462
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Gums-based engineered bio-nanostructures for greening the 21st-century biotechnological settings

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abbasi, A., S. Hanif, and M. Shakir. 2020. Gum acacia-based silver nanoparticles as a highly selective and sensitive dual nanosensor for Hg (ii) and fluorescence turn-off sensor for S 2− and malachite green detection. RSC Advances 10 (6):3137–44. doi: 10.1039/C9RA10372D.
  • Adeel, M., M. Bilal, T. Rasheed, A. Sharma, and H. M. Iqbal. 2018. Graphene and graphene oxide: Functionalization and nano-bio-catalytic system for enzyme immobilization and biotechnological perspective. International Journal of Biological Macromolecules 120:1430–40. doi: 10.1016/j.ijbiomac.2018.09.144.
  • Ain, Q. U., H. Munir, F. Jelani, F. Anjum, and M. Bilal. 2020. Antibacterial potential of biomaterial derived nanoparticles for drug delivery application. Materials Research Express 6 (12):125426. doi: 10.1088/2053-1591/ab715d.
  • Alexander, J. W. 2009. History of the medical use of silver. Surgical Infections 10 (3):289–92. doi: 10.1089/sur.2008.9941.
  • Alle, M., B. R. G, T. H. Kim, S. H. Park, S.-H. Lee, and J.-C. Kim. 2020. Doxorubicin-carboxymethyl xanthan gum capped gold nanoparticles: Microwave synthesis, characterization, and anti-cancer activity. Carbohydrate Polymers 229:115511. doi: 10.1016/j.carbpol.2019.115511.
  • Amorim, A., A. C. Mafud, S. Nogueira, J. R. Jesus, A. R. d Araújo, A. Plácido, M. Brito Neta, M. M. M. Alves, F. A. A. Carvalho, D. D. Rufino Arcanjo, et al. 2019. Copper nanoparticles stabilized with cashew gum: Antimicrobial activity and cytotoxicity against 4T1 mouse mammary tumor cell line. Journal of Biomaterials Applications 34 (2):188–97. doi: 10.1177/0885328219845964.
  • Azizi, S., R. Mohamad, R. A. Rahim, R. Mohammadinejad, and A. B. Ari. 2017. Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. International Journal of Biological Macromolecules 104 (Pt A):423–31. doi: 10.1016/j.ijbiomac.2017.06.010.
  • Bilal, M., and H. M. Iqbal. 2018. Bio-based biopolymers and their potential applications for bio-and non-bio sectors. In Handbook of biopolymers: Advances and multifaceted applications, eds. S. Ahmed, S. Kanchi, and G. Kumar, 23. Boca Raton, FL: Taylor & Francis Group.
  • Bilal, M., and H. M. Iqbal. 2019a. Lignin peroxidase immobilization on Ca-alginate beads and its dye degradation performance in a packed bed reactor system. Biocatalysis and Agricultural Biotechnology 20:101205. doi: 10.1016/j.bcab.2019.101205.
  • Bilal, M., and H. M. Iqbal. 2019b. Naturally-derived biopolymers: Potential platforms for enzyme immobilization. International Journal of Biological Macromolecules 130:462–82. doi: 10.1016/j.ijbiomac.2019.02.152.
  • Bilal, M., T. A. Nguyen, and H. M. Iqbal. 2020. Multifunctional carbon nanotubes and their derived nano-constructs for enzyme immobilization – A paradigm shift in biocatalyst design. Coordination Chemistry Reviews 422:213475. doi: 10.1016/j.ccr.2020.213475.
  • Bilal, M., T. Rasheed, F. Nabeel, and H. M. Iqbal. 2020. Bionanocomposites from Biofibers and Biopolymers. In Biofibers and Biopolymers for Biocomposites, 135–57. Cham, Switzerland: Springer.
  • Bilal, M., Y. Zhao, and H. M. Iqbal. 2020. Development and characterization of essential oils incorporated chitosan-based cues with antibacterial and antifungal potentialities. Journal of Radiation Research and Applied Sciences 13 (1):174–9. doi: 10.1080/16878507.2020.1719336.
  • Bogireddy, N. K. R., U. Pal, L. Martinez Gomez, and V. Agarwal. 2018. Size controlled green synthesis of gold nanoparticles using Coffea arabica seed extract and their catalytic performance in 4-nitrophenol reduction. RSC Advances 8:412.
  • Brun, E., and C. Sicard-Roselli. 2016. Actual question raised by nanoparticle radiosensitization. Radiation Physics and Chemistry 128:134–42. doi: 10.1016/j.radphyschem.2016.05.024.
  • Buckley, C., and K. O’Kelly. 2004. Regular scaffold fabrication techniques for investigations in tissue engineering. In Topics in BioMechanical Engineering,147–66, eds P. J. Prendergast and P. E. McHugh. Dublin: Trinity Centre for Bioengineering.
  • Chang, W.-H., C.-H. Wang, C.-L. Lin, J.-J. Wu, M. S. Lee, and G.-B. Lee. 2015. Rapid detection and typing of live bacteria from human joint fluid samples by utilizing an integrated microfluidic system. Biosensors & Bioelectronics 66:148–54. doi: 10.1016/j.bios.2014.11.006.
  • Choudhary, M., S. Siwal, D. Nandi, and K. Mallick. 2017. Charge storage ability of the gold nanoparticles: Towards the performance of a super capacitor. Applied Surface Science 424:151–6. doi: 10.1016/j.apsusc.2017.01.258.
  • Dahman, Y. 2017. Nanoparticle. In Nanotechnology and functional materials for engineers: Micro and nano technologies, 93–119. New York, NY: Elsevier Inc.
  • Das, R., S. Gang, and S. S. Nath. 2011. Preparation and antibacterial activity of silver nanoparticles. Journal of Biomaterials and Nanobiotechnology 2 (4):472–5. doi: 10.4236/jbnb.2011.24057.
  • de Oliveira Barud, H. G., R. R. da Silva, H. da Silva Barud, A. Tercjak, J. Gutierrez, W. R. Lustri, O. B. de Oliveira Junior, and S. J. Ribeiro. 2016. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydrate Polymers 153:406–20. doi: 10.1016/j.carbpol.2016.07.059.
  • Dong, C., H. Cai, X. Zhang, and C. Cao. 2014. Synthesis and characterization of monodisperse copper nanoparticles using gum acacia. Physica E: Low-Dimensional Systems and Nanostructures 57:12–20. doi: 10.1016/j.physe.2013.10.025.
  • Douglas, T. E. L., J. Schietse, A. Zima, S. Gorodzha, B. V. Parakhonskiy, D. KhaleNkow, R. Shkarin, A. Ivanova, T. Baumbach, V. Weinhardt, et al. 2018. Novel self-gelling injectable hydrogel/alpha-tricalcium phosphate composites for bone regeneration: Physiochemical and microcomputer tomographical characterization. Journal of Biomedical Materials Research. Part A 106 (3):822–8., doi: 10.1002/jbm.a.36277.
  • Eatemadi, A., H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, and S. W. Joo. 2014. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Research Letters 9 (1):393–405. doi: 10.1186/1556-276X-9-393.
  • Eghbalifam, N., S. A. Shojaosadati, S. Hashemi-Najafabadi, and A. C. Khorasani. 2020. Synthesis and characterization of antimicrobial wound dressing material based on silver nanoparticles loaded gum Arabic nanofibers. International Journal of Biological Macromolecules 155:119–30. doi: 10.1016/j.ijbiomac.2020.03.194.
  • Espitia, P. J. P., N. D. F. F. Soares, J. S. dos Reis Coimbra, N. J. de Andrade, R. S. Cruz, and E. A. A. Medeiros. 2012. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food and Bioprocess Technology 5 (5):1447–64. doi: 10.1007/s11947-012-0797-6.
  • Fayazzadeh, E., S. Rahimpour, S. M. Ahmadi, S. Farzampour, M. S. Anvari, M. A. Boroumand, and S. H. J. A. M. I. Ahmadi. 2014. Acceleration of skin wound healing with tragacanth (Astragalus) preparation: An experimental pilot study in rats. Acta Medica Iranica 52:3–8.
  • Fernández, P. P., M. N. Martino, N. Zaritzky, B. Guignon, and P. J. Sanz. 2007. Effects of locust bean, xanthan and guar gums on the ice crystals of a sucrose solution frozen at high pressure. Food Hydrocolloids 21 (4):507–15. doi: 10.1016/j.foodhyd.2006.05.010.
  • Ferreira, T. H., A. Rocca, A. Marino, V. Mattoli, E. M. de Sousa, and G. Ciofani. 2015. Evaluation of the effects of boron nitride nanotubes functionalized with gum arabic on the differentiation of rat mesenchymal stem cells. RSC Advances 5 (56):45431–8. doi: 10.1039/C5RA05091J.
  • Ferris, C. J., and M. In Het Panhuis. 2009. Conducting bio-materials based on gellan gum hydrogels. Soft Matter 5 (18):3430–7. doi: 10.1039/b909795c.
  • Gangapuram, B. R., R. Bandi, R. Dadigala, G. M. Kotu, and V. Guttena. 2017. Facile green synthesis of gold nanoparticles with carboxymethyl gum karaya, selective and sensitive colorimetric detection of copper (II) ions. Journal of Cluster Science 28 (5):2873–90. doi: 10.1007/s10876-017-1264-3.
  • Geim, A. K. 2009. Graphene: Status and prospects. Science (New York, N.Y.) 324 (5934):1530–4. doi: 10.1126/science.1158877.
  • Gieré, R. 2016. Magnetite in the human body: Biogenic vs. anthropogenic. Proceedings of the National Academy of Sciences of the United States of America 113 (43):11986–7. doi: 10.1073/pnas.1613349113.
  • Gohardani, O., M. C. Elola, and C. Elizetxea. 2014. Potential and prospective implementation of carbon nanotubess on next-generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences. Progress in Aerospace Sciences 70:42–68. doi: 10.1016/j.paerosci.2014.05.002.
  • Halake, K., H. J. Kim, M. Birajdar, B. S. Kim, H. Bae, C. Lee, Y. J. Kim, S. Kim, S. Ahn, S. Y. An, et al. 2016. Recently developed applications for natural hydrophilic polymers. Journal of Industrial and Engineering Chemistry 40:16–22. doi: 10.1016/j.jiec.2016.06.011.
  • Hamblin, M. R., L. Y. Chiang, S. Lakshmanan, Y. Y. Huang, M. Garcia-Diaz, M. Karimi, A. N. de Souza Rastelli, and R. Chandran. 2015. Nanotechnology for photodynamic therapy: A perspective from the laboratory of Dr. Michael, R. Ramblin in the Wellman Center for Photomedicine at Massachusetts General Hospital and Harvard Medical School. Nanotechnology Reviews 4:359–72.
  • Hatamie, A., A. Khan, M. Golabi, A. P. F. Turner, V. Beni, W. C. Mak, A. Sadollahkhani, H. Alnoor, B. Zargar, S. Bano, et al. 2015. Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Langmuir 31 (39):10913–21. doi: 10.1021/acs.langmuir.5b02341.
  • Hira, I., A. Kumar, R. Kumari, A. K. Saini, and R. V. Saini. 2018. Pectin-guar gum-zinc oxide nanocomposite enhances human lymphocytes cytotoxicity towards lung and breast carcinomas. Materials Science & Engineering. C, Materials for Biological Applications 90:494–503. doi: 10.1016/j.msec.2018.04.085.
  • Huang, T.-K., K.-W. Lin, S.-P. Tung, T.-M. Cheng, I.-C. Chang, Y.-Z. Hsieh, C.-Y. Lee, and H.-T. Chiu. 2009. Glucose sensing by electrochemically grown copper nanobelt electrode. Journal of Electroanalytical Chemistry 636 (1–2):123–7. doi: 10.1016/j.jelechem.2009.08.011.
  • Iijima, S. 1991. Helical microtubules of graphitic carbon. Nature 354 (6348):56–8. doi: 10.1038/354056a0.
  • Iijima, S., and T. Ichihashi. 1993. Single-shell carbon nanotubes of 1-nm diameter. Nature 363 (6430):603–5. doi: 10.1038/363603a0.
  • Iqbal, J., B. A. Abbasi, T. Mahmood, S. Kanwal, R. Ahmad, and M. Ashraf. 2019. Plant- extract mediated green approach for the synthesis of ZnONPs: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. Journal of Molecular Structure 1189:315–27. doi: 10.1016/j.molstruc.2019.04.060.
  • Jones, S. A., P. G. Bowler, M. Walker, and D. Parsons. 2004. Controlling wound bioburden with a novel silver-containing Hydrofiber dressing. Wound Repair and Regeneration 12 (3):288–94. doi: 10.1111/j.1067-1927.2004.012304.x.
  • Kantam, M. L., V. S. Jaya, M. J. Lakshmi, B. R. Reddy, B. M. Choudary, and S. K. Bhargava. 2007. Alumina supported copper nanoparticles for aziridination and cyclopropanation reactions. Catalysis Communications 8 (12):1963–8. doi: 10.1016/j.catcom.2007.03.012.
  • Kausar, A., F. Sher, A. Hazafa, A. Javed, M. Sillanpää, and M. Iqbal. 2020. Biocomposite of sodium-alginate with acidified clay for wastewater treatment: Kinetic, equilibrium and thermodynamic studies. International Journal of Biological Macromolecules 161:1272–85. doi: 10.1016/j.ijbiomac.2020.05.266.
  • Keller, A., J. Pham, H. Warren, and M. In Het Panhuis. 2017. Conducting hydrogels for edible electrodes. Journal of Materials Chemistry. B 5 (27):5318–28. doi: 10.1039/c7tb01247k.
  • Kim, K., H. Choi, E. S. Choi, M.-H. Park, and J.-H. Ryu. 2019. Hyaluronic acid-coated nanomedicine for targeted cancer therapy. Pharmaceutics 11:301. doi: 10.3390/pharmaceutics11070301.
  • Koziol, K., Bo Boskovic, and N. Yahya. 2010. Synthesis of carbon nanostructures by CVD method. In Carbon and oxide Nanostructures, advanced structured Materials, ed. N. Yahya, vol. 5. Berlin, Heidelberg: Springer-Verlag.
  • Kroto, H. W., J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley. 1985. C60: Buckminsterfullerene. Nature 318 (6042):162–3. doi: 10.1038/318162a0.
  • Kumar, S. S. D., A. Mahesh, M. G. Antoniraj, H. S. Rathore, N. N. Houreld, and R. Kandasamy. 2018. Cellular imaging and folate receptor targeting delivery of gum kondagogu capped gold nanoparticles in cancer cells. International Journal of Biological Macromolecules 109:220–30. doi: 10.1016/j.ijbiomac.2017.12.069.
  • Lai, K. C., L. Y. Lee, B. Y. Z. Hiew, S. Thangalazhy-Gopakumar, and S. Gan. 2020. Facile synthesis of xanthan biopolymer integrated 3D hierarchical graphene oxide/titanium dioxide composite for adsorptive lead removal in wastewater. Bioresource Technology 309:123296. doi: 10.1016/j.biortech.2020.123296.
  • Li, Y., J. Wu, and N. Chopra. 2015. Nano-carbon-based hybrids and heterostructures: Progress in growth and application for lithium-ion batteries. Journal of Materials Science 50 (24):7843–65. doi: 10.1007/s10853-015-9429-7.
  • Liu, P., R. Zhou, T. Yin, Q. Wang, Z. Guo, T. Qiwen, M. Bilal, S. He, X. Zhu, H. Shi, et al. 2020. Novel bio-fabrication of silver nanoparticles using the cell-free extract of Lysinibacillus fusiformis sp. and their potent activity against pathogenic fungi. Materials Research Express 6 (12):1250f2. doi: 10.1088/2053-1591/ab664a.
  • Lokina, S., A. Stephen, V. Kaviyarasan, C. Arulvasu, and V. Narayanan. 2014. Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. European Journal of Medicinal Chemistry 76:256–63. doi: 10.1016/j.ejmech.2014.02.010.
  • López-Vargas, E. R., H. Ortega-Ortíz, G. Cadenas-Pliego, K. de Alba Romenus, M. Cabrera de la Fuente, A. Benavides-Mendoza, and A. Juárez-Maldonado. 2018. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Applied Sciences 8 (7):1020. doi: 10.3390/app8071020.
  • Maiti, U. N., W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, J. Shim, T. H. Han, and S. O. Kim. 2014. 25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Advanced Materials (Deerfield Beach, Fla.) 26 (1):40–67. doi: 10.1002/adma.201303265.
  • Makhado, E., S. Pandey, P. N. Nomngongo, and J. Ramontja. 2018. Preparation and characterization of xanthan gum-cl-poly(acrylic acid)/o-MWCNTs hydrogel nanocomposite as highly effective re-usable adsorbent for removal of methylene blue from aqueous solutions. Journal of Colloid and Interface Science 513:700–14. doi: 10.1016/j.jcis.2017.11.060.
  • Melo, A. M. A., M. R. F. Oliveira, R. F. Furtado, M. de Fatima Borges, A. Biswas, H. N. Cheng, and C. R. Alves. 2020. Preparation and characterization of carboxymethyl cashew gum grafted with immobilized antibody for potential biosensor application. Carbohydrate Polymers 228:115408. doi: 10.1016/j.carbpol.2019.115408.
  • Miller, D. A., J. C. DiNunzio, W. Yang, J. W. McGinity, and R. O. Williams. 2008. Targeted intestinal delivery of supersaturated itraconazole for improved oral absorption). Pharmaceutical Research 25 (6):1450–9. doi: 10.1007/s11095-008-9543-1.
  • Mirzaei, H., and M. Darroudi. 2017. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International 43 (1):907–14. doi: 10.1016/j.ceramint.2016.10.051.
  • Monthioux, M., and V. L. Kuznetsov. 2006. Who should be given the credit for the discovery of carbon nanotubes? Carbon 44 (9):1621–3. 2006.03.019. doi: 10.1016/j.carbon.
  • Mostofizadeh, A., Y. Li, B. Song, and Y. Huang. 2011. Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. Journal of Nanomaterials 2011:1–21. doi: 10.1155/2011/68508.
  • Mukhopadhyay, S., D. Maiti, A. Saha, and P. S. Devi. 2016. Shape transition of TiO2 nanocube to nanospindle embedded on reduced graphene oxide with enhanced photocatalytic activity. Crystal Growth and Design 16 (12):6922–32. doi: 10.1021/acs.cgd.6b01096.
  • Nazarzadeh, E. Z., P. Makvandi, and F. R. Tay. 2019. Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydrate Polymers 212:450–67.
  • Novoselov, K. S., V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim. 2012. A roadmap for graphene. Nature 490 (7419):192–200. doi: 10.1038/nature11458.
  • Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. 2004. Electric field effect in atomically thin carbon films. Science (New York, N.Y.) 306 (5696):666–9. doi: 10.1126/science.1102896.
  • Nussonovitch, A. 2010. Plant gum exudates of the world: Sources, distribution, properties and application, 1st ed. Boca Raton, FL: CRC Press.
  • Odeku, O., O. Awe, B. Popoola, M. Odeniyi, and O. J. P. t Itiola. 2005. Compression and mechanical properties of tablet formulations: Containing corn, sweet potato, and cocoyam starches as binders. Pharmaceutical Technology 29 (4):82–90.
  • Ofori-Kwakye, K., A. A. Kwapong, and F. Adu. 2010. Antimicrobial activity of extracts and topical products of the stem bark of Spathodea campanulata for wound healing. African Journal of Traditional, Complementary and Alternative Medicines 6 (2):168–74. doi: 10.4314/ajtcam.v6i2.57089.
  • Oliveira, R. D., J. Pscheidt, C. S. Santos, R. T. Ferreira, G. Marciniuk, J. R. Garcia, M. Vidotti, L. F. Marchesi, and C. A. Pessoa. 2020. Electrochemical performance of pH sensor based on LbL films of polyaniline-gum Arabic nanocomposite and graphene oxide. Journal of the Electrochemical Society 167 (4):047505. doi: 10.1149/1945-7111/ab721d.
  • Padil, V. V. T., and M. Černík. 2013. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. International Journal of Nanomedicine 8:889.
  • Padil, V. V., S. Wacławek, M. Černík, and R. S. Varma. 2018. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnology Advances 36 (7):1984–2016. doi: 10.1016/j.biotechadv.2018.08.008.
  • Palaniraj, A., and V. J. J. o F. E. Jayaraman. 2011. Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering 106 (1):1–12.
  • Paraskevopoulou, A., D. Boskou, and V. J. F. C. Kiosseoglou. 2005. Stabilization of olive oil–lemon juice emulsion with polysaccharides. Food Chemistry 90 (4):627–34.
  • Paraskevopoulou, D., D. Boskou, and A. J. F. C. Paraskevopoulou. 2007. Oxidative stability of olive oil–lemon juice salad dressings stabilized with polysaccharides. Food Chemistry 101 (3):1197–204.
  • Park, B. K., S. Jeong, D. Kim, J. Moon, S. Lim, and J. S. Kim. 2007. Synthesis and size control of monodisperse copper nanoparticles by polyol method. Journal of Colloid and Interface Science 311 (2):417–24. doi: 10.1016/j.jcis.2007.03.039.
  • Patitsa, M., K. Karathanou, Z. Kanaki, L. Tzioga, N. Pippa, C. Demetzos, D. A. Verganelakis, Z. Cournia, and A. Klinakis. 2017. Magnetic nanoparticles coated with polyarabic acid demonstrate enhanced drug delivery and imaging properties for cancer theranostic applications. Scientific Reports 7 (1):775. doi: 10.1038/s41598-017-00836-y.
  • Pereao, O. K., C. Bode-Aluko, G. Ndayambaje, O. Fatoba, and L. F. Petrik. 2017. Electrospinning: Polymer nanofibre adsorbent applications for metal ion removal. Journal of Polymers and the Environment 25 (4):1175–89. doi: 10.1007/s10924-016-0896-y.
  • Ponce, A. A., and K. Klabunde. 2005. Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis. Journal of Molecular Catalysis A: Chemical 225 (1):1–6. doi: 10.1016/j.molcata.2004.08.019.
  • Popa, N., O. Novac, L. Profire, C. E. Lupusoru, and M. I. Popa. 2010. Hydrogels based on chitosan-xanthan for controlled release of theophylline. Journal of Materials Science. Materials in Medicine 21 (4):1241–8. doi: 10.1007/s10856-009-3937-4.
  • Prajapati, S. K., P. Kaushik, A. Malik, and V. K. J. B. A. Vijay. 2013. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: Possibilities and challenges. Biotechnology Advances 31 (8):1408–25. doi: 10.1016/j.biotechadv.2013.06.005.
  • Rai, M., and A. Ingle. 2012. Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology 94 (2):287–93. doi: 10.1007/s00253-012-3969-4.
  • Ran, F., Y. Tan, W. Dong, Z. Liu, L. Kong, and L. Kang. 2018. In situ polymerization and reduction to fabricate gold nanoparticle‐incorporated polyaniline as supercapacitor electrode materials. Polymers for Advanced Technologies 29 (6):1697–705. doi: 10.1002/pat.4273.
  • Rasheed, T., A. A. Hassan, F. Kausar, F. Sher, M. Bilal, and H. M. Iqbal. 2020. Carbon nanotubes assisted analytical detection–Sensing/delivery cues for environmental and biomedical monitoring. TrAC - Trends in Analytical Chemistry 132:116066. doi: 10.1016/j.trac.2020.116066.
  • Rasheed, T., F. Nabeel, M. Adeel, K. Rizwan, M. Bilal, and H. M. Iqbal. 2019. Carbon nanotubes-based cues: A pathway to future sensing and detection of hazardous pollutants. Journal of Molecular Liquids 292:111425. doi: 10.1016/j.molliq.2019.111425.
  • Ravi, R. C., S. Bhargava, S. Moghe, and A. Malik. 2009. Method and system for location-based wireless network. Google Patents.
  • Rocha, R. C., and O. S. Filho. 1996. Fulerenos e sua espantosa geometria molecular [Fullerenes and their amazing molecular geometry]. Química Nova na escola 4:7–11.
  • Rodríguez-Hernández, A., and A. Tecante. 1999. Dynamic viscoelastic behavior of gellan-carrageenan and gellan-xanthan gels. Food Hydrocolloids 13:59–64.
  • Roldan, M. V., N. Pellegri, and O. de Sanctis. 2013. Electrochemical method for Ag-PEG nanoparticles synthesis. Journal of Nanoparticle Research 2013:524150.
  • Roldo, M., and D. G. Fatouros. 2013. Biomedical applications of carbon nanotubes. Annual Reports Section "C" (Physical Chemistry) 109:10–35. doi: 10.1039/c3pc90010j.
  • Roy, N. K., C. S. Foong, and M. A. Cullinan. 2018. Effect of size, morphology, and synthesis method on the thermal and sintering properties of copper nanoparticles for use in microscale additive manufacturing processes. Additive Manufacturing 21:17–29. doi: 10.1016/j.addma.2018.02.008.
  • Sahoo, G. P., S. Basu, S. Samanta, and A. Misra. 2015. Microwave-assisted synthesis of anisotropic gold nanocrystals in polymer matrix and their catalytic activities. Journal of Experimental Nanoscience 10 (9):690–702.
  • Sanghi, R., P. Verma, and S. Puri. 2011. Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Advances in Chemical Engineering and Science 1 (3):154–62. doi: 10.4236/aces.2011.13023.
  • Seeli, D. S., and M. Prabaharan. 2017. Guar gum oleate-graft-poly(methacrylic acid) hydrogel as a colon-specific controlled drug delivery carrier. Carbohydrate Polymers 158:51–7. doi: 10.1016/j.carbpol.2016.11.092.
  • Sehar, S., F. Sher, S. Zhang, U. Khalid, J. Sulejmanović, and E. C. Lima. 2020. Thermodynamic and kinetic study of synthesised graphene oxide-CuO nanocomposites: A way forward to fuel additive and photocatalytic potentials. Journal of Molecular Liquids 313:113494. doi: 10.1016/j.molliq.2020.113494.
  • Seku, K., B. R. Gangapuram, B. Pejjai, M. Hussain, S. S. Hussaini, N. Golla, and K. K. Kadimpati. 2019. Eco-friendly synthesis of gold nanoparticles using carboxymethylated gum Cochlospermum gossypium (CMGK) and their catalytic and antibacterial applications. Chemical Papers 73 (7):1695–704. doi: 10.1007/s11696-019-00722-z.
  • Sharadanant, R., and K. J. C. c Khan. 2006. Effect of hydrophilic gums on the quality of frozen dough: Electron microscopy, protein solubility, and electrophoresis studies. Cereal Chemistry Journal 83 (4):411–7. doi: 10.1094/CC-83-0411.
  • Sharma, A. K., B. S. Kaith, B. Gupta, U. Shanker, and S. P. Lochab. 2019. Microwave assisted in situ synthesis of gum Salai guggal based silver nanocomposites-investigation of anti-bacterial properties. Cellulose 26 (2):991–1011. doi: 10.1007/s10570-018-2140-5.
  • Sharma, N., and V. I. Patni. 2012. Grewia tenax (Frosk.) Fiori.—A traditional medicinal plant with enormous economic prospectives. Asian Journal of Pharmaceutical and Clinical Research 5 (3):28–32.
  • Sharmila, G., C. Muthukumaran, K. Sandiya, S. Santhiya, R. S. Pradeep, N. M. Kumar, N. Suriyanarayanan, and M. Thirumarimurugan. 2018. Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. Journal of Nanostructure in Chemistry 8 (3):293–9. doi: 10.1007/s40097-018-0271-8.
  • Siddiqi, K. S., and A. Husen. 2016. Fabrication of metal nanoparticles from fungi and metal salts: Scope and application. Nanoscale Research Letters 11:98.
  • Silvestri, D., J. Mikšíček, S. Wacławek, R. Torres-Mendieta, V. V. Padil, and M. Černík. 2019. Production of electrospun nanofibers based on graphene oxide/gum Arabic. International Journal of Biological Macromolecules 124:396–402. doi: 10.1016/j.ijbiomac.2018.11.243.
  • Siqueira, J. R., and O. N. Oliveira. 2017. Carbon-based nanomaterials. In Nanostructures, 233–49. New York, NY: Elsevier Inc.
  • Suganya, S., and S. Vivekanandhan. 2019. Neem (Azadirachta indica) gum assisted sol–gel synthesis and characterization of ZnO nanoparticles for photocatalytic application. Journal of the Australian Ceramic Society 55 (2):433–42. doi: 10.1007/s41779-018-0251-y.
  • Sultankulov, B., D. Berillo, K. Sultankulova, T. Tokay, and A. Saparov. 2019. Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules 9 (9):470. doi: 10.3390/biom9090470.
  • Sun, D., X. Yan, J. Lang, and Q. Xue. 2013. High performance super capacitor electrode based on graphene paper via flame-induced reduction of graphene oxide paper. Journal of Power Sources 222:52–8. doi: 10.1016/j.jpowsour.2012.08.059.
  • Sun, G., and J. J. Mao. 2012. Engineering dextran-based scaffolds for drug delivery and tissue repair. Nanomedicine (London, England) 7 (11):1771–84. doi: 10.2217/nnm.12.149.
  • Tilaki, R. M., A. Iraji Zad, and S. M. Mahdavi. 2007. Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids. Applied Physics A 88 (2):415–9. doi: 10.1007/s00339-007-4000-2.
  • Tiwari, J. N., V. Vij, K. C. Kemp, and K. S. Kim. 2016. Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano 10 (1):46–80. doi: 10.1021/acsnano.5b05690.
  • Torres, M., B. Hallmark, and D. I. Wilson. 2014. Effect of concentration on shear and extensional rheology of guar gum solutions. Food Hydrocolloids 40:85–95. [Database] doi: 10.1016/j.foodhyd.2014.02.011.
  • Uehara, N. 2010. Polymer-functionalized gold nanoparticles as versatile sensing materials. Analytical Sciences 26 (12):1219–28. [PubMed: 21157089] doi: 10.2116/analsci.26.1219.
  • Ullah, A. A., H. Munir, and M. Shahid. 2019. Synthesis of Bombax malabaricum gum based silver and zinc nanoparticles and their application in controlled drug delivery. Materials Research Express 6 (11):115414.
  • Ullah, S., I. Zainol, and R. H. Idrus. 2017. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds. International Journal of Biological Macromolecules 104:1020–9. doi: 10.1016/j.ijbiomac.2017.06.080.
  • Ursino, C., R. Castro-Muñoz, E. Drioli, L. Gzara, M. H. Albeirutty, and A. Figoli. 2018. Progress of nanocomposite membranes for water treatment. Membranes 8 (2):18. doi: 10.3390/membranes8020018.
  • Venkateshaiah, A., D. Silvestri, R. K. Ramakrishnan, S. Wacławek, V. V. Padil, M. Černík, and R. S. Varma. 2019. Gum kondagoagu/reduced graphene oxide framed platinum nanoparticles and their catalytic role. Molecules 24 (20):3643.
  • Vieaud, J., J. Gao, J. Cane, M. Stchakovsky, A. En Naciri, K. Ariga, R. Oda, E. Pouget, and Y. Battie. 2018. Gold nanoparticle chains: Synthesis, characterization, and modeling using spectroscopic ellipsometry. The Journal of Physical Chemistry C 122 (22):11973–84. doi: 10.1021/acs.jpcc.8b01614.
  • Wróblewska-Krepsztul, J., T. Rydzkowski, I. Michalska-Pożoga, and V. K. Thakur. 2019. Biopolymers for biomedical and pharmaceutical applications: Recent advances and overview of alginate electrospinning. Nanomaterials 9 (3):404. doi: 10.3390/nano9030404.
  • Wu, J., Y. Zheng, W. Song, J. Luan, X. Wen, Z. Wu, X. Chen, Q. Wang, and S. Guo. 2014. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydrate Polymers 102:762–71. doi: 10.1016/j.carbpol.2013.10.093.
  • Yadav, B. C., and R. Kumar. 2008. Structure, properties and applications of fullerenes. International Journal of Nanotechnology and Applications 2 (1):15–24.
  • Yazid, H., R. Adnan, S. A. Hamid, and M. A. Farrukh. 2010. Synthesis and characterization of gold nanoparticles supported on zinc oxide via the deposition-precipitation method. Turkish Journal of Chemistry 34 (4):639–50.
  • Yegappan, R., V. Selvaprithiviraj, S. Amirthalingam, and R. Jayakumar. 2018. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydrate Polymers 198:385–400. doi: 10.1016/j.carbpol.2018.06.086.
  • Yegappan, R., V. Selvaprithiviraj, S. Amirthalingam, A. Mohandas, N. S. Hwang, and R. Jayakumar. 2019. Injectable angiogenic and osteogenic carrageenan nanocomposite hydrogel for bone tissue engineering. International Journal of Biological Macromolecules 122:320–8. doi: 10.1016/j.ijbiomac.2018.10.182.
  • Yusof, H. M., R. Mohamad, and U. H. Zaidan. 2019. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. Journal of Animal Science and Biotechnology 10 (1):57.
  • Zhang, D.-Y., Y. Zheng, C.-P. Tan, J.-H. Sun, W. Zhang, L.-N. Ji, and Z.-W. Mao. 2017. Graphene oxide decorated with Ru(II)-polyethylene glycol complex for lysosome-targeted imaging and photodynamic/photothermal therapy. ACS Applied Materials & Interfaces 9 (8):6761–71. doi: 10.1021/acsami.6b13808.
  • Zhang, I., F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad. 2008. Nanoparticles in medicine: Therapeutic applications and developments. Clinical Pharmacology and Therapeutics 83 (5):761–9. doi: 10.1038/sj.clpt.6100400.
  • Zhang, K., Q. Feng, J. Xu, X. Xu, F. Tian, K. W. Yeung, and L. Bian. 2017. Self-assembled injectable nanocomposite hydrogels stabilized by bisphosphonate-magnesium (Mg2+) coordination regulates the differentiation of encapsulated stem cells via dual crosslinking. Advanced Functional Materials 27 (34):1701642. doi: 10.1002/adfm.201701642.
  • Zhang, S., M. Bilal, J. Zdarta, J. Cui, A. Kumar, M. Franco, L. F. R. Ferreira, and H. M. N. Iqbal. 2021. Biopolymers and nanostructured materials to develop pectinases-based immobilized nano-biocatalytic systems for biotechnological applications. Food Research International 140:109979. doi: 10.1016/j.foodres.2020.109979.
  • Zhou, R., X. Wu, X. Hao, F. Zhou, H. Li, and W. Rao. 2008. Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266 (4):599–603. doi: 10.1016/j.nimb.2007.11.040.
  • Zhu, H. T., C. Y. Zhang, and Y. S. Yin. 2004. Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. Journal of Crystal Growth 270 (3–4):722–8. doi: 10.1016/j.jcrysgro.2004.07.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.