alginate-chitosan hydrogels. Carbohydrate Polymers 74 (2):283–9. doi: 10.1016/j.carbpol.2008.02.017.
  • Aderibigbe, B. A., K. Varaprasad, E. R. Sadiku, S. S. Ray, X. Y. Mbianda, M. C. Fotsing, S. J. Owonubi, and S. C. Agwuncha. 2015. Kinetic release studies of nitrogen-containing bisphosphonate from gum acacia crosslinked hydrogels. International Journal of Biological Macromolecules 73:115–23. doi: 10.1016/j.ijbiomac.2014.10.064.
  • Ahmed, E. M. 2015. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research 6 (2):105–21. doi: 10.1016/j.jare.2013.07.006.
  • Akiyoshi, K. 1996. Hydrogel nanoparticle by self-assembly hydrophobized polysaccharide. Stabilization of adriamycin by complexation. European Journal of Pharmaceutics and Biopharmaceutics 42:286–90.
  • Akiyoshi, K., E. C. Kang, S. Kurumada, J. Sunamoto, T. Principi, and F. M. Winnik. 2000. Controlled association of amphiphilic polymers in water: Thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly (N-isopropylacrylamides). Macromolecules 33 (9):3244–9. doi: 10.1021/ma991798d.
  • Albuquerque, P. B. S., W. Barros, G. R. C. Santos, M. T. S. Correia, P. A. S. Mourão, J. A. Teixeira, and M. G. Carneiro-Da-Cunha. 2014. Characterization and rheological study of the galactomannan extracted from seeds of Cassia grandis. Carbohydrate Polymers 104:127–34. doi: 10.1016/j.carbpol.2014.01.010.
  • Ali, A. E., and A. AlArifi. 2009. Characterization and in vitro evaluation of starch based hydrogels as carriers for colon specific drug delivery systems. Carbohydrate Polymers 78 (4):725–30. doi: 10.1016/j.carbpol.2009.06.009.
  • Alla, S. G. A., M. Sen, and A. W. M. El-Naggar. 2012. Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation. Carbohydrate Polymers 89 (2):478–85. doi: 10.1016/j.carbpol.2012.03.031.
  • Amiri, F., K. Kabiri, H. Bouhendi, H. Abdollahi, V. Najafi, and Z. Karami. 2019. High gel-strength hybrid hydrogels based on modified starch through surface cross-linking technique. Polymer Bulletin 76 (8):4047–68. doi: 10.1007/s00289-018-2593-6.
  • Arakawa, C., R. Ng, S. Tan, S. Kim, B. Wu, and M. Lee. 2017. Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine 11 (1):164–74. doi: 10.1002/term.1896.
  • Argin, S., P. Kofinas, and Y. M. Lo. 2014. The cell release kinetics and the swelling behavior of physically crosslinked xanthan–chitosan hydrogels in simulated gastrointestinal conditions. Food Hydrocolloids 40:138–44. doi: 10.1016/j.foodhyd.2014.02.018.
  • Bakota, E. L., L. Aulisa, K. M. Galler, and J. D. Hartgerink. 2011. Enzymatic cross-linking of a nanofibrous peptide hydrogel. Biomacromolecules 12 (1):82–7. doi: 10.1021/bm1010195.
  • Balakrishnan, B., N. Joshi, A. Jayakrishnan, and R. Banerjee. 2014. Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomaterialia 10 (8):3650–63. doi:10.1016/j.actbio.2014.04.031. PMC: 24811827
  • Balasubramanian, R., S. S. Kim, and J. Lee. 2018. Novel synergistic transparent k-carrageenan/xanthan gum/gellan gum hydrogel film: Mechanical, thermal and water barrier properties. International Journal of Biological Macromolecules 118 (Pt A):561–8. doi: 10.1016/j.ijbiomac.2018.06.110.
  • Batista, R. A., P. J. P. Espitia, J. D. S. S. Quintans, M. M. Freitas, M. A. Cerqueira, J. A. Teixeira, and J. C. Cardoso. 2019. Hydrogel as an alternative structure for food packaging systems. Carbohydrate Polymers 205:106–16. doi: 10.1016/j.carbpol.2018.10.006.
  • Bell, C. L., and N. A. Peppas. 1996. Modulation of drug permeation through interpolymer complexed hydrogels for drug delivery applications. Journal of Controlled Release 39 (2-3):201–7. doi: 10.1016/0168-3659(95)00154-9.
  • Benshitrit, R. C., C. S. Levi, S. L. Tal, E. Shimoni, and U. Lesmes. 2012. Development of oral food-grade delivery systems: Current knowledge and future challenges. Food & Function 3 (1):10–21. doi: 10.1039/c1fo10068h.
  • Berger, J., Reist, M. J. M. Mayer, O. Felt, N. A. Peppas, R. Gurny. and R. 2004. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 57 (1):19–34. doi: 10.1016/S0939-6411(03)00161-9.
  • Betz, M., García-González, C. A. R. P. Subrahmanyam, I. Smirnova, U. Kulozik. and U. 2012a. Preparation of novel whey protein-based aerogels as drug carriers for life science applications. The Journal of Supercritical Fluids 72:111–9. doi: 10.1016/j.supflu.2012.08.019.
  • Betz, M., B. Steiner, M. Schantz, J. Oidtmann, K. Mäder, E. Richling, and U. Kulozik. 2012b. Antioxidant capacity of bilberry extract microencapsulated in whey protein hydrogels. Food Research International 47 (1):51–7. doi: 10.1016/j.foodres.2012.01.010.
  • Bezemer, J. M., D. W. Grijpma, P. J. Dijkstra, C. A. Van Blitterswijk, and J. Feijen. 2000b. Control of protein delivery from amphiphilic poly (ether ester) multiblock copolymers by varying their water content using emulsification techniques. Journal of Controlled Release: Official Journal of the Controlled Release Society 66 (2-3):307–20. doi: 10.1016/S0168-3659(99)00287-4.
  • Bezemer, J. M., R. Radersma, D. W. Grijpma, P. J. Dijkstra, J. Feijen, and C. A. Van Blitterswijk. 2000a. Zero-order release of lysozyme from poly (ethylene glycol)/poly (butylene terephthalate) matrices. Journal of Controlled Release: Official Journal of the Controlled Release Society 64 (1-3):179–92. doi: 10.1016/S0168-3659(99)00127-3.
  • Biduski, B., W. M. F. da Silva, R. Colussi, S. L. D. M. El Halal, L. T. Lim, Á. R. G. Dias, and E. da Rosa Zavareze. 2018. Starch hydrogels: The influence of the amylose content and gelatinization method. International Journal of Biological Macromolecules 113:443–9. doi: 10.1016/j.ijbiomac.2018.02.144.
  • Blanchard, C. R., S. F. Timmons, and R. A. Smith. 1999. U.S. Patent No. 5,932,552. Washington, DC: U.S. Patent and Trademark Office.
  • Brøndsted, H., C. Andersen, and L. Hovgaard. 1998. Crosslinked dextran—A new capsule material for colon targeting of drugs. Journal of Controlled Release: Official Journal of the Controlled Release Society 53 (1-3):7–13. doi: 10.1016/S0168-3659(97)00233-2.
  • Caillard, R., G. E. Remondetto, M. A. Mateescu, and M. Subirade. 2008. Characterization of amino cross-linked soy protein hydrogels . Journal of Food Science 73 (5):C283–C291. doi: 10.1111/j.1750-3841.2008.00780.x.
  • Caló, E., and V. V. Khutoryanskiy. 2015. Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal 65:252–67. doi: 10.1016/j.eurpolymj.2014.11.024.
  • Camponeschi, F., A. Atrei, G. Rocchigiani, L. Mencuccini, M. Uva, and R. Barbucci. 2015. New formulations of polysaccharide-based hydrogels for drug release and tissue engineering. Gels (Basel, Switzerland) 1 (1):3–23. doi: 10.3390/gels1010003.
  • Cappello, J., J. W. Crissman, M. Crissman, F. A. Ferrari, G. Textor, O. Wallis, J. R. Whitledge, X. Zhou, D. Burman, L. Aukerman, et al. 1998. In-situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs. Journal of Controlled Release: Official Journal of the Controlled Release Society 53 (1-3):105–17. doi: 10.1016/S0168-3659(97)00243-5.
  • Chen, H., J. Gan, A. Ji, S. Song, and L. Yin. 2019. Development of double network gels based on soy protein isolate and sugar beet pectin induced by thermal treatment and laccase catalysis. Food Chemistry 292:188–96. doi: 10.1016/j.foodchem.2019.04.059.
  • Chen, S. C., Y. C. Wu, F. L. Mi, Y. H. Lin, L. C. Yu, and H. W. Sung. 2004. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society 96 (2):285–300. doi: 10.1016/j.jconrel.2004.02.002.
  • Chen, X., B. D. Martin, T. K. Neubauer, R. J. Linhardt, J. S. Dordick, and D. G. Rethwisch. 1995. Enzymatic and chemoenzymatic approaches to synthesis of sugar-based polymer and hydrogels. Carbohydrate Polymers 28 (1):15–21. doi: 10.1016/0144-8617(95)00082-8.
  • Chien, K. B., E. J. Chung, and R. N. Shah. 2014. Investigation of soy protein hydrogels for biomedical applications: Materials characterization, drug release, and biocompatibility. Journal of Biomaterials Applications 28 (7):1085–96. doi: 10.1177/0885328213497413.
  • Cho, C. S., Y. I. Jeong, S. H. Kim, J. W. Nah, M. Kubota, and T. Komoto. 2000. Thermoplastic hydrogel based on hexablock copolymer composed of poly (γ-benzyl L-glutamate) and poly (Ethylene oxide). Polymer 41 (14):5185–93. doi: 10.1016/S0032-3861(99)00746-6.
  • Cikrikci, S., B. Mert, and M. H. Oztop. 2018. Development of pH sensitive alginate/gum tragacanth based hydrogels for oral insulin delivery. Journal of Agricultural and Food Chemistry 66 (44):11784–96. doi: 10.1021/acs.jafc.8b02525.
  • Córdoba, A. L., Deladino, L. L., and M. Martino. 2013. Effect of starch filler on calcium-alginate hydrogels loaded with yerba mate antioxidants. Carbohydrate Polymers 95 (1):315–23. doi: 10.1016/j.carbpol.2013.03.019.
  • Coviello, T., M. Grassi, G. Rambone, E. Santucci, M. Carafa, E. Murtas, F. M. Riccieri, and F. Alhaique. 1999. Novel hydrogel system from scleroglucan: Synthesis and characterization. Journal of Controlled Release: Official Journal of the Controlled Release Society 60 (2-3):367–78. doi: 10.1016/S0168-3659(99)00091-7.
  • Dafe, A., H. Etemadi, A. Dilmaghani, and G. R. Mahdavinia. 2017. Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. International Journal of Biological Macromolecules 97:536–43. doi: 10.1016/j.ijbiomac.2017.01.060.
  • Dai, Y. N., P. Li, J. P. Zhang, A. Q. Wang, and Q. Wei. 2008. Swelling characteristics and drug delivery properties of nifedipine-loaded pH sensitive alginate-chitosan hydrogel beads . Journal of Biomedical Materials Research. Part B, Applied Biomaterials 86 (2):493–500. doi: 10.1002/jbm.b.31046.
  • Da-Lozzo, E. J., R. C. A. Moledo, C. D. Faraco, C. F. Ortolani-Machado, T. M. B. Bresolin, and J. L. M. Silveira. 2013. Curcumin/xanthan-galactomannan hydrogels: rheological analysis and biocompatibility. Carbohydrate Polymers 93 (1):279–84. doi: 10.1016/j.carbpol.2012.02.036.
  • de Azeredo, H. M. 2013. Antimicrobial nanostructures in food packaging. Trends in Food Science & Technology 30 (1):56–69. doi: 10.1016/j.tifs.2012.11.006.
  • de Oliveira Cardoso, V. M., B. S. F. Cury, R. C. Evangelista, and M. P. D. Gremião. 2017. Development and characterization of cross-linked gellan gum and retrograded starch blend hydrogels for drug delivery applications. Journal of the Mechanical Behavior of Biomedical Materials 65:317–33. doi: 10.1016/j.jmbbm.2016.08.005.
  • Déat-Lainé, E., V. Hoffart, G. Garrait, J. F. Jarrige, J. M. Cardot, M. Subirade, and E. Beyssac. 2013. Efficacy of mucoadhesive hydrogel microparticles of whey protein and alginate for oral insulin delivery. Pharmaceutical Research 30 (3):721–34. doi: 10.1007/s11095-012-0913-3.
  • Dergunov, S. A., and G. A. Mun. 2009. γ-irradiated chitosan-polyvinyl pyrrolidone hydrogels as pH-sensitive protein delivery system. Radiation Physics and Chemistry 78 (1):65–8. doi: 10.1016/j.radphyschem.2008.07.003.
  • Ding, X., and P. Yao. 2013. Soy protein/soy polysaccharide complex nanogels: Folic acid loading, protection, and controlled delivery. Langmuir : The ACS Journal of Surfaces and Colloids 29 (27):8636–44. doi: 10.1021/la401664y.
  • Dolatabadi-Farahani, T., E. Vasheghani-Farahani, and H. Mirzadeh. 2006. Swelling behaviour of alginate-N,O-carboxymethyl chitosan gel beads coated by chitosan. Iranian Polymer Journal (English Edition) 15 (5):405–15.
  • Donato, L., E. Kolodziejcyk, and M. Rouvet. 2011. Mixtures of whey protein microgels and soluble aggregates as building blocks to control rheology and structure of acid induced cold-set gels. Food Hydrocolloids 25 (4):734–42. doi: 10.1016/j.foodhyd.2010.08.020.
  • Dong, D., T. Hao, C. Wang, Y. Zhang, Z. Qin, B. Yang, W. Fang, L. Ye, F. Yao, and J. Li. 2018. Zwitterionic starch-based hydrogel for the expansion and “stemness” maintenance of brown adipose derived stem cells. Biomaterials 157:149–60. doi: 10.1016/j.biomaterials.2017.12.011.
  • Dong, D., J. Li, M. Cui, J. Wang, Y. Zhou, L. Luo, Y. Wei, L. Ye, H. Sun, and F. Yao. 2016. In Situ “clickable” Zwitterionic Starch-Based Hydrogel for 3D Cell Encapsulation. ACS Applied Materials & Interfaces 8 (7):4442–55. doi: 10.1021/acsami.5b12141.
  • Eagland, D., N. J. Crowther, and C. J. Butler. 1994. Complexation between polyoxyethylene and polymethacrylic acid—the importance of the molar mass of polyoxyethylene. European Polymer Journal 30 (7):767–73. doi: 10.1016/0014-3057(94)90003-5.
  • Egan, T., D. O'Riordan, M. O'Sullivan, and J.-C. Jacquier. 2014. Cold-set whey protein microgels as pH modulated immobilisation matrices for charged bioactives. Food Chemistry 156:197–203. doi: 10.1016/j.foodchem.2014.01.109.
  • Farris, S., K. M. Schaich, L. Liu, L. Piergiovanni, and K. L. Yam. 2009. Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: A review. Trends in Food Science & Technology 20 (8):316–32. doi: 10.1016/j.tifs.2009.04.003.
  • Feng, E., G. Ma, Y. Wu, H. Wang, and Z. Lei. 2014. Preparation and properties of organic-inorganic composite superabsorbent based on xanthan gum and loess. Carbohydrate Polymers 111:463–8. doi: 10.1016/j.carbpol.2014.04.031.
  • Förster, S., and M. Antonietti. 1998. Amphiphilic block copolymers in structure‐controlled nanomaterial hybrids. Advanced Materials 10 (3):195–217. doi: 10.1002/(SICI)1521-4095(199802)10:3<195::AID-ADMA195>3.0.CO;2-V.
  • Gacesa, P. 1988. Alginates. Carbohydrate Polymers 8 (3):161–82. doi: 10.1016/0144-8617(88)90001-X.
  • Gagner, J. E., W. Kim, and E. L. Chaikof. 2014. Designing protein-based biomaterials for medical applications. Acta Biomaterialia 10 (4):1542–57. doi: 10.1016/j.actbio.2013.10.001.
  • Gao, C., M. Liu, J. Chen, and X. Zhang. 2009. Preparation and controlled degradation of oxidized sodium alginate hydrogel. Polymer Degradation and Stability 94 (9):1405–10. doi: 10.1016/j.polymdegradstab.2009.05.011.
  • Ge, J., C. X. Sun, H. Corke, K. Gul, R. Y. Gan, and Y. P. Fang. 2020a. The health benefits, functional properties, modifications, and applications of pea (Pisum sativum L.) protein: Current status, challenges, and perspectives. Comprehensive Reviews in Food Science and Food Safety 19 (4):1835–76. doi: 10.1111/1541-4337.12573.
  • Ge, J., C. X. Sun, A. Mata, H. Corke, R. Y. Gan, and Y. P. Fang. 2020b. Physicochemical and pH-dependent functional properties of proteins isolated from eight traditional Chinese beans. Food Hydrocolloids 112:106288. doi: 10.1016/j.foodhyd.2020.106288.
  • Gehrke, S. H., L. H. Uhden, and J. F. McBride. 1998. Enhanced loading and activity retention of bioactive proteins in hydrogel delivery systems. Journal of Controlled Release: Official Journal of the Controlled Release Society 55 (1):21–33. doi: 10.1016/S0168-3659(98)00019-4.
  • Gerlach, G., and K. F. Arndt (Eds.). 2009. Hydrogel sensors and actuators: Engineering and technology (Vol. 6). Springer Science & Business Media.
  • Ghanian, M. H., H. Mirzadeh, and H. Baharvand. 2018. In situ forming, cytocompatible, and self-recoverable tough hydrogels based on dual ionic and click cross-linked alginate. Biomacromolecules 19 (5):1646–62. doi: 10.1021/acs.biomac.8b00140.
  • Gill, H. S., and F. Guarner. 2004. Probiotics and human health: A clinical perspective. Postgraduate Medical Journal 80 (947):516–26. doi: 10.1136/pgmj.2003.008664.
  • Gombotz, W. R., and S. F. Wee. 1998. Protein release from alginate matrices. Advanced Drug Delivery Reviews 31 (3):267–85. doi: 10.1016/S0169-409X(97)00124-5.
  • Gong, J. P. 2006. Friction and lubrication of hydrogels-its richness and complexity. Soft Matter 2 (7):544–52. doi: 10.1039/b603209p.
  • Gregorová, A., N. Saha, T. Kitano, and P. Sáha. 2015. Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging. Carbohydrate Polymers 117:559–68. doi: 10.1016/j.carbpol.2014.10.009.
  • Gul, K., A. K. Singh, and R. G. Sonkawade. 2016. Physicochemical, thermal and pasting characteristics of gamma irradiated rice starches. International Journal of Biological Macromolecules 85:460–6. doi: 10.1016/j.ijbiomac.2016.01.024.
  • Gunasekaran, S., S. Ko, and L. Xiao. 2007. Use of whey proteins for encapsulation and controlled delivery applications. Journal of Food Engineering 83 (1):31–40. doi: 10.1016/j.jfoodeng.2006.11.001.
  • Gunasekaran, S., L. Xiao, and M. M. Ould Eleya. 2006. Whey protein concentrate hydrogels as bioactive carriers. Journal of Applied Polymer Science 99 (5):2470–6. doi: 10.1002/app.22838.
  • Hamidi, M., A. Azadi, and P. Rafiei. 2008. Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews 60 (15):1638–49. doi: 10.1016/j.addr.2008.08.002.
  • Hatakeyama, T., S. Naoi, M. Iijima, and H. Hatakeyama. 2005. Locust bean gum hydrogels formed by freezing and thawing. In Macromolecular symposia, Vol. 224, No. 1, 253–62. Weinheim: Wiley‐VCH Verlag. doi: 10.1002/masy.200550622.
  • He, J., Du, Y. J. L. Villa, ‐Uribe, C. Hwang, D. Li, and A. Khademhosseini. 2010. Rapid generation of biologically relevant hydrogels containing long-range chemical gradients . Advanced Functional Materials 20 (1):131–7. doi: 10.1002/adfm.200901311.
  • Hennink, W. E., and C. F. van Nostrum. 2012. Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews 64:223–36. doi: 10.1016/j.addr.2012.09.009.
  • Hoare, T. R., and D. S. Kohane. 2008. Hydrogels in drug delivery: Progress and challenges. Polymer 49 (8):1993–2007. doi: 10.1016/j.polymer.2008.01.027.
  • Hoffman, A. S. 2012. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 64:18–23. doi: 10.1016/j.addr.2012.09.010.
  • Hu, H.,. X. Zhu, T. Hu, I. W. Cheung, S. Pan, and E. C. Li-Chan. 2015. Effect of ultrasound pre-treatment on formation of transglutaminase-catalysed soy protein hydrogel as a riboflavin vehicle for functional foods. Journal of Functional Foods 19:182–93. doi: 10.1016/j.jff.2015.09.023.
  • Hu, X., L. Feng, W. Wei, A. Xie, S. Wang, J. Zhang, and W. Dong. 2014. Synthesis and characterization of a novel semi-IPN hydrogel based on Salecan and poly(N,N-dimethylacrylamide-co-2-hydroxyethyl methacrylate). Carbohydrate Polymers 105:135–44. doi: 10.1016/j.carbpol.2014.01.051.
  • Hutmacher, D. W. 2001. Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. Journal of Biomaterials Science. Polymer Edition 12 (1):107–24. doi: 10.1163/156856201744489.
  • Jayaramudu, T., G. M. Raghavendra, K. Varaprasad, R. Sadiku, and K. M. Raju. 2013. Development of novel biodegradable Au nanocomposite hydrogels based on wheat: For inactivation of bacteria. Carbohydrate Polymers 92 (2):2193–200. doi: 10.1016/j.carbpol.2012.12.006.
  • Jin, M., S. Ikeda, and Q. Zhong. 2013. Strengthening soy protein hydrogels filled with protein-coated montmorillonite nanoclay by glutaraldehyde crosslinking. Lwt - Food Science and Technology 51 (1):23–9. doi: 10.1016/j.lwt.2012.10.012.
  • Joint, I., M. Mühling, and J. Querellou. 2010. Culturing marine bacteria – An essential prerequisite for biodiscovery. Microbial Biotechnology 3 (5):564–75. doi: 10.1111/j.1751-7915.2010.00188.x.
  • Jonker, A. M., D. W. P. M. Löwik, and J. C. M. van Hest. 2012. Peptide-and protein-based hydrogels. Chemistry of Materials 24 (5):759–73. doi: 10.1021/cm202640w.
  • Kim, S. G., Y. J. Lee, E. J. Shin, Y. S. Gal, Y. R. Lee, T. H. Oh, H. G. Choi, J.-A. Kim, C. S. Yong, S. S. Han, et al. 2010. Preparation of sodium alginate hydrogel microparticles by electrospinning using various types of salts. Polymers and Polymer Composites 18 (7):397–404. doi: 10.1177/096739111001800706.
  • Kleemann, C., I. Selmer, I. Smirnova, and U. Kulozik. 2018. Tailor made protein based aerogel particles from egg white protein, whey protein isolate and sodium caseinate: Influence of the preceding hydrogel characteristics. Food Hydrocolloids 83:365–74. doi: 10.1016/j.foodhyd.2018.05.021.
  • Klein, M., and E. Poverenov. 2020. Natural biopolymer-based hydrogels for use in food and agriculture . Journal of the Science of Food and Agriculture 100 (6):2337–47. doi: 10.1002/jsfa.10274.
  • Konstantakos, S., A. Marinopoulou, S. Papaemmanouil, M. Emmanouilidou, M. Karamalaki, E. Kolothas, E. Saridou, E. Papastergiadis, and V. Karageorgiou. 2019. Preparation of model starch complex hydrogels. Food Hydrocolloids 96:365–72. doi: 10.1016/j.foodhyd.2019.05.046.
  • Kuijpers, A. J., P. B. van Wachem, M. J. A. van Luyn, G. H. M. Engbers, J. Krijgsveld, S. A. J. Zaat, J. Dankert, and J. Feijen. 2000. In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: A model system for the delivery of antibacterial proteins from prosthetic heart valves. Journal of Controlled Release 67 (2-3):323–36. doi: 10.1016/S0168-3659(00)00221-2.
  • Kurian, P., S. Zschoche, and J. P. Kennedy. 2000. Synthesis and characterization of novel amphiphilic block copolymers di‐, tri‐, multi‐, and star blocks of PEG and PIB. Journal of Polymer Science Part A: Polymer Chemistry 38 (17):3200–9. doi: 10.1002/1099-0518(20000901)38:17<3200::AID-POLA190>3.0.CO;2-R.
  • Laha, B., R. Goswami, S. Maiti, and K. K. Sen. 2019. Smart karaya-locust bean gum hydrogel particles for the treatment of hypertension: Optimization by factorial design and pre-clinical evaluation. Carbohydrate Polymers 210:274–88. doi: 10.1016/j.carbpol.2019.01.069.
  • Langmaier, F., P. Mokrejs, K. Kolomaznik, and M. Mládek. 2008. Biodegradable packing materials from hydrolysates of collagen waste proteins. Waste Management (New York, N.Y.) 28 (3):549–56. doi: 10.1016/j.wasman.2007.02.003.
  • Lee, S. C., C. Kim, I. C. Kwon, and Y. H. Kim. 1998. Thermosensitive hydrogels based on poly (2-ethyl-2-oxazoline)/poly (ε-caprolactone) multiblock copolymers. Proceedings of the Controlled Release Society 25:717–8.
  • León, O., D. Soto, A. Antúnez, R. Fernández, J. González, C. Piña, A. Muñoz-Bonilla, and M. Fernandez-García. 2019. Hydrogels based on oxidized starches from different botanical sources for release of fertilizers. International Journal of Biological Macromolecules 136:813–22. doi: 10.1016/j.ijbiomac.2019.06.131.
  • Li, H., L. Zhao, X. D. Chen, and R. Mercadé-Prieto. 2016. Swelling of whey and egg white protein hydrogels with stranded and particulate microstructures. International Journal of Biological Macromolecules 83:152–9. doi: 10.1016/j.ijbiomac.2015.11.018.
  • Li, M., H. Li, X. Li, H. Zhu, Z. Xu, L. Liu, J. Ma, and M. Zhang. 2017. A bioinspired alginate-gum arabic hydrogel with micro-/nanoscale structures for controlled drug release in chronic wound healing. ACS Applied Materials & Interfaces 9 (27):22160–75. doi: 10.1021/acsami.7b04428.
  • Li, Z., and M. Zhang. 2005. Chitosan-alginate as scaffolding material for cartilage tissue engineering. Journal of Biomedical Materials Research. Part A 75 (2):485–93. doi: 10.1002/jbm.a.30449.
  • Lim, K. S., P. Martens, and L. Poole-Warren. 2018. Biosynthetic hydrogels for cell encapsulation. In Functional hydrogels as biomaterials, 1–29. Berlin, Heidelberg: Springer.
  • Lin, C. C., and A. T. Metters. 2006. Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews 58 (12-13):1379–408. doi: 10.1016/j.addr.2006.09.004.
  • Liu, F., R. Li, L. Mao, and Y. Gao. 2018. Ethanol-induced composite hydrogel based on propylene glycol alginate and zein: Formation, characterization and application. Food Chemistry 255:390–8. doi: 10.1016/j.foodchem.2018.02.072.
  • Liu, J., Z. Li, Q. Lin, X. Jiang, J. Yao, Y. Yang, Z. Shao, and X. Chen. 2018. A robust, resilient, and multi-functional soy protein-based hydrogel. ACS Sustainable Chemistry & Engineering 6 (11):13730–8. doi: 10.1021/acssuschemeng.8b01450.
  • Liu, Z. Q. Z., Wei, X. L. Zhu, G. Y. Huang, F. Xu, J. H. Yang, Y. Osada, M. Zrínyi, J. H. Li, and Y. M. Chen. 2015. Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Colloids and Surfaces. B, Biointerfaces 128:140–8. doi: 10.1016/j.colsurfb.2015.02.005.
  • Ma, S., B. Yu, X. Pei, and F. Zhou. 2016. Structural hydrogels. Polymer 98:516–35. doi: 10.1016/j.polymer.2016.06.053.
  • Maltais, A., G. E. Remondetto, and M. Subirade. 2009. Soy protein cold-set hydrogels as controlled delivery devices for nutraceutical compounds. Food Hydrocolloids 23 (7):1647–53. doi: 10.1016/j.foodhyd.2008.12.006.
  • Maltais, A., G. E. Remondetto, and M. Subirade. 2010. Tabletted soy protein cold-set hydrogels as carriers of nutraceutical substances. Food Hydrocolloids 24 (5):518–24. doi: 10.1016/j.foodhyd.2009.11.016.
  • Maniglia, B. C., D. C. Lima, M. D. M. Junior, P. Le-Bail, A. Le-Bail, and P. E. Augusto. 2019. Hydrogels based on ozonated cassava starch: Effect of ozone processing and gelatinization conditions on enhancing 3D-printing applications. International Journal of Biological Macromolecules 138:1087–97. doi: 10.1016/j.ijbiomac.2019.07.124.
  • Manjula, B., K. Varaprasad, R. Sadiku, and K. M. Raju. 2013. Preparation and characterization of sodium alginate–based hydrogels and their in vitro release studies. Advances in Polymer Technology 32 (2):n/a–/a. doi: 10.1002/adv.21340.
  • Manski, J. M., A. J. van der Goot, and R. M. Boom. 2007a. Advances in structure formation of anisotropic protein-rich foods through novel processing concepts. Trends in Food Science & Technology 18 (11):546–57. doi: 10.1016/j.tifs.2007.05.002.
  • Manski, J. M., A. J. van der Goot, and R. M. Boom. 2007b. Formation of fibrous materials from dense calcium caseinate dispersions. Biomacromolecules 8 (4):1271–9. doi: 10.1021/bm061008p.
  • Marklein, R. A., and J. A. Burdick. 2010. Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matter 6 (1):136–43. doi: 10.1039/B916933D.
  • Marsich, E., M. Borgogna, I. Donati, P. Mozetic, B. L. Strand, S. G. Salvador, F. Vittur, and S. Paoletti. 2008. Alginate/lactose-modified chitosan hydrogels: a bioactive biomaterial for chondrocyte encapsulation . Journal of Biomedical Materials Research. Part A 84 (2):364–76. doi: 10.1002/jbm.a.31307.
  • Martin, B. D., R. J. Linhardt, and J. S. Dordick. 1998. Highly swelling hydrogels from ordered galactose-based polyacrylates. Biomaterials 19 (1-3):69–76. doi: 10.1016/S0142-9612(97)00184-1.
  • Massoumi, B., Z. Mozaffari, and M. Jaymand. 2018. A starch-based stimuli-responsive magnetite nanohydrogel as de novo drug delivery system. International Journal of Biological Macromolecules 117:418–26. doi: 10.1016/j.ijbiomac.2018.05.211.
  • Mathur, A. M., K. F. Hammonds, J. Klier, and A. B. Scranton. 1998. Equilibrium swelling of poly (methacrylic acid-g-ethylene glycol) hydrogels: Effect of swelling medium and synthesis conditions. Journal of Controlled Release: Official Journal of the Controlled Release Society 54 (2):177–84. doi: 10.1016/S0168-3659(97)00186-7.
  • Mercadé-Prieto, R., H. Zhao, M. Zhang, H. Li, L. Zhao, and X. D. Chen. 2016. Dissolution and swelling of soy protein isolate hydrogels in alkali. Food Hydrocolloids 56:285–91. doi: 10.1016/j.foodhyd.2015.12.014.
  • Mihaila, S. M., A. K. Gaharwar, R. L. Reis, A. P. Marques, M. E. Gomes, and A. Khademhosseini. 2013. Photocrosslinkable kappa-carrageenan hydrogels for tissue engineering applications . Advanced Healthcare Materials 2 (6):895–907. doi: 10.1002/adhm.201200317.
  • Michalik, R., and I. Wandzik. 2020. A mini-review on chitosan-based hydrogels with potential for sustainable agricultural applications. Polymers 12 (10):2425. doi: 10.3390/polym12102425.
  • Miyata, T., N. Asami, and T. Uragami. 1999. Preparation of an antigen-sensitive hydrogel using antigen − antibody bindings. Macromolecules 32 (6):2082–4. doi: 10.1021/ma981659g.
  • Mohammadian, M., R. Sahraei, and M. Ghaemy. 2019. Synthesis and fabrication of antibacterial hydrogel beads based on modified-gum tragacanth/poly(vinyl alcohol)/Ag0 highly efficient sorbent for hard water softening. Chemosphere 225:259–69. doi: 10.1016/j.chemosphere.2019.03.040.
  • Mokhtari, E., S. M. Jafari, and E. Assadpour. 2017. Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chemistry 229:286–95. doi: 10.1016/j.foodchem.2017.02.071.
  • Moreno-Garrido, I. 2008. Microalgae immobilization: Current techniques and uses. Bioresource Technology 99 (10):3949–64. doi: 10.1016/j.biortech.2007.05.040.
  • Moxon, S. R., and A. M. Smith. 2016. Controlling the rheology of gellan gum hydrogels in cell culture conditions. International Journal of Biological Macromolecules 84:79–86. doi: 10.1016/j.ijbiomac.2015.12.007.
  • Muhamad, I. I., L. S. Fen, N. H. Hui, and N. A. Mustapha. 2011. Genipin-cross-linked kappa-carrageenan/carboxymethyl cellulose beads and effects on beta-carotene release. Carbohydrate Polymers 83 (3):1207–12. doi: 10.1016/j.carbpol.2010.09.021.
  • Mun, S., Y. R. Kim, M. Shin, and D. J. McClements. 2015. Control of lipid digestion and nutraceutical bioaccessibility using starch-based filled hydrogels: Influence of starch and surfactant type. Food Hydrocolloids 44:380–9. doi: 10.1016/j.foodhyd.2014.10.013.
  • Mun, S., Y. Kim, and D. J. McClements. 2015. Control of β-carotene bioaccessibility using starch-based filled hydrogels. Food Chemistry 173:454–61. doi: 10.1016/j.foodchem.2014.10.053.
  • Nojima, T., and T. Iyoda. 2018. Egg white-based strong hydrogel via ordered protein condensation. NPG Asia Materials 10 (1):e460–e460. doi: 10.1038/am.2017.219.
  • Obiro, W. C., S. Sinha Ray, and M. N. Emmambux. 2012. V-amylose structural characteristics, methods of preparation, significance, and potential applications. Food Reviews International 28 (4):412–38. doi: 10.1080/87559129.2012.660718.
  • Olad, A., F. Doustdar, and H. Gharekhani. 2018. Starch-based semi-IPN hydrogel nanocomposite integrated with clinoptilolite: Preparation and swelling kinetic study. Carbohydrate Polymers 200:516–28. doi: 10.1016/j.carbpol.2018.08.014.
  • Oliveira, J. T., T. C. Santos, L. Martins, R. Picciochi, A. P. Marques, A. G. Castro, N. M. Neves, J. F. Mano, and R. L. Reis. 2010. Gellan gum injectable hydrogels for cartilage tissue engineering applications: In vitro studies and preliminary in vivo evaluation. Tissue Engineering. Part A 16 (1):343–53. doi: 10.1089/ten.TEA.2009.0117.
  • Panariello, G., R. Favaloro, M. Forbicioni, E. Caputo, and R. Barbucci. 2008. Synthesis of a new hydrogel, based on guar gum, for controlled drug release. Macromolecular Symposia 266 (1):68–73. Weinheim: WILEY‐VCH Verlag. doi: 10.1002/masy.200850613.
  • Park, M. J., S. M. Hur, and H. K. Rhee. 2002. Online estimation and control of polymer quality in a copolymerization reactor. AIChE Journal 48 (5):1013–21. doi: 10.1002/aic.690480511.
  • Park, S., S. Mun, and Y. Kim. 2018. Effect of xanthan gum on lipid digestion and bioaccessibility of β-caroteneloaded rice starch-based filled hydrogels. Food Research International 105:440–5. doi: 10.1016/j.foodres.2017.11.039.
  • Pasqui, D., M. D. Cagna, and R. Barbucci. 2012. Polysaccharide-based hydrogels: The key role of water in affecting mechanical properties. Polymers 4 (3):1517–34. doi: 10.3390/polym4031517.
  • Patil, N. S., J. S. Dordick, and D. G. Rethwisch. 1996. Macroporous poly(sucrose acrylate) hydrogel for controlled release of macromolecules. Biomaterials 17 (24):2343–50. doi: 10.1016/S0142-9612(96)00089-0.
  • Paulino, A. T., M. R. Guilherme, L. H. Mattoso, and E. B. Tambourgi. 2010. Smart hydrogels based on modified gum arabic as a potential device for magnetic biomaterial. Macromolecular Chemistry and Physics 211 (11):1196–205. doi: 10.1002/macp.200900657.
  • Peppas, N. A., and D. S. Van Blarcom. 2016. Hydrogel-based biosensors and sensing devices for drug delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society 240:142–50. doi: 10.1016/j.jconrel.2015.11.022.
  • Peppas, N. A., P. Bures, W. S. Leobandung, and H. Ichikawa. 2000. Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 50 (1):27–46. doi: 10.1016/S0939-6411(00)00090-4.
  • Pereira, R. N., R. M. Rodrigues, E. Altinok, Ó. L. Ramos, F. Xavier Malcata, P. Maresca, G. Ferrari, J. A. Teixeira, and A. A. Vicente. 2017. Development of iron-rich whey protein hydrogels following application of ohmic heating - Effects of moderate electric fields. Food Research International (Ottawa, Ont.) 99 (Pt 1):435–43. doi: 10.1016/j.foodres.2017.05.023.
  • Pérez-Luna, V., and O. González-Reynoso. 2018. Encapsulation of biological agents in hydrogels for therapeutic applications. Gels 4 (3):61. doi: 10.3390/gels4030061.
  • Plunkett, K. N., and J. S. Moore. 2004. Patterned dual pH-responsive core-shell hydrogels with controllable swelling kinetics and volumes. Langmuir: The ACS Journal of Surfaces and Colloids 20 (16):6535–7. doi: 10.1021/la049453y.
  • Prustry, K., A. Biswal, S. B. Biswal, and S. K. Swain. 2019. Synthesis of soy protein/polyacrylamide nanocomposite hydrogels for delivery of ciprofloxacin drug. Materials Chemistry and Physics 234:378–89. doi: 10.1016/j.matchemphys.2019.05.038.
  • Qureshi, M. A., N. Nishat, S. Jadoun, and M. Z. Ansari. 2020. Polysaccharide based superabsorbent hydrogels and their methods of synthesis: A review. Carbohydrate Polymer Technologies and Applications 1:100014. doi: 10.1016/j.carpta.2020.100014.
  • Qi, H., J. Cao, Y. Xin, X. Mao, D. Xie, J. Luo, and B. Chu. 2017. Dual responsive zein hydrogel membrane with selective protein adsorption and sustained release property. Materials Science & Engineering. C, Materials for Biological Applications 70 (Pt 1):347–56. doi: 10.1016/j.msec.2016.09.010.
  • Rahmani, Z., R. Sahraei, and M. Ghaemy. 2018. Preparation of spherical porous hydrogel beads based on ion-crosslinked gum tragacanth and graphene oxide: Study of drug delivery behavior. Carbohydrate Polymers 194:34–42. doi: 10.1016/j.carbpol.2018.04.022.
  • Ray, D., P. S. Gils, G. P. Mohanta, R. Manavalan, and P. K. Sahoo. 2010. Comparative delivery of diltiazem hydrochloride through synthesized polymer: Hydrogel and hydrogel microspheres. Journal of Applied Polymer Science 116 (2):959–68.
  • Remondetto, G. E., E. Beyssac, and M. Subirade. 2004. Iron availability from whey protein hydrogels: An in vitro study. Journal of Agricultural and Food Chemistry 52 (26):8137–43. doi: 10.1021/jf040286h.
  • Reus, M. A., G. A. Krintiras, G. D. Stefanidis, J. H. ter Horst, and A. E. van der Heijden. 2017. Immobilization of gluten in spherical matrices of food‐grade hydrogels. Journal of Food Process Engineering 40 (5):e12534. doi: 10.1111/jfpe.12534.
  • Rhim, J.-W., and L.-F. Wang. 2013. Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohydrate Polymers 96 (1):71–81. doi: 10.1016/j.carbpol.2013.03.083.
  • Saxena, A. K. 2010. Synthetic biodegradable hydrogel (PleuraSeal) sealant for sealing of lung tissue after thoracoscopic resection. The Journal of Thoracic and Cardiovascular Surgery 139 (2):496–7. doi: 10.1016/j.jtcvs.2008.11.003.
  • Seidel, C., W. M. Kulicke, C. Heß, B. Hartmann, M. D. Lechner, and W. Lazik. 2001. Influence of the cross‐linking agent on the gel structure of starch derivatives. Starch - Stärke 53 (7):305–10. doi: 10.1002/1521-379X(200107)53:7<305::AID-STAR305>3.0.CO;2-Z.
  • Seliktar, D. 2012. Designing cell-compatible hydrogels for biomedical applications. Science (New York, N.Y.) 336 (6085):1124–8. doi: 10.1126/science.1214804.
  • Shewan, H. M., and J. R. Stokes. 2013. Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. Journal of Food Engineering 119 (4):781–92. doi: 10.1016/j.jfoodeng.2013.06.046.
  • Singh, A., P. K. Sharma, V. K. Garg, and G. Garg. 2010. Hydrogels: A review. International Journal of Pharmaceutical Science Reviews and Research 4 (2):016.
  • Singh, B., S. Sharma, and A. Dhiman. 2017. Acacia gum polysaccharide based hydrogel wound dressings: Synthesis, characterization, drug delivery and biomedical properties. Carbohydrate Polymers 165:294–303. doi: 10.1016/j.carbpol.2017.02.039.
  • Slaughter, B. V., S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas. 2009. Hydrogels in regenerative medicine. Advanced Materials (Deerfield Beach, Fla.) 21 (32-33)‐:3307–29. doi: 10.1002/adma.200802106.
  • Slavutsky, A. M., and M. A. Bertuzzi. 2019. Formulation and characterization of hydrogel based on pectin and brea gum. International Journal of Biological Macromolecules 123:784–91. doi: 10.1016/j.ijbiomac.2018.11.038.
  • Snyders, R., Shingel, K. I. O. Zabeida, C. Roberge, M. P. Faure, L. Martinu, and J. E. Klemberg, ‐Sapieha. 2007. Mechanical and microstructural properties of hybrid poly(ethylene glycol)-soy protein hydrogels for wound dressing applications . Journal of Biomedical Materials Research. Part A 83 (1):88–97. doi: 10.1002/jbm.a.31217.
  • Soares, P. A. G., A. I. Bourbon, A. A. Vicente, C. A. S. Andrade, W. Barros, M. T. S. Correia, A. Pessoa, and M. G. Carneiro-da-Cunha. 2014. Development and characterization of hydrogels based on natural polysaccharides: Policaju and chitosan. Materials Science & Engineering. C, Materials for Biological Applications 42:219–26. doi: 10.1016/j.msec.2014.05.009.
  • Soares, P. A. G., J. R. P. C. de Seixas, P. B. S. Albuquerque, G. R. C. Santos, P. A. S. Mourão, W. Barros, M. T. S. Correia, and M. G. Carneiro-da-Cunha. 2015. Development and characterization of a new hydrogel based on galactomannan and κ-carrageenan. Carbohydrate Polymers 134:673–9. doi: 10.1016/j.carbpol.2015.08.042.
  • Song, S. K., Y. M. Jang, I. H. Jeon, S. J. Ko, J. R. Jeon, G. T. Chun, and H. J. Kwon. 2013. U.S. Patent No. 8,592,574. Washington, DC: U.S. Patent and Trademark Office.
  • Sultan, S., S. Ibrahim, M. I. M. Ibrahim, and S. R. Mohamed. 2016. Eco-friendly and non-toxic superabsorbent hydrogel as food packaging packets. Journal of Chemical and Pharmaceutical Research 8:302–10.
  • Sun, T. L., T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. A. Haque, T. Nakajima, and J. P. Gong. 2013. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature Materials 12 (10):932–7. doi: 10.1038/nmat3713.
  • Sun, X., G. Zhang, Q. Shi, B. Tang, and Z. J. Wu. 2002. Preparation and characterization of water-swellable natural rubbers. Journal of Applied Polymer Science 86 (14):3712–7. doi: 10.1002/app.11381.
  • Tanan, W., and S. Saengsuwan. 2014. Microwave assisted synthesis of poly (acrylamide-co-2-hydroxyethyl methacrylate)/poly (vinyl alcohol) semi-IPN hydrogel. Energy Procedia 56:386–93. doi: 10.1016/j.egypro.2014.07.171.
  • Tangsrianugul, N., M. Suphantharika, and D. J. McClements. 2015. Simulated gastrointestinal fate of lipids encapsulated in starch hydrogels: Impact of normal and high amylose corn starch. Food Research International (Ottawa, Ont.) 78:79–87. doi: 10.1016/j.foodres.2015.11.004.
  • Teixeira, L. S. M., Feijen, J. C. A. van Blitterswijk, P. J. Dijkstra, and M. Karperien. 2012. Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials 33 (5):1281–90. doi: 10.1016/j.biomaterials.2011.10.067.
  • Timmons, S. F., C. R. Blanchard, and R. A. Smith. 2002. U.S. Patent. No. 6,432,435. Washington, DC: U.S. Patent and Trademark Office.
  • Truong, V. X., K. M. Tsang, G. P. Simon, R. L. Boyd, R. A. Evans, H. Thissen, and J. S. Forsythe. 2015. Photodegradable gelatin-based hydrogels prepared by bioorthogonal click chemistry for cell encapsulation and release. Biomacromolecules 16 (7):2246–53. doi: 10.1021/acs.biomac.5b00706.
  • Ullah, F., M. B. H. Othman, F. Javed, Z. Ahmad, and H. M. Akil. 2015. Classification, processing and application of hydrogels: A review. Materials Science & Engineering. C, Materials for Biological Applications 57:414–33. doi: 10.1016/j.msec.2015.07.053.
  • Van Vlierberghe, S., P. Dubruel, and E. Schacht. 2011. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review. Biomacromolecules 12 (5):1387–408. doi: 10.1021/bm200083n.
  • Varghese, J. S., N. Chellappa, and N. N. Fathima. 2014. Gelatin-carrageenan hydrogels: role of pore size distribution on drug delivery process. Colloids and Surfaces. B, Biointerfaces 113:346–51. doi: 10.1016/j.colsurfb.2013.08.049.
  • Rodriguez Vilches, S., C. Séverac, C. Thibaut, L. Laplatine, C. Vieu, J. Fitremann, A.-F. Mingotaud, P. Martinoty, and D. Collin. 2011. Nanostructuration of soft hydrogels: Synthesis and characterization of saccharidic methacrylate gels. Colloid and Polymer Science 289 (13):1437–49. doi: 10.1007/s00396-011-2465-1.
  • Wang, L. F., and J. W. Rhim. 2015. Preparation and application of agar/alginate/collagen ternary blend functional food packaging films. International Journal of Biological Macromolecules 80:460–8. doi: 10.1016/j.ijbiomac.2015.07.007.
  • Wang, Q. Q., Y. Liu, C. J. Zhang, C. Zhang, and P. Zhu. 2019. Alginate/gelatin blended hydrogel fibers cross-linked by Ca2+ and oxidized starch: Preparation and properties. Materials Science & Engineering. C, Materials for Biological Applications 99:1469–76. doi: 10.1016/j.msec.2019.02.091.
  • Weiser, T. G., S. E. Regenbogen, K. D. Thompson, A. B. Haynes, S. R. Lipsitz, W. R. Berry, and A. A. Gawande. 2008. An estimation of the global volume of surgery: A modelling strategy based on available data. The Lancet 372 (9633):139–44. doi: 10.1016/S0140-6736(08)60878-8.
  • Xia, L. W., R. Xie, X. J. Ju, W. Wang, Q. Chen, and L. Y. Chu. 2013. Nano-structured smart hydrogels with rapid response and high elasticity. Nature Communications 4:2226 doi: 10.1038/ncomms3226.
  • Xiao, C. 2013. Current advances of chemical and physical starch‐based hydrogels. Starch - Stärke 65 (1-2):82–8. doi: 10.1002/star.201200113.
  • Xu, M., and M. J. Dumont. 2015. Evaluation of the stability of pea and canola protein-based hydrogels in simulated gastrointestinal fluids. Journal of Food Engineering 165:52–9. doi: 10.1016/j.jfoodeng.2015.04.033.
  • Xu, X.,. Z. Xu, X. Yang, Y. He, and R. Lin. 2017. Construction and characterization of a pure protein hydrogel for drug delivery application. Int J Biol Macromol 95:294–8. doi: 10.1016/j.ijbiomac.2016.11.028.
  • Yan, H., H. Frielinghaus, A. Nykanen, J. Ruokolainen, A. Saiani, and A. F. Miller. 2008. Thermoreversible lysozyme hydrogels: Properties and an insight into the gelation pathway. Soft Matter 4 (6):1313–25. doi: 10.1039/b716966c.
  • Yang, J., J. Chen, D. Pan, Y. Wan, and Z. Wang. 2013. pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydrate Polymers 92 (1):719–25. doi: 10.1016/j.carbpol.2012.09.036.
  • Yegappan, R., V. Selvaprithiviraj, S. Amirthalingam, and R. Jayakumar. 2018. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydrate Polymers 198:385–400. doi: 10.1016/j.carbpol.2018.06.086.
  • Yeung, T. W., I. J. Arroyo-Maya, D. J. McClements, and D. A. Sela. 2016. Microencapsulation of probiotics in hydrogel particles: Enhancing Lactococcus lactis subsp. cremoris LM0230 viability using calcium alginate beads. Food & Function 7 (4):1797–804. doi: 10.1039/c5fo00801h.
  • Yokoyama, F., I. Masada, K. Shimamura, T. Ikawa, and K. Monobe. 1986. Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid & Polymer Science 264 (7):595–601. doi: 10.1007/BF01412597.
  • Yoshikawa, E., M. J. Fournier, T. L. Mason, and D. A. Tirrell. 1994. Genetically engineered fluoropolymers. Synthesis of repetitive polypeptides containing p-fluorophenylalanine residues. Macromolecules 27 (19):5471–5. doi: 10.1021/ma00097a029.
  • Yousuf, B., N. A. Mir, M. Bharadwaj, K. Gul, and A. A. Wani. 2019. Introduction to food hydrocolloids. In Food hydrocolloids as encapsulating agents in delivery systems, ed. A. Gani, F. A. Masoodi, U. Shah, and S. Asima, S. Boca Raton. CRC Press.
  • Zand-Rajabi, H., and A. Madadlou. 2016. Caffeine-loaded whey protein hydrogels reinforced with gellan and enriched with calcium chloride. International Dairy Journal 56:38–44. doi: 10.1016/j.idairyj.2015.12.011.
  • Zaidel, D. A., N. L. Chin, R. A. Rahman, and R. Karim. 2008. Rheological characterisation of gluten from extensibility measurement. Journal of Food Engineering 86 (4):549–56. doi: 10.1016/j.jfoodeng.2007.11.005.
  • Zarzycki, R., Z. Modrzejewska, and K. Nawrotek. 2010. Drug release from hydrogel matrices. Ecological Chemistry and Engineering 17:117–36.
  • Zhai, M., F. Yoshii, T. Kume, and K. Hashim. 2002. Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydrate Polymers 50 (3):295–303. doi: 10.1016/S0144-8617(02)00031-0.
  • Zhu, B., D. Ma, J. Wang, and S. Zhang. 2015. Structure and properties of semi-interpenetrating network hydrogel based on starch. Carbohydrate Polymers 133:448–55. doi: 10.1016/j.carbpol.2015.07.037.
  • Zohuriaan‐Mehr, M. J., Z. Motazedi, K. Kabiri, and K. Ershad‐Langroudi. 2005. New super‐absorbing hydrogel hybrids from gum arabic and acrylic monomers. Journal of Macromolecular Science, Part A 42 (12):1655–66. doi: 10.1080/10601320500246859.
  • Zu, Y., Y. Zhang, X. Zhao, C. Shan, S. Zu, K. Wang, Y. Li, and Y. Ge. 2012. Preparation and characterization of chitosan-polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. International Journal of Biological Macromolecules 50 (1):82–7. doi: 10.1016/j.ijbiomac.2011.10.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.