759
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Application of nanostructures as antimicrobials in the control of foodborne pathogen

, , , , &

References

  • Adams, L. K., D. Y. Lyon, and P. J. J. Alvarez. 2006. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research 40 (19):3527–32. doi: 10.1016/j.watres.2006.08.004.
  • Adeli, M., H. Hosainzadegan, I. Pakzad, F. Zabihi, M. Alizadeh, and F. Karimi. 2013. Preparing starchy foods containing silver nanoparticles and evaluating antimicrobial activitiy. Jundishapur Journal of Microbiology 6 (4):1–6. doi: 10.5812/jjm.5075.
  • Ahmed, B., A. K. Ojha, A. Singh, F. Hirsch, I. Fischer, D. Patrice, and A. Materny. 2018. Well-controlled in-situ growth of 2D WO3 rectangular sheets on reduced graphene oxide with strong photocatalytic and antibacterial properties. Journal of Hazardous Materials 347:266–78. doi: 10.1016/j.jhazmat.2017.12.069.
  • Akbar, A., and A. K. Anal. 2014. Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control 38:88–95. doi: 10.1016/j.foodcont.2013.09.065.
  • Akmaz, S., E. D. Adiguzel, M. Yasar, and O. Erguven. 2013. The effect of Ag content of the chitosan-silver nanoparticle composite material on the structure and antibacterial activity. Advances in Materials Science and Engineering 2013:1–6. doi: 10.1155/2013/690918.
  • Alharbi, F. A., and A. A. Alarfaj. 2020. Green synthesis of silver nanoparticles from Neurada procumbens and its antibacterial activity against multi-drug resistant microbial pathogens. Journal of King Saud University - Science 32 (2):1346–52. doi: 10.1016/j.jksus.2019.11.026.
  • Ali, S., A. S. Sharma, W. Ahmad, M. Zareef, M. M. Hassan, A. Viswadevarayalu, T. Jiao, H. Li, and Q. Chen. 2020. Noble Metals Based Bimetallic and Trimetallic Nanoparticles: Controlled Synthesis, Antimicrobial and Anticancer Applications. Critical Reviews in Analytical Chemistry :1–28. doi:10.1080/10408347.2020.1743964. PMC: 32233874
  • Almasi, H., P. Jafarzadeh, and L. Mehryar. 2018. Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties. Carbohydrate Polymers 186:273–81. doi: 10.1016/j.carbpol.2018.01.067.
  • Ansari, M. A., H. M. Khan, M. A. Alzohairy, M. Jalal, S. G. Ali, R. Pal, and J. Musarrat. 2015. Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa. World Journal of Microbiology & Biotechnology 31 (1):153–64. doi: 10.1007/s11274-014-1757-2.
  • Applerot, G., J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart, A. Gedanken, and E. Banin. 2012. Understanding the antibacterial mechanism of CuO nanoparticles: Revealing the route of induced oxidative stress. Small (Weinheim an der Bergstrasse, Germany) 8 (21):3326–37. doi: 10.1002/smll.201200772.
  • Arfat, Y. A., J. Ahmed, and H. Jacob. 2017. Preparation and characterization of agar-based nanocomposite films reinforced with bimetallic (Ag-Cu) alloy nanoparticles. Carbohydrate Polymers 155:382–90. doi: 10.1016/j.carbpol.2016.08.097.
  • Arshad, A., J. Iqbal, M. Siddiq, Q. Mansoor, M. Ismail, F. Mehmood, M. Ajmal, and Z. Abid. 2017. Graphene nanoplatelets induced tailoring in photocatalytic activity and antibacterial characteristics of MgO/graphene nanoplatelets nanocomposites. Journal of Applied Physics 121 (2):024901. doi: 10.1063/1.4972970.
  • Azam, A., A. S. Ahmed, M. Oves, M. S. Khan, S. S. Habib, and A. Memic. 2012. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. International Journal of Nanomedicine 7:6003–9. doi: 10.2147/IJN.S35347.
  • Baek, S., S. H. Joo, C. M. Su, and M. Toborek. 2019. Antibacterial effects of graphene- and carbon-nanotube-based nanohybrids on Escherichia coli: Implications for treating multidrug-resistant bacteria. Journal of Environmental Management 247:214–23. doi: 10.1016/j.jenvman.2019.06.077.
  • Bahrami, A., R. Delshadi, S. M. Jafari, and L. Williams. 2019. Nanoencapsulated nisin: An engineered natural antimicrobial system for the food industry. Trends in Food Science & Technology 94:20–31. doi: 10.1016/j.tifs.2019.10.002.
  • Bajpai, V. K., and K. H. Baek. 2016. Biological efficacy and application of essential oils in foods-A. Journal of Essential Oil Bearing Plants 19 (1):1–19. doi: 10.1080/0972060X.2014.935033.
  • Bakur, A., Y. W. Niu, H. Kuang, and Q. H. Chen. 2019. Synthesis of gold nanoparticles derived from mannosylerythritol lipid and evaluation of their bioactivities. AMB Express 9 (1):62. doi: 10.1186/s13568-019-0785-6.
  • Battin, T. J., F. V. D. Kammer, A. Weilhartner, S. Ottofuelling, and T. Hofmann. 2009. Nanostructured TiO2: Transport behavior and effects on aquatic microbial communities under environmental conditions. Environmental Science & Technology 43 (21):8098–104. doi: 10.1021/es9017046.
  • Behzadi, F., S. Darouie, S. M. Alavi, P. Shariati, G. Singh, A. Dolatshahi-Pirouz, and A. Arpanaei. 2018. Stability and antimicrobial activity of nisin-loaded mesoporous silica nanoparticles: A game-changer in the war against maleficent microbes. Journal of Agricultural and Food Chemistry 66 (16):4233–43. doi: 10.1021/acs.jafc.7b05492.
  • Bing, W., Z. W. Chen, H. J. Sun, P. Shi, N. Gao, J. S. Ren, and X. G. Qu. 2015. Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. Nano Research 8 (5):1648–58. doi: 10.1007/s12274-014-0654-1.
  • Boatemaa, M. A., R. Ragunathan, and J. Naskar. 2019. Nanogold for in vitro inhibition of salmonella strains. Journal of Nanomaterials 2019:1–11. doi: 10.1155/2019/9268128.
  • Booshehri, A. Y., M. I. Polo-Lopez, M. Castro-Alferez, P. F. He, R. Xu, W. Rong, S. Malato, and P. Fernandez-Ibanez. 2017. Assessment of solar photocatalysis using Ag/BiVO4 at pilot solar compound parabolic collector for inactivation of pathogens in well water and secondary effluents. Catalysis Today 281:124–34. doi: 10.1016/j.cattod.2016.08.016.
  • Chakraborty, A., J. C. Boer, C. Selomulya, and M. Plebanski. 2018. Amino acid functionalized inorganic nanoparticles as cutting-edge therapeutic and diagnostic agents. Bioconjugate Chemistry 29 (3):657–71. doi: 10.1021/acs.bioconjchem.7b00455.
  • Chandran, K., S. Song, and S. I. Yun. 2019. Effect of size and shape controlled biogenic synthesis of gold nanoparticles and their mode of interactions against food borne bacterial pathogens. Arabian Journal of Chemistry 12 (8):1994–2006. doi: 10.1016/j.arabjc.2014.11.041.
  • Chanhom, P., N. Charoenlap, C. Manipuntee, and N. Insin. 2019. Metalloporphyrins-sensitized titania-silica-iron oxide nanocomposites with high photocatalytic and bactericidal activities under visible light irradiation. Journal of Magnetism and Magnetic Materials 475:602–10. doi: 10.1016/j.jmmm.2018.11.090.
  • Chowdhury, I., N. D. Mansukhani, L. M. Guiney, M. C. Hersam, and D. Bouchard. 2015. Aggregation and stability of reduced graphene oxide: Complex roles of divalent cations, pH, and natural organic matter. Environmental Science & Technology 49 (18):10886–93. doi: 10.1021/acs.est.5b01866.
  • Cole, M. L., and O. V. Singh. 2018. Microbial occurrence and antibiotic resistance in ready-to-go food items. Journal of Food Science and Technology 55 (7):2600–9. doi: 10.1007/s13197-018-3180-4.
  • Compton, O. C., and S. T. Nguyen. 2010. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small (Weinheim an Der Bergstrasse, Germany) 6 (6):711–23.
  • Daduang, J., S. Klaynongsruang, C. Leelayuwat, T. Limpaiboon, A. Lulitanond, P. Boonsiri, S. Srichan, S. Soontaranon, S. Rugmai, and N. Rattanata. 2016. Gallic acid conjugated with gold nanoparticles: Antibacterial activity and mechanism of action on foodborne pathogens. International Journal of Nanomedicine 11:3347–56. doi: 10.2147/IJN.S109795.
  • Dai, J. Y., J. B. Song, Y. Qiu, J. J. Wei, Z. Z. Hong, L. Li, and H. H. Yang. 2019. Gold Nanoparticle-decorated g-C3N4 nanosheets for controlled generation of reactive oxygen species upon 670 nm laser illumination. ACS Applied Materials & Interfaces 11 (11):10589–96. doi: 10.1021/acsami.9b01307.
  • de Melo Monteiro, A. P., R. D. Holtz, L. C. Fonseca, C. H. Zanini Martins, M. de Sousa, L. A. Visani de Luna, D. L. de Sousa Maia, and O. L. Alves. 2018. Nano silver vanadate AgVO3: Synthesis, new functionalities and applications. Chemical Record (New York, N.Y.) 18 (7-8):973–85. doi: 10.1002/tcr.201700086.
  • de Oliveira, R. C., C. C. de Foggi, M. M. Teixeira, M. D. da Silva, M. Assis, E. M. Francisco, B. N. Pimentel, P. F. Pereira, C. E. Vergani, A. L. Machado, et al. 2017. Mechanism of antibacterial activity via morphology change of α-AgVO3: Theoretical and experimental insights. ACS Applied Materials & Interfaces 9 (13):11472–81. doi: 10.1021/acsami.7b00920.
  • Dhanasekar, M., V. Jenefer, R. B. Nambiar, S. G. Babu, S. P. Selvam, B. Neppolian, and S. V. Bhat. 2018. Ambient light antimicrobial activity of reduced graphene oxide supported metal doped TiO2 nanoparticles and their PVA based polymer nanocomposite films. Materials Research Bulletin 97:238–43. doi: 10.1016/j.materresbull.2017.08.056.
  • Dobrucka, R., and M. Ankiel. 2019. Possible applications of metal nanoparticles in antimicrobial food packaging. Journal of Food Safety 39 (2):e12617. doi: 10.1111/jfs.12617.
  • Dong, F., and Y. Zhou. 2019. Differential transformation and antibacterial effects of silver nanoparticles in aerobic and anaerobic environment. Nanotoxicology 13 (3):339–53. doi: 10.1080/17435390.2018.1548667.
  • Duffy, L. L., M. J. Osmond-McLeod, J. Judy, and T. King. 2018. Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control 92:293–300. doi: 10.1016/j.foodcont.2018.05.008.
  • Ebrahimi, Y., S. J. Peighambardoust, S. H. Peighambardoust, and S. Z. Karkaj. 2019. Development of antibacterial carboxymethyl cellulose-based nanobiocomposite films containing various metallic nanoparticles for food packaging applications. Journal of Food Science 84 (9):2537–48. doi: 10.1111/1750-3841.14744.
  • Ebrahimiasl, S., and A. Rajabpour. 2015. Synthesis and characterization of novel bactericidal Cu/HPMC BNCs using chemical reduction method for food packaging. Journal of Food Science and Technology 52 (9):5982–8. doi: 10.1007/s13197-014-1615-0.
  • EL-Mekkawi, D. M., M. M. Selim, N. Hamdi, S. A. Hassan, and A. Ezzat. 2018. Studies on the influence of the physicochemical characteristics of nanostructured copper, zinc and magnesium oxides on their antibacterial activities. Journal of Environmental Chemical Engineering 6 (4):5608–15. doi: 10.1016/j.jece.2018.08.044.
  • Feng, Z. Z., X. M. Liu, L. Tan, Z. D. Cui, X. J. Yang, Z. Y. Li, Y. F. Zheng, K. W. K. Yeung, and S. L. Wu. 2018. Electrophoretic deposited stable Chitosan@MoS2 coating with rapid in situ bacteria-killing ability under dual-light irradiation. Small 14 (21):1704347. doi: 10.1002/smll.201704347.
  • Fukumura, T., E. Sambandan, and H. Yamashita. 2018. Preparation, characterizations, and antibacterial properties of Cu/SnO2 nanocomposite bilayer coatings. Journal of Coatings Technology and Research 15 (2):437–43. doi: 10.1007/s11998-017-0017-4.
  • Germi, K. G., F. Shabani, A. Khodayari, and Y. Azizian-Kalandaragh. 2014. Structural and biological properties of CuO nanoparticles prepared under ultrasonic irradiation. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 44 (9):1286–90. doi: 10.1080/15533174.2013.801853.
  • Ghaffar, A. M. A., H. E. Ali, S. M. Nasef, and H. A. El-Bialy. 2018. Effect of gamma radiation on the properties of crosslinked chitosan nano-composite film. Journal of Polymers and the Environment 26 (8):3226–36. doi: 10.1007/s10924-018-1208-5.
  • Ghanem, A. F., A. A. Badawy, M. E. Mohram, and M. H. Abdel Rehim. 2020. Synergistic effect of zinc oxide nanorods on the photocatalytic performance and the biological activity of graphene nano sheets. Heliyon 6 (2):e03283. doi: 10.1016/j.heliyon.2020.e03283.
  • Ghasemi, N., F. Jamali-Sheini, and R. Zekavati. 2017. CuO and Ag/CuO nanoparticles: Biosynthesis and antibacterial properties. Materials Letters 196:78–82. doi: 10.1016/j.matlet.2017.02.111.
  • Ghobadian, M., M. Nabiuni, K. Parivar, M. Fathi, and J. Pazooki. 2015. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio)). Ecotoxicology and Environmental Safety 122:260–7. doi: 10.1016/j.ecoenv.2015.08.009.
  • Guo, T., M. Lin, J. X. Huang, C. L. Zhou, W. Z. Tian, H. Yu, X. M. Jiang, J. Ye, Y. J. Shi, Y. H. Xiao, et al. 2018. The recent advances of magnetic nanoparticles in medicine. Journal of Nanomaterials 2018:1–8. doi: 10.1155/2018/7805147.
  • Guo, R., A. G. Yan, J. J. Xu, B. T. Xu, T. T. Li, X. W. Liu, T. F. Yi, and S. H. Luo. 2020. Effects of morphology on the visible-light-driven photocatalytic and bactericidal properties of BiVO4/CdS heterojunctions: A discussion on photocatalysis mechanism. Journal of Alloys and Compounds 817:153246. doi: 10.1016/j.jallcom.2019.153246.
  • Gyawali, R., and S. A. Ibrahim. 2014. Natural products as antimicrobial agents. Food Control 46:412–29. doi: 10.1016/j.foodcont.2014.05.047.
  • Hadian, M., A. Rajaei, A. Mohsenifar, and M. Tabatabaei. 2017. Encapsulation of Rosmarinus officinalis essential oils in chitosan-benzoic acid nanogel with enhanced antibacterial activity in beef cutlet against Salmonella typhimurium during refrigerated storage. Lwt 84:394–401. doi: 10.1016/j.lwt.2017.05.075.
  • Hameed, S., Y. Wang, L. Zhao, L. Xie, and Y. Ying. 2020. Shape-dependent significant physical mutilation and antibacterial mechanisms of gold nanoparticles against foodborne bacterial pathogens (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) at lower concentrations. Materials Science & Engineering. C, Materials for Biological Applications 108:110338 doi:10.1016/j.msec.2019.110338. PMC: 31923994
  • Han, W., C. X. Luo, Y. F. Yang, J. Y. Ren, H. Y. Xuan, and L. Q. Ge. 2018. Free-standing polylactic acid/chitosan/molybdenum disulfide films with controllable visible-light photodegradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 558:488–94. doi: 10.1016/j.colsurfa.2018.09.017.
  • Han, D. L., M. X. Ma, Y. J. Han, Z. D. Cui, Y. Q. Liang, X. M. Liu, Z. Y. Li, S. L. Zhu, and S. L. Wu. 2020. Eco-friendly hybrids of carbon quantum dots modified mos2 for rapid microbial inactivation by strengthened photocatalysis. ACS Sustainable Chemistry & Engineering 8 (1):534–42. doi: 10.1021/acssuschemeng.9b06045.
  • He, Y. P., S. Ingudam, S. Reed, A. Gehring, T. P. Strobaugh, and P. Irwin. 2016. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. Journal of Nanobiotechnology 14 (1):1–9. doi: 10.1186/s12951-016-0202-0.
  • Herman, A., and A. P. Herman. 2014. Nanoparticles as antimicrobial agents: Their toxicity and mechanisms of action. Journal of Nanoscience and Nanotechnology 14 (1):946–57. doi: 10.1166/jnn.2014.9054.
  • Imada, K., S. Sakai, H. Kajihara, S. Tanaka, and S. Ito. 2016. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathology 65 (4):551–60. doi: 10.1111/ppa.12443.
  • Jacob, J. A., J. M. M. Salmani, and B. Chen. 2016. Magnetic nanoparticles: Mechanistic studies on the cancer cell interaction. Nanotechnology Reviews 5 (5):481–8. doi: 10.1515/ntrev-2016-0022.
  • Jeevitha, G., R. Abhinayaa, D. Mangalaraj, and N. Ponpandian. 2018. Tungsten oxide-graphene oxide (WO3-GO) nanocomposite as an efficient photocatalyst, antibacterial and anticancer agent. Journal of Physics and Chemistry of Solids 116:137–47. doi: 10.1016/j.jpcs.2018.01.021.
  • Jillani, S., M. Jelani, N. Ul Hassan, S. Ahmad, and M. Hafeez. 2018. Synthesis, characterization and biological studies of copper oxide nanostructures. Materials Research Express 5 (4):045006. doi: 10.1088/2053-1591/aab864.
  • Jin, T., and Y. P. He. 2011. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. Journal of Nanoparticle Research 13 (12):6877–85. doi: 10.1007/s11051-011-0595-5.
  • Joost, U., K. Juganson, M. Visnapuu, M. Mortimer, A. Kahru, E. Nommiste, U. Joost, V. Kisand, and A. Ivask. 2015. Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: Effects on Escherichia coli cells and fatty acids. Journal of Photochemistry and Photobiology. B, Biology 142:178–85. doi: 10.1016/j.jphotobiol.2014.12.010.
  • Karagoz, S., N. B. Kiremitler, M. Sakir, S. Salem, M. S. Onses, E. Sahmetlioglu, A. Ceylan, and E. Yilmaz. 2020. Synthesis of Ag and TiO2 modified polycaprolactone electrospun nanofibers (PCL/TiO2-Ag NFs) as a multifunctional material for SERS, photocatalysis and antibacterial applications. Ecotoxicology and Environmental Safety 188:109856. doi: 10.1016/j.ecoenv.2019.109856.
  • Kazmi, S. J., M. A. Shehzad, S. Mehmood, M. Yasar, A. Naeem, and A. S. Bhatti. 2014. Effect of varied Ag nanoparticles functionalized CNTs on its anti-bacterial activity against. Sensors and Actuators A: Physical 216:287–94. doi: 10.1016/j.sna.2014.06.002.
  • Khashan, K. S., G. M. Sulaiman, and F. A. Abdulameer. 2016. Synthesis and antibacterial activity of CuO nanoparticles suspension induced by laser ablation in liquid. Arabian Journal for Science and Engineering 41 (1):301–10. doi: 10.1007/s13369-015-1733-7.
  • Kim, H. R., B. B. Sahu, P. J. Xiang, and J. G. Han. 2018. Direct synthesis of magnetron sputtered nanostructured Cu films with desired properties via plasma chemistry for their efficient antibacterial application. Plasma Processes and Polymers 15 (9):1800009. doi: 10.1002/ppap.201800009.
  • Kintz, E., L. Byrne, C. Jenkins, N. McCarthy, R. Vivancos, and P. Hunter. 2019. Outbreaks of shiga toxin-producing Escherichia coli linked to sprouted seeds, salad, and leafy greens: A systematic review. Journal of Food Protection 82 (11):1950–8. doi: 10.4315/0362-028X.JFP-19-014.
  • Konwar, A., S. Kalita, J. Kotoky, and D. Chowdhury. 2016. Chitosan-iron oxide coated graphene oxide nanocomposite hydrogel: A robust and soft antimicrobial biofilm. ACS Applied Materials & Interfaces 8 (32):20625–34. doi: 10.1021/acsami.6b07510.
  • Kowal, K.,. K. Wysocka-Król, M. Kopaczyńska, E. Dworniczek, R. Franiczek, M. Wawrzyńska, M. Vargová, M. Zahoran, E. Rakovský, P. Kuš, et al. 2011. In situ photoexcitation of silver-doped titania nanopowders for activity against bacteria and yeasts. Journal of Colloid and Interface Science 362 (1):50–7. doi: 10.1016/j.jcis.2011.06.035.
  • Kukovecz, A., K. Kordas, J. Kiss, and Z. Konya. 2016. Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires. Surface Science Reports 71 (3):473–546. doi: 10.1016/j.surfrep.2016.06.001.
  • Lee, E. H., I. Khan, and D.-H. Oh. 2018. Evaluation of the efficacy of nisin-loaded chitosan nanoparticles against foodborne pathogens in orange juice. Journal of Food Science and Technology 55 (3):1127–33. doi: 10.1007/s13197-017-3028-3.
  • Lee, B., and D. G. Lee. 2019. Synergistic antibacterial activity of gold nanoparticles caused by apoptosis-like death. Journal of Applied Microbiology 127 (3):701–12. doi: 10.1111/jam.14357.
  • Li, X. J., Z. J. Zhang, A. Fakhri, V. K. Gupta, and S. Agarwal. 2019. Adsorption and photocatalysis assisted optimization for drug removal by chitosan-glyoxal/Polyvinylpyrrolidone/MoS2 nanocomposites. International Journal of Biological Macromolecules 136:469–75. doi: 10.1016/j.ijbiomac.2019.06.003.
  • Liu, W. H., Y. Feng, H. W. Tang, H. B. Yuan, S. He, and S. D. Miao. 2016. Immobilization of silver nanocrystals on carbon nanotubes using ultra-thin molybdenum sulfide sacrificial layers for antibacterial photocatalysis in visible light. Carbon 96:303–10. doi: 10.1016/j.carbon.2015.09.078.
  • Lopez-Lorente, A. I., S. Cardenas, and Z. I. Gonzalez-Sanchez. 2019. Effect of synthesis, purification and growth determination methods on the antibacterial and antifungal activity of gold nanoparticles. Materials Science & Engineering C-Materials for Biological Applications 103: 109805.
  • Manikandan, V., P. Jayanthi, A. Priyadharsan, E. Vijayaprathap, P. M. Anbarasan, and P. Velmurugan. 2019. Green synthesis of pH-responsive Al2O3 nanoparticles: Application to rapid removal of nitrate ions with enhanced antibacterial activity. Journal of Photochemistry and Photobiology A: Chemistry 371:205–15. doi: 10.1016/j.jphotochem.2018.11.009.
  • Marini, M., S. De Niederhausern, R. Iseppi, M. Bondi, C. Sabia, M. Toselli, and F. Pilati. 2007. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules 8 (4):1246–54. doi: 10.1021/bm060721b.
  • Masadeh, M. M., G. A. Karasneh, M. A. Al-Akhras, B. A. Albiss, K. M. Aljarah, S. I. Al-Azzam, and K. H. Alzoubi. 2015. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology 67 (3):427–35. doi: 10.1007/s10616-014-9701-8.
  • Ma, S. L., S. H. Zhan, Y. N. Jia, Q. Shi, and Q. X. Zhou. 2016. Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Applied Catalysis B: Environmental 186:77–87. doi: 10.1016/j.apcatb.2015.12.051.
  • Ma, S. L., S. H. Zhan, Y. N. Jia, and Q. X. Zhou. 2015. Superior antibacterial activity of Fe3O4-TiO2 nanosheets under solar light. ACS Applied Materials & Interfaces 7 (39):21875–83. doi: 10.1021/acsami.5b06264.
  • Ma, S. L., S. H. Zhan, Y. G. Xia, P. F. Wang, Q. L. Hou, and Q. X. Zhou. 2019. Enhanced photocatalytic bactericidal performance and mechanism with novel Ag/ZnO/g-C3N4 composite under visible light. Catalysis Today 330:179–88. doi: 10.1016/j.cattod.2018.04.014.
  • Mirhosseini, M., and M. Afzali. 2016. Investigation into the antibacterial behavior of suspensions of magnesium oxide nanoparticles in combination with nisin and heat against Escherichia coli and Staphylococcus aureus in milk. Food Control 68:208–15. doi: 10.1016/j.foodcont.2016.03.048.
  • Mirhosseini, M., and V. Arjmand. 2014. Reducing Pathogens by Using Zinc Oxide Nanoparticles and Acetic Acid in Sheep Meat. Journal of Food Protection 77 (9):1599–604. doi: 10.4315/0362-028X.JFP-13-210.
  • Mirhosseini, M., and F. B. Firouzabadi. 2013. Antibacterial activity of zinc oxide nanoparticle suspensions on food-borne pathogens. International Journal of Dairy Technology 66 (2):291–5. doi: 10.1111/1471-0307.12015.
  • Moustafa, N. E., and A. A. Alomari. 2019. Green synthesis and bactericidal activities of isotropic and anisotropic spherical gold nanoparticles produced using Peganum harmala L leaf and seed extracts. Biotechnology and Applied Biochemistry 66 (4):664–72. doi: 10.1002/bab.1782.
  • Niu, P., L. L. Zhang, G. Liu, and H. M. Cheng. 2012. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Advanced Functional Materials 22 (22):4763–70. doi: 10.1002/adfm.201200922.
  • Novickij, V., R. Stanevičienė, I. Vepštaitė-Monstavičė, R. Gruškienė, T. Krivorotova, J. Sereikaitė, J. Novickij, and E. Servienė. 2017. Overcoming Antimicrobial Resistance in Bacteria Using Bioactive Magnetic Nanoparticles and Pulsed Electromagnetic Fields. Frontiers in Microbiology 8:2678 doi:10.3389/fmicb.2017.02678. PMC: 29375537
  • Osaili, T. M., B. A. Albiss, A. A. Al-Nabulsi, R. F. Alromi, A. Olaimat, M. Al-Holy, I. Savvaidis, and R. Holley. 2019. Effects of metal oxide nanoparticles with plant extract on viability of foodborne pathogens. Journal of Food Safety 39 (5):e12681. doi: 10.1111/jfs.12681.
  • Oun, A. A., S. Shankar, and J.-W. Rhim. 2020. Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Critical Reviews in Food Science and Nutrition 60 (3):435–60. doi: 10.1080/10408398.2018.1536966.
  • Pagno, C. H., T. M. H. Costa, E. W. de Menezes, E. V. Benvenutti, P. F. Hertz, C. R. Matte, J. V. Tosati, A. R. Monteiro, A. O. Rios, and S. H. Flôres. 2015. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chemistry 173:755–62. doi: 10.1016/j.foodchem.2014.10.068.
  • Pal, S., Y. K. Tak, and J. M. Song. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology 73 (6):1712–20. doi: 10.1128/AEM.02218-06.
  • Pandiyarajan, T., R. Udayabhaskar, S. Vignesh, R. A. James, and B. Karthikeyan. 2013. Synthesis and concentration dependent antibacterial activities of CuO nanoflakes. Materials Science & Engineering. C, Materials for Biological Applications 33 (4):2020–4. doi: 10.1016/j.msec.2013.01.021.
  • Parimaladevi, R., V. P. Parvathi, S. S. Lakshmi, and M. Umadevi. 2018. Synergistic effects of copper and nickel bimetallic nanoparticles for enhanced bacterial inhibition. Materials Letters 211:82–6. doi: 10.1016/j.matlet.2017.09.097.
  • Patra, J. K., and K. H. Baek. 2015. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. International Journal of Nanomedicine 10:7253–64. doi: 10.2147/IJN.S95483.
  • Patra, J. K., and K. H. Baek. 2017. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Frontiers in Microbiology 8:167. doi: 10.3389/fmicb.2017.00167.
  • Paul, D., and S. Neogi. 2019. Synthesis, characterization and a comparative antibacterial study of CuO, NiO and CuO-NiO mixed metal oxide. Materials Research Express 6 (5):055004. doi: 10.1088/2053-1591/ab003c.
  • Peighambardoust, S. J., S. H. Peighambardoust, N. Pournasir, and P. M. Pakdel. 2019. Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packaging and Shelf Life 22:100420. doi: 10.1016/j.fpsl.2019.100420.
  • Pereira, R. N., and A. A. Vicente. 2010. Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International 43 (7):1936–43. doi: 10.1016/j.foodres.2009.09.013.
  • Pisoschi, A. M., A. Pop, C. Georgescu, V. Turcuş, N. K. Olah, and E. Mathe. 2018. An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry 143:922–35. doi: 10.1016/j.ejmech.2017.11.095.
  • Prasad, G. K., G. S. Agarwal, B. Singh, G. P. Rai, and R. Vijayaraghavan. 2009. Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials. Journal of Hazardous Materials 165 (1-3):506–10. doi: 10.1016/j.jhazmat.2008.10.009.
  • Pratheesya, T., S. Harish, M. Navaneethan, S. Sohila, and R. Ramesh. 2019. Enhanced antibacterial and photocatalytic activities of silver nanoparticles anchored reduced graphene oxide nanostructure. Materials Research Express 6 (7):074003. doi: 10.1088/2053-1591/ab1567.
  • Regmi, C., D. Dhakal, and S. W. Lee. 2018. Visible-light-induced Ag/BiVO4 semiconductor with enhanced photocatalytic and antibacterial performance. Nanotechnology 29 (6):064001. doi: 10.1088/1361-6528/aaa052.
  • Rokbani, H., F. Daigle, and A. Ajji. 2019. Long- and short-term antibacterial properties of low-density polyethylene-based films coated with zinc oxide nanoparticles for potential use in food packaging. Journal of Plastic Film & Sheeting 35 (2):117–34. doi: 10.1177/8756087918822677.
  • Roldan, M. V., P. de Ona, Y. Castro, A. Duran, P. Faccendini, C. Lagier, R. Grau, and N. S. Pellegri. 2014. Photocatalytic and biocidal activities of novel coating systems of mesoporous and dense TiO2-anatase containing silver nanoparticles. Materials Science & Engineering. C, Materials for Biological Applications 43:630–40. doi: 10.1016/j.msec.2014.07.053.
  • Ropero-Vega, J. L., N. Ardila-Rosas, I. P. Hernandez, and J. M. Florez-Castillo. 2020. Immobilization of Ib-M2 peptide on core@shell nanostructures based on SPION nanoparticles and their antibacterial activity against Escherichia coli O157:H7. Applied Surface Science 515:146045. doi: 10.1016/j.apsusc.2020.146045.
  • Şahin, E., S. J. Musevi, and A. Aslani. 2017. Antibacterial activity against Escherichia coli and characterization of ZnO and ZnO-Al2O3 mixed oxide nanoparticles. Arabian Journal of Chemistry 10:S230–S235. doi: 10.1016/j.arabjc.2012.07.027.
  • Saravanakumar, K., A. Sathiyaseelan, A. V. A. Mariadoss, X. W. Hu, and M. H. Wang. 2020. Physical and bioactivities of biopolymeric films incorporated with cellulose, sodium alginate and copper oxide nanoparticles for food packaging application. International Journal of Biological Macromolecules 153:207–14. doi: 10.1016/j.ijbiomac.2020.02.250.
  • Seil, J. T., and T. J. Webster. 2012. Antimicrobial applications of nanotechnology: Methods and literature. International Journal of Nanomedicine 7:2767–81. doi: 10.2147/IJN.S24805.
  • Shah, S. T., W. A Yehya, O. Saad, K. Simarani, Z. Chowdhury, A. A. Alhadi, and L. Al-Ani. 2017. Surface functionalization of iron oxide nanoparticles with gallic acid as potential antioxidant and antimicrobial agents. Nanomaterials 7 (10):306. doi: 10.3390/nano7100306.
  • Shahbazi, M. A., L. Faghfouri, M. P. A. Ferreira, P. Figueiredo, H. Maleki, F. Sefat, J. Hirvonen, and H. A. Santos. 2020. The versatile biomedical applications of bismuth-based nanoparticles and composites: Therapeutic, diagnostic, biosensing, and regenerative properties. Chemical Society Reviews 49 (4):1253–321. doi: 10.1039/c9cs00283a.
  • Shankar, S., L. F. Wang, and J. W. Rhim. 2017. Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydrate Polymers 169:264–71. doi: 10.1016/j.carbpol.2017.04.025.
  • Sharma, R., S. Uma, A. V. Singh, and M. Khanuja. 2016. Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals. Journal of Photochemistry and Photobiology B-Biology 162:266–72. doi: 10.1016/j.jphotobiol.2016.06.035.
  • Shi, L. E., Z. H. Li, W. Zheng, Y. F. Zhao, Y. F. Jin, and Z. X. Tang. 2014. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: A review. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment 31:173–86.
  • Sikora, P., K. Cendrowski, A. Markowska-Szczupak, E. Horszczaruk, and E. Mijowska. 2017. The effects of silica/titania nanocomposite on the mechanical and bactericidal properties of cement mortars. Construction and Building Materials 150:738–46. doi: 10.1016/j.conbuildmat.2017.06.054.
  • Singh, A., D. P. Dutta, A. Ballal, A. K. Tyagi, and M. H. Fulekar. 2014. Visible light driven photocatalysis and antibacterial activity of AgVO3 and Ag/AgVO3 nanowires. Materials Research Bulletin 51:447–54. doi: 10.1016/j.materresbull.2014.01.001.
  • Singh, R., M. S. Smitha, S. Karuppiah, and S. P. Singh. 2018. Enhanced bioactivity of a GO-Fe3O4 nanocomposite against pathogenic bacterial strains. International Journal of Nanomedicine 13 (T-NANO 2014 Abstracts):63–6. doi: 10.2147/IJN.S125004.
  • Singh, J., K. Vishwakarma, N. Ramawat, P. Rai, V. K. Singh, R. K. Mishra, V. Kumar, D. K. Tripathi, and S. Sharma. 2019. Nanomaterials and microbes' interactions: A contemporary overview. 3 Biotech 9 (3):68. doi: 10.1007/s13205-019-1576-0.
  • Sirelkhatim, A., S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad. 2015. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters 7 (3):219–42. doi: 10.1007/s40820-015-0040-x.
  • Soriano-Campos, J. A., Z. N. Juarez-Mena, R. Agustin-Serrano, E. Rubio-Rosas, C. F. Espinoza-Vazquez, and T. Palacios-Hernandez. 2016. In vitro antibacterial activity evaluation of surface modified superparamagnetic iron oxide nanoparticles as potential vehicles for drug delivery. Toxicology Letters 259:S189. doi: 10.1016/j.toxlet.2016.07.452.
  • Sotelo-Boyas, M., Z. Correa-Pacheco, S. Bautista-Banos, and Y. G. Y. Gomez. 2017. Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria. International Journal of Biological Macromolecules 103:409–14. doi: 10.1016/j.ijbiomac.2017.05.063.
  • Stankic, S., S. Suman, F. Haque, and J. Vidic. 2016. Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties. Journal of Nanobiotechnology 14 (1) doi: 10.1186/s12951-016-0225-6.
  • Sun, L., T. Du, C. Hu, J. Chen, J. Lu, Z. Lu, and H. Han. 2017. Antibacterial Activity of Graphene Oxide/g-C 3 N 4 Composite through Photocatalytic Disinfection under Visible Light. ACS Sustainable Chemistry & Engineering 5 (10):8693–701. doi:10.1021/acssuschemeng.7b01431.
  • Swaroop, C., and M. Shukla. 2018. Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. International Journal of Biological Macromolecules 113:729–36. doi: 10.1016/j.ijbiomac.2018.02.156.
  • Tan, K. H., S. Sattari, I. S. Donskyi, J. L. Cuellar-Camacho, C. Cheng, K. Schwibbert, A. Lippitz, W. E. S. Unger, A. Gorbushina, M. Adeli, et al. 2018. Functionalized 2D nanomaterials with switchable binding to investigate graphene-bacteria interactions. Nanoscale 10 (20):9525–37. doi: 10.1039/c8nr01347k.
  • Tang, Y. N., H. Sun, Y. X. Shang, S. Zeng, Z. Qin, S. Y. Yin, J. Y. Li, S. Liang, G. L. Lu, and Z. N. Liu. 2019. Spiky nanohybrids of titanium dioxide/gold nanoparticles for enhanced photocatalytic degradation and anti-bacterial property. Journal of Colloid and Interface Science 535:516–23. doi: 10.1016/j.jcis.2018.10.020.
  • Tayel, A. A., W. F. El-Tras, S. Moussa, A. F. El-Baz, H. Mahrous, M. F. Salem, and L. Brimer. 2011. Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. Journal of Food Safety 31 (2):211–8. doi: 10.1111/j.1745-4565.2010.00287.x.
  • Thomas, A., A. Fischer, F. Goettmann, M. Antonietti, J. O. Muller, R. Schlogl, and J. M. Carlsson. 2008. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry 18 (41):4893–908. doi: 10.1039/b800274f.
  • Thurston, J. H., N. M. Hunter, L. J. Wayment, and K. A. Cornell. 2017. Urea-derived graphitic carbon nitride (u-g-C3N4) films with highly enhanced antimicrobial and sporicidal activity. Journal of Colloid and Interface Science 505:910–8. doi: 10.1016/j.jcis.2017.06.089.
  • Tsai, T. T., T. H. Huang, C. J. Chang, N. Y. J. Ho, Y. T. Tseng, and C. F. Chen. 2017. Antibacterial cellulose paper made with silver-coated gold nanoparticles. Scientific Reports 7 (1)1–20. doi: 10.1038/s41598-017-03357-w.
  • Upadhyay, R. K., N. Soin, and S. S. Roy. 2014. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review. Rsc Adv. 4 (8):3823–51. doi: 10.1039/C3RA45013A.
  • Veena, S., T. Devasena, S. S. M. Sathak, M. Yasasve, and L. A. Vishal. 2019. Green synthesis of gold nanoparticles from vitex negundo leaf extract: Characterization and in vitro evaluation of antioxidant-antibacterial activity. Journal of Cluster Science 30 (6):1591–7. doi: 10.1007/s10876-019-01601-z.
  • Vu Thi, T.,. T. L. Thi, Q. Nguyen Van, H. T. Quang, T. Nguyen Thanh, T. Doan Quang, C. Nguyen Duy, T. Pham Anh, T. Hoang Van, and L. Anh-Tuan. 2017. Functional iron oxide-silver hetero-nanocomposites: Controlled synthesis and antibacterial activity. Journal of Electronic Materials 46:3381–9.
  • Wang, Z., K. Dong, Z. Liu, Y. Zhang, Z. Chen, H. Sun, J. Ren, and X. Qu. 2017. Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113:145–57. doi: 10.1016/j.biomaterials.2016.10.041.
  • Wang, W.,. J. C. Yu, D. Xia, P. K. Wong, and Y. Li. 2013. Graphene and g-C3N4 nanosheets cowrapped elemental α-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light. Environmental Science & Technology 47 (15):8724–32. doi: 10.1021/es4013504.
  • Wei, F., J. Li, C. Dong, Y. Bi, and X. Han. 2020. Plasmonic Ag decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic water disinfection and organic pollutant removal. Chemosphere 242:125201. doi: 10.1016/j.chemosphere.2019.125201.
  • Wen, J. Q., J. Xie, X. B. Chen, and X. Li. 2017. A review on g-C3N4-based photocatalysts. Applied Surface Science 391:72–123. doi: 10.1016/j.apsusc.2016.07.030.
  • Xiang, Z. B., Y. Wang, P. Ju, and D. Zhang. 2017. Controlled synthesis and photocatalytic antifouling properties of BiVO4 with tunable morphologies. Journal of Electronic Materials 46 (2):758–65. doi: 10.1007/s11664-016-4939-x.
  • Xiang, Z., Y. Wang, Z. Yang, and D. Zhang. 2019. Heterojunctions of β-AgVO3/BiVO4 composites for enhanced visible-light-driven photocatalytic antibacterial activity. Journal of Alloys and Compounds 776:266–75. doi: 10.1016/j.jallcom.2018.10.287.
  • Xu, X. Q., S. M. Wang, X. F. Yu, J. Dawa, D. L. Gui, and R. H. Tang. 2020. Biosynthesis of Ag deposited phosphorus and sulfur co-doped g-C3N4 with enhanced photocatalytic inactivation performance under visible light. Applied Surface Science 501:144245. doi: 10.1016/j.apsusc.2019.144245.
  • Yadav, P., S. T. Nishanthi, B. Purohit, A. Shanavas, and K. Kailasam. 2019. Metal-free visible light photocatalytic carbon nitride quantum dots as efficient antibacterial agents: An insight study. Carbon 152:587–97. doi: 10.1016/j.carbon.2019.06.045.
  • Yah, C. S., and G. S. Simate. 2015. Nanoparticles as potential new generation broad spectrum antimicrobial agents. Daru-Journal of Pharmaceutical Sciences 23(1):43.
  • Yang, Q.-Q., X.-L. Wei, Y.-P. Fang, R.-Y. Gan, M. Wang, Y.-Y. Ge, D. Zhang, L.-Z. Cheng, and H. Corke. 2020. Nanochemoprevention with therapeutic benefits: An updated review focused on epigallocatechin gallate delivery. Critical Reviews in Food Science and Nutrition 60 (8):1243–64. doi: 10.1080/10408398.2019.1565490.
  • Yao, Q. F., Y. Y. Gao, T. Y. Gao, Y. L. Zhang, C. Harnoode, A. Dong, Y. Liu, and L. H. Xiao. 2016. Surface arming magnetic nanoparticles with amine N-halamines as recyclable antibacterial agents: Construction and evaluation. Colloids and Surfaces. B, Biointerfaces 144:319–26. doi: 10.1016/j.colsurfb.2016.04.024.
  • Yegin, Y.,. K. L. Perez-Lewis, M. Zhang, M. Akbulut, and T. M. Taylor. 2016. Development and characterization of geraniol-loaded polymeric nanoparticles with antimicrobial activity against foodborne bacterial pathogens. Journal of Food Engineering 170:64–71. doi: 10.1016/j.jfoodeng.2015.09.017.
  • Yousef, A., N. A. M. Barakat, T. Amna, S. S. Al-Deyab, M. S. Hassan, A. Abdel-Hay, and H. Y. Kim. 2012. Inactivation of pathogenic Klebsiella pneumoniae by CuO/TiO2 nanofibers: A multifunctional nanomaterial via one-step electrospinning. Ceramics International 38 (6):4525–32. doi: 10.1016/j.ceramint.2012.02.029.
  • Zhang, S. S., C. Liu, X. L. Liu, H. M. Zhang, P. R. Liu, S. Q. Zhang, F. Peng, and H. J. Zhao. 2012. Nanocrystal Cu2O-loaded TiO2 nanotube array films as high-performance visible-light bactericidal photocatalyst. Applied Microbiology and Biotechnology 96 (5):1201–7. doi: 10.1007/s00253-012-4233-7.
  • Zhang, N. N., E. Liu, A. Tang, M. C. Ye, K. Wang, Q. Jia, and Z. Y. Huang. 2019. Data-driven analysis of antimicrobial resistance in foodborne pathogens from six states within the US. International Journal of Environmental Research and Public Health 16 (10):1811. doi: 10.3390/ijerph16101811.
  • Zhang, Y. H., L. Wang, X. Xu, F. Li, and Q. S. Wu. 2018. Combined systems of different antibiotics with nano-CuO against Escherichia coli and the mechanisms involved. Nanomedicine (London, England) 13 (3):339–51. doi: 10.2217/nnm-2017-0290.
  • Zhang, J., J. Wang, H. H. Xu, X. Z. Lv, Y. X. Zeng, J. Z. Duan, and B. R. Hou. 2019. The effective photocatalysis and antibacterial properties of AgBr/AgVO3 composites under visible-light. RSC Advances 9 (63):37109–18. doi: 10.1039/C9RA06810D.
  • Zhang, Z. H., L. H. Wang, X. A. Zeng, Z. Han, and C. S. Brennan. 2019. Non-thermal technologies and its current and future application in the food industry: A review. International Journal of Food Science & Technology 54 (1):1–13. doi: 10.1111/ijfs.13903.
  • Zhang, X., J. Zhang, J. Q. Yu, Y. Zhang, F. K. Yu, L. Jia, Y. L. Tan, Y. M. Zhu, and B. R. Hou. 2019. Enhancement in the photocatalytic antifouling efficiency over cherimoya-like InVO4/BiVO4 with a new vanadium source. Journal of Colloid and Interface Science 533:358–68. doi: 10.1016/j.jcis.2018.06.090.
  • Zhao, H. X., H. T. Yu, X. Quan, S. Chen, Y. B. Zhang, H. M. Zhao, and H. Wang. 2014. Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Applied Catalysis B: Environmental 152-153:46–50. doi: 10.1016/j.apcatb.2014.01.023.
  • Zhu, W. D., X. M. Liu, L. Tan, Z. D. Cui, X. J. Yang, Y. Q. Liang, Z. Y. Li, S. L. Zhu, K. W. K. Yeung, and S. L. Wu. 2019. AgBr nanoparticles in situ growth on 2D MoS2 Nanosheets for rapid bacteria-killing and photodisinfection. ACS Applied Materials & Interfaces 11 (37):34364–75. doi: 10.1021/acsami.9b12629.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.