1,448
Views
6
CrossRef citations to date
0
Altmetric
Reviews

A comprehensive review on the application of novel disruption techniques for proteins release from microalgae

, , , , &

References

  • Al Hattab, M., and A. Ghaly. 2015. Microalgae oil extraction pretreatment methods: Critical review and comparative analysis. Journal of Fundamentals of Renewable Energy and Applications 05 (02):172. doi: 10.4172/2090-4541.1000154.
  • Ba, F., A. V. Ursu, C. Laroche, and G. Djelveh. 2016. Haematococcus pluvialis soluble proteins: Extraction, characterization, concentration/fractionation and emulsifying properties. Bioresource Technology 200:147–52. doi:10.1016/j.biortech.2015.10.012.
  • Baker, P. W., and A. Charlton. 2020. A comparison in protein extraction from four major crop residues in Europe using chemical and enzymatic processes-A review. Innovative Food Science & Emerging Technologies 59:102239. doi: 10.1016/j.ifset.2019.102239.
  • Barba, F. J., N. Grimi, and E. Vorobiev. 2015. New approaches for using non-conventional cell disruption technologies to extract potential food additives and nutraceuticals from microalgae. Food Engineering Reviews 7 (1):45–62. doi: 10.1007/s12393-014-9095-6.
  • Barka, A., and C. Blecker. 2016. Microalgae as a potential source of single-cell proteins. A review. Base.
  • Barkia, I., N. Saari, and S. R. Manning. 2019. Microalgae for high-value products towards human health and nutrition. Marine Drugs 17 (5):304. doi: 10.3390/md17050304.
  • Basso, A., and S. Serban. 2019. Industrial applications of immobilized enzymes—A review. Molecular Catalysis 479:110607. doi: 10.1016/j.mcat.2019.110607.
  • Batista, A. P., L. Gouveia, M. C. Nunes, J. M. Franco, and A. Raymundo. 2008. Microalgae biomass as a novel functional ingredient in mixed gel systems. In Gums and stabilisers for the food industry, vol. 14, 487–94. The Royal Society of Chemistry.
  • Batista, A. P., L. Gouveia, N. M. Bandarra, J. M. Franco, and A. Raymundo. 2013. Comparison of microalgal biomass profiles as a novel functional ingredient for food products. Algal Research 2 (2):164–73. doi: 10.1016/j.algal.2013.01.004.
  • Becker, E. W. 2007. Micro-algae as a source of protein. Biotechnology Advances 25 (2):207–10. doi: 10.1016/j.biotechadv.2006.11.002.
  • Bhosle, D., A. Janghel, S. Deo, P. Raut, C. Verma, S. S. Kumar, M. Agrawal, N. Amit, M. Sharma, and T. Giri. 2015. Emerging ultrasound-assisted extraction (UAE) techniques as innovative green technologies for the effective extraction of the active phytopharmaceuticals. Research Journal of Pharmacy & Technology 8:963–70.
  • Blackburn, S. I., and J. K. Volkman. 2012. Microalgae: A renewable source of bioproducts. Food and Industrial Bioproducts and Bioprocessing :221–41.
  • Boer, K., N. R. Moheimani, M. A. Borowitzka, and P. A. Bahri. 2012. Extraction and conversion pathways for microalgae to biodiesel: A review focused on energy consumption. Journal of Applied Phycology 24 (6):1681–98. doi: 10.1007/s10811-012-9835-z.
  • Borowitzka, M. A., and N. R. Moheimani. 2013. Open pond culture systems. In Algae for biofuels and energy, 133–52. Dordrecht: Springer.
  • Buchmann, L., I. Brandle, I. Haberkorn, M. Hiestand, and A. Mathys. 2019. Pulsed electric field based cyclic protein extraction of microalgae towards closed-loop biorefinery concepts. Bioresource Technology 291:121870. doi: 10.1016/j.biortech.2019.121870.
  • Callejo-Lopez, J. A., M. Ramírez, J. Bolívar, and D. Cantero. 2019. Main variables affecting a chemical-enzymatic method to obtain protein and amino acids from resistant microalgae. Journal of Chemistry 2019:1–10. doi: 10.1155/2019/1390463.
  • Caporgno, M. P., and A. Mathys. 2018. Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition 5:58. doi: 10.3389/fnut.2018.00058.
  • Carullo, D., B. D. Abera, A. A. Casazza, F. Donsi, P. Perego, G. Ferrari, and G. Pataro. 2018. Effect of pulsed electric fields and high-pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella Vulgaris. Algal Research 31:60–9. doi: 10.1016/j.algal.2018.01.017.
  • Chemat, F., M. A. Vian, A. Fabiano-Tixier, M. Nutrizio, A. R. Jambrak, P. E. S. Munekata, J. M. Lorenzo, F. J. Barba, A. Binello, and G. Cravotto. 2020. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chemistry 22 (8):2325–53. doi: 10.1039/C9GC03878G.
  • Chemat, F., N. Rombaut, A. Meullemiestre, M. Turk, S. Perino, A.-S. Fabiano-Tixier, and M. Abert-Vian. 2017. Review of green food processing techniques. Preservation, transformation, and extraction. Innovative Food Science & Emerging Technologies 41:357–77. doi: 10.1016/j.ifset.2017.04.016.
  • Chen, X., L. Hu, R. Xing, S. Liu, H. Yu, Y. Qin, K. Li, R. Li, and P. Li. 2015. Ionic liquid‐assisted subcritical water promotes the extraction of lipids from wet microalgae Scenedesmus sp. European Journal of Lipid Science and Technology 117 (8):1192–8. doi: 10.1002/ejlt.201400189.
  • Chew, K. W., S. R. Chia, S. Y. Lee, L. Zhu, and P. L. Show. 2019. Enhanced microalgal protein extraction and purification using sustainable microwave-assisted multiphase partitioning technique. Chemical Engineering Journal 367:1–8. doi: 10.1016/j.cej.2019.02.131.
  • Córdova, O., F. Passos, and R. Chamy. 2019. Enzymatic pretreatment of microalgae: Cell wall disruption, biomass solubilisation and methane yield increase. Applied Biochemistry and Biotechnology 189:787–97.
  • Coustets, M., V. Joubert-Durigneux, J. Hérault, B. Schoefs, V. Blanckaert, J. P. Garnier, and J. Teissié. 2015. Optimization of protein electroextraction from microalgae by a flow process. Bioelectrochemistry (Amsterdam, Netherlands) 103:74–81. doi: 10.1016/j.bioelechem.2014.08.022.
  • Dehghani, J., K. Adibkia, A. Movafeghi, H. Maleki-Kakelar, N. Saeedi, and Y. Omidi. 2020. Towards a new avenue for producing therapeutic proteins: Microalgae as a tempting green biofactory. Biotechnology Advances 40:107499. doi: 10.1016/j.biotechadv.2019.107499.
  • Demirbas, A., and M. F. Demirbas. 2011. Importance of algae oil as a source of biodiesel. Energy Conversion and Management 52 (1):163–70. doi: 10.1016/j.enconman.2010.06.055.
  • Demuez, M., A. Mahdy, E. Tomás‐Pejó, C. González‐Fernández, and M. Ballesteros. 2015. Enzymatic cell disruption of microalgae biomass in biorefinery processes. Biotechnology and Bioengineering 112 (10):1955–66. doi: 10.1002/bit.25644.
  • D’hondt, E., J. Martin-Juarez, S. Bolado, J. Kasperoviciene, J. Koreiviene, and S. Sulcius. 2017. Cell disruption technologies. In Microalgae-based biofuels and bioproducts, 133–54. Cambridge: Woodhead Publishing.
  • Doucha, J., and K. Lívanský. 2008. Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Applied Microbiology and Biotechnology 81 (3):431–40. doi: 10.1007/s00253-008-1660-6.
  • Enzing, C., M. Ploeg, M. Barbosa, and L. Sijtsma. 2014. Microalgae-based products for the food and feed sector: An outlook for Europe. JRC Scientific and Policy Reports :19–37.
  • Eppink, M. H., G. Olivieri, H. Reith, C. Van den Berg, M. J. Barbosa, and R. H. Wijffels. 2017. From current algae products to future biorefinery practices: A review. In Biorefineries, 99–123. Cham: Springer.
  • Gao, M. T., T. Shimamura, N. Ishida, and H. Takahashi. 2012. Investigation of utilizing the algal biomass residue after oil extraction to lower biodiesel's total production cost. Journal of Bioscience and Bioengineering 114 (3):330–3. doi: 10.1016/j.jbiosc.2012.04.002.
  • Garcia, E. S., J. Van Leeuwen, C. Safi, L. Sijtsma, M. H. Eppink, R. H. Wijffels, and C. van den Berg. 2018. Selective and energy-efficient extraction of functional proteins from microalgae for food applications. Bioresource Technology 268:197–203.
  • García, J. R., F. A. Fernández, and J. F. Sevilla. 2012. The development of a process for the production of l-amino-acids concentrates from microalgae by enzymatic hydrolysis. Bioresource Technology 112:164–70.
  • Gerde, J. A., T. Wang, L. Yao, S. Jung, L. A. Johnson, and B. Lamsal. 2013. Optimizing protein isolation from defatted and non-defatted Nannochloropsis microalgae biomass. Algal Research 2 (2):145–53. doi: 10.1016/j.algal.2013.02.001.
  • Goettel, M., C. Eing, C. Gusbeth, R. Straessner, and W. Frey. 2013. Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Research 2 (4):401–8. doi: 10.1016/j.algal.2013.07.004.
  • Gonzalez-Balderas, R. M., S. B. Velasquez-Orta, I. Valdez-Vazquez, and M. T. Orta Ledesma. 2020. Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone. Ultrasonics Sonochemistry 62:104852. doi: 10.1016/j.ultsonch.2019.104852.
  • Gorry, P.-L., L. Sánchez, and M. Morales. 2018. Microalgae biorefineries for energy and coproduct production. In Energy from microalgae, ed. E. Jacob-Lopes, L. Queiroz Zepka, and M. Queiroz. Cham: Springer.
  • Gouveia, L., A. P. Batista, A. Miranda, J. Empis, and A. Raymundo. 2007. Chlorella vulgaris biomass is used as a coloring source in traditional butter cookies. Innovative Food Science & Emerging Technologies 8 (3):433–6.
  • Grimi, N., A. Dubois, L. Marchal, S. Jubeau, N. I. Lebovka, and E. Vorobiev. 2014. Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresource Technology 153:254–9. doi: 10.1016/j.biortech.2013.12.011.
  • Grossmann, L., S. Ebert, J. Hinrichs, and J. Weiss. 2018. Production of protein-rich extracts from disrupted microalgae cells: Impact of solvent treatment and lyophilization. Algal Research 36:67–76. doi: 10.1016/j.algal.2018.09.011.
  • Guan, X., and H. Yao. 2008. Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food Chemistry 106 (1):345–51. doi: 10.1016/j.foodchem.2007.05.041.
  • Guil-Guerrero, J. L., R. Navarro-Juárez, J. C. López-Martı́nez, P. Campra-Madrid, and M. M. Rebolloso-Fuentes. 2004. Functional properties of the biomass of three microalgal species. Journal of Food Engineering 65 (4):511–7. doi: 10.1016/j.jfoodeng.2004.02.014.
  • Guldhe, A., B. Singh, I. Rawat, K. Ramluckan, and F. Bux. 2014. Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. Fuel 128:46–52. doi:10.1016/j.fuel.2014.02.059.
  • Günerken, E., E. D'Hondt, M. H. M. Eppink, L. Garcia-Gonzalez, K. Elst, and R. H. Wijffels. 2015. Cell disruption for microalgae biorefineries. Biotechnology Advances 33 (2):243–60. doi: 10.1016/j.biotechadv.2015.01.008.
  • Halim, R., R. Harun, M. K. Danquah, and P. A. Webley. 2012. Microalgal cell disruption for biofuel development. Applied Energy 91 (1):116–21. doi: 10.1016/j.apenergy.2011.08.048.
  • Hernández, D., B. Molinuevo-Salces, B. Riaño, A. M. Larrán-García, C. Tomás-Almenar, and M. C. García-González. 2018. Recovery of Protein Concentrates From Microalgal Biomass Grown in Manure for Fish Feed and Valorization of the By-Products Through Anaerobic Digestion. Frontiers in Sustainable Food Systems 2. doi:10.3389/fsufs.2018.00028.
  • Huang, W. C., and J. D. Kim. 2013. Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass. Bioresource Technology 149:579–81. doi: 10.1016/j.biortech.2013.09.095.
  • Jankowska, E., A. K. Sahau, and P. Oleskowicz-Popiel. 2017. Biogas from microalgae: A review on microalgae's cultivation, harvesting, and pretreatment for anaerobic digestion. Renewable & Sustainable Energy Review 75:692–709.
  • Johnson, P. E., I. Van der Plancken, A. Balasa, F. A. Husband, T. Grauwet, and M. Hendrickx. 2010. High pressure, thermal, and pulsed electric‐field‐induced structural changes in selected food allergens. Molecular Nutrition & Food Research 54 (12):1701–10.
  • Kadir, W. N. A., M. K. Lam, Y. Uemura, J. W. Lim, and K. T. Lee. 2018. Harvesting and pretreatment of microalgae cultivated in wastewater for biodiesel production: A review. Energy Conversion and Management 171:1416–29. doi: 10.1016/j.enconman.2018.06.074.
  • Kapoore, R. V., T. O. Butler, J. Pandhal, and S. Vaidyanathan. 2018. Microwave-assisted extraction for microalgae: From biofuels to biorefinery. Biology 2018:7.
  • Keris-Sen, U. D., U. Sen, G. Soydemir, and M. D. Gurol. 2014. An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency. Bioresource Technology 152:407–13. doi:10.1016/j.biortech.2013.11.018.
  • Khan, M. I., J. H. Shin, and J. D. Kim. 2018. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories 17 (1):36. doi: 10.1186/s12934-018-0879-x.
  • Khanra, S., M. Mondal, G. Halder, O. N. Tiwari, K. Gayen, and T. K. Bhowmick. 2018. Downstream processing of microalgae for pigments, protein, and carbohydrate in industrial application: A review. Food and Bioproducts Processing 110:60–84. doi: 10.1016/j.fbp.2018.02.002.
  • Kim, D.-Y., D. Vijayan, R. Praveenkumar, J.-I. Han, K. Lee, J.-Y. Park, W.-S. Chang, J.-S. Lee, and Y.-K. Oh. 2016. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresource Technology 199:300–10. doi: 10.1016/j.biortech.2015.08.107.
  • Kim, J., G. Yoo, H. Lee, J. Lim, K. Kim, C. W. Kim, M. S. Park, and J.-W. Yang. 2013. Methods of downstream processing for the production of biodiesel from microalgae. Biotechnology Advances 31 (6):862–76. doi: 10.1016/j.biotechadv.2013.04.006.
  • Kiss, G. A. C., E. Forgács, T. Cserháti, T. Mota, H. Morais, and A. Ramos. 2000. Optimisation of the microwave-assisted extraction of pigments from paprika (Capsicum annuum L.) powders. Journal of Chromatography A 889 (1–2):41–9.
  • Koyande, A. K., K. W. Chew, K. Rambabu, Y. Tao, D.-T. Chu, and P.-L. Show. 2019. Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness 8 (1):16–24. doi:10.1016/j.fshw.2019.03.001.
  • Krishna Koyande, A., V. Tanzil, H. Murraly Dharan, M. Subramaniam, R. N. Robert, P.-L. Lau, I. Khoiroh, and P.-L. Show. 2020. Integration of osmotic shock assisted liquid biphasic system for protein extraction from microalgae Chlorella vulgaris. Biochemical Engineering Journal 157:107532. doi: 10.1016/j.bej.2020.107532.
  • Lauritano, C., J. H. Andersen, E. Hansen, M. Albrigtsen, L. Escalera, F. Esposito, K. Helland, K. Ø. Hanssen, G. Romano, and A. Ianora. 2016. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Frontiers in Marine Science 3:68. doi: 10.3389/fmars.2016.00068.
  • Lee, J. B., K. Hayashi, M. Hirata, E. Kuroda, E. Suzuki, Y. Kubo, and T. Hayashi. 2006. Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biological & Pharmaceutical Bulletin 29 (10):2135–9. doi: 10.1248/bpb.29.2135.
  • Lee, K., D. M. Lewis, and P. J. Ashman. 2012. Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy 46:89–101. doi: 10.1016/j.biombioe.2012.06.034.
  • Lee, S. Y., I. Khoiroh, C. W. Ooi, T. C. Ling, and P. L. Show. 2017. Recent advances in protein extraction using ionic liquid-based aqueous two-phase systems. Separation & Purification Reviews 46 (4):291–304. doi: 10.1080/15422119.2017.1279628.
  • Lee, S. Y., J. M. Cho, Y. K. Chang, and Y. K. Oh. 2017. Cell disruption and lipid extraction for microalgal biorefineries: A review. Bioresource Technology 244 (Pt 2):1317–28. doi: 10.1016/j.biortech.2017.06.038.
  • Lupatini, A. L., L. de Oliveira Bispo, L. M. Colla, J. A. V. Costa, C. Canan, and E. Colla. 2017. Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation. Food Research International 99:1028–35. doi: 10.1016/j.foodres.2016.11.036.
  • Maffei, G., M. P. Bracciale, A. Broggi, A. Zuorro, M. L. Santarelli, and R. Lavecchia. 2018. Effect of an enzymatic treatment with cellulase and mannanase on the structural properties of Nannochloropsis microalgae. Bioresource Technology 249:592–8. doi: 10.1016/j.biortech.2017.10.062.
  • Mahali, M, and S. G. 2019. Extraction Methods and Functional Properties of Protein from <i>Arthospira platensis</i> for Bioavailability of Algal Proteins. International Journal of Pharmacy and Chemistry 5 (2):20 doi:10.11648/j.ijpc.20190502.12.
  • Mandal, S, and N. Mallick. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology 84 (2):281–91. doi:10.1007/s00253-009-1935-6.
  • Mata, T. M., A. A. Martins, and N. S. Caetano. 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14 (1):217–32. doi:10.1016/j.rser.2009.07.020.
  • Menegazzo, M. L., and G. G. Fonseca. 2019. Biomass recovery and lipid extraction processes for microalgae biofuel production. Renewable and Sustainable Energy Reviews 107:87–107. doi: 10.1016/j.rser.2019.01.064.
  • Mesa, J., L. I. Hinestroza-Córdoba, C. Barrera, L. Seguí, E. Betoret, and N. Betoret. 2020. High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules 25 (14):3305 doi:10.3390/molecules25143305.
  • Miranda, J. R., P. C. Passarinho, and L. Gouveia. 2012. Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology 104:342–8. doi: 10.1016/j.biortech.2011.10.059.
  • Mittal, R., H. A. Tavanandi, V. A. Mantri, and K. S. M. S. Raghavarao. 2017. Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta). Ultrasonics Sonochemistry 38:92–103. doi: 10.1016/j.ultsonch.2017.02.030.
  • Montalescot, V., T. Rinaldi, R. Touchard, S. Jubeau, M. Frappart, P. Jaouen, P. Bourseau, and L. Marchal. 2015. Optimization of bead milling parameters for the cell disruption of microalgae: Process modeling and application to Porphyridium cruentum and Nannochloropsis oculata. Bioresource Technology 196:339–46. doi: 10.1016/j.biortech.2015.07.075.
  • Mulchandani, K., J. R. Kar, and R. S. Singhal. 2015. Extraction of lipids from Chlorella saccharophila using high-pressure homogenization followed by three phase partitioning. Applied Biochemistry and Biotechnology 176 (6):1613–26. doi: 10.1007/s12010-015-1665-4.
  • Nadathur, S. R., and M. Carolan. 2017. Flavors, taste preferences, and the consumer: Taste modulation and influencing change in dietary patterns for a sustainable earth. In Sustainable protein sources, 377–89. San Diego: Academic Press.
  • Nadathur, S. R., J. P. D. Wanasundara, and L. Scanlin. 2017. Proteins in the diet: Challenges in feeding the global population. In Sustainable protein sources, ed. S. R. Nadathur, J. P. D. Wanasundara, and L. Scanlin, 1–19. San Diego, CA: Academic Press.
  • National Research Council. 2011. Nutrient requirements of fish and shellfish. Vol. 376. Washington, DC: The National Academies Press.
  • Orr, V. C., and L. Rehmann. 2016. Ionic liquids for the fractionation of microalgae biomass. Current Opinion in Green and Sustainable Chemistry 2:22–7. doi: 10.1016/j.cogsc.2016.09.006.
  • Parniakov, O., F. J. Barba, N. Grimi, L. Marchal, S. Jubeau, N. Lebovka, and E. Vorobiev. 2015. Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae nannochloropsis. Algal Research 8:128–34. doi: 10.1016/j.algal.2015.01.014.
  • Pasquet, V., J.-R. Chérouvrier, F. Farhat, V. Thiéry, J.-M. Piot, J.-B. Bérard, R. Kaas, B. Serive, T. Patrice, J.-P. Cadoret, et al. 2011. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochemistry 46 (1):59–67. doi: 10.1016/j.procbio.2010.07.009.
  • Phong, W. N., P. L. Show, C. F. Le, Y. Tao, J. S. Chang, and T. C. Ling. 2018. Improving cell disruption efficiency to facilitate protein release from microalgae using the chemical and mechanical integrated method. Biochemical Engineering Journal 135:83–90. doi: 10.1016/j.bej.2018.04.002.
  • Phong, W. N., P. L. Show, T. C. Ling, J. C. Juan, E. P. Ng, and J. S. Chang. 2018. Mild cell disruption methods for bio-functional proteins recovery from microalgae. Recent developments and future perspectives. Algal Research 31:506–16. doi: 10.1016/j.algal.2017.04.005.
  • Pojić, M., A. Mišan, and B. Tiwari. 2018. Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science & Technology 75:93–104.
  • Postma, P. R., G. Pataro, M. Capitoli, M. J. Barbosa, R. H. Wijffels, M. H. M. Eppink, G. Olivieri, and G. Ferrari. 2016. Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field-temperature treatment. Bioresource Technology 203:80–8. doi: 10.1016/j.biortech.2015.12.012.
  • Postma, P. R., T. L. Miron, G. Olivieri, M. J. Barbosa, R. H. Wijffels, and M. H. M. Eppink. 2015. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Bioresource Technology 184:297–304. doi: 10.1016/j.biortech.2014.09.033.
  • Praveenkumar, R., K. Lee, J. Lee, and Y. K. Oh. 2015. Breaking dormancy: An energy-efficient means of recovering astaxanthin from microalgae. Green Chemistry 17 (2):1226–34. doi: 10.1039/C4GC01413H.
  • Safi, C., A. V. Ursu, C. Laroche, B. Zebib, O. Merah, P. Y. Pontalier, and C. Vaca-Garcia. 2014. Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research 3:61–5. doi: 10.1016/j.algal.2013.12.004.
  • Safi, C., L. Cabas Rodriguez, W. J. Mulder, N. Engelen-Smit, W. Spekking, L. A. M. van den Broek, G. Olivieri, and L. Sijtsma. 2017. Energy consumption and water-soluble protein released by cell wall disruption of Nannochloropsis gaditana. Bioresource Technology 239:204–10. doi: 10.1016/j.biortech.2017.05.012.
  • Sankaran, R., S. Manickam, Y. J. Yap, T. C. Ling, J. S. Chang, and P. L. Show. 2018. Extraction of proteins from microalgae using integrated method of sugaring-out assisted liquid biphasic flotation (LBF) and ultrasound. Ultrasonics Sonochemistry 48:231–9. doi: 10.1016/j.ultsonch.2018.06.002.
  • Sari, Y. W., M. E. Bruins, and J. P. Sanders. 2013. Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals. Industrial Crops and Products 43:78–83. doi: 10.1016/j.indcrop.2012.07.014.
  • Scherer, D., D. Krust, W. Frey, G. Mueller, P. Nick, and C. Gusbeth. 2019. Pulsed electric field (PEF)-assisted protein recovery from Chlorella vulgaris is mediated by an enzymatic process after cell death. Algal Research 41:101536. doi: 10.1016/j.algal.2019.101536.
  • Shah, M., R. Mahfuzur, Y. Liang, J. J. Cheng, and M. Daroch. 2016. Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant Science 7:531. doi: 10.3389/fpls.2016.00531.
  • Shojaeiarani, J., D. Bajwa, and G. Holt. 2020. Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion. Nanocomposites 6 (1):41–6. doi: 10.1080/20550324.2019.1710974.
  • Show, K. Y., D. J. Lee, J. H. Tay, T. M. Lee, and J. S. Chang. 2015. Microalgal drying and cell disruption-recent advances. Bioresource Technology 184:258–66. doi: 10.1016/j.biortech.2014.10.139.
  • Silve, A., C. B. Kian, I. Papachristou, C. Kubisch, N. Nazarova, R. Wüstner, K. Leber, R. Strässner, and W. Frey. 2018. Incubation time after pulsed electric field treatment of microalgae enhances the efficiency of extraction processes and enables the reduction of specific treatment energy. Bioresource Technology 269:179–87. doi: 10.1016/j.biortech.2018.08.060.
  • Skorupskaite, V., V. Makareviciene, E. Sendzikiene, and M. Gumbyte. 2019. Microalgae Chlorella sp. cell disruption efficiency utilising ultrasonication and ultrahomogenisation methods. Journal of Applied Phycology 31 (4):2349–54. doi: 10.1007/s10811-019-01761-5.
  • Soto-Sierra, L., P. Stoykova, and Z. L. Nikolov. 2018. Extraction and fractionation of microalgae-based protein products. Algal Research 36:175–92. doi: 10.1016/j.algal.2018.10.023.
  • Spiden, E. M., B. H. Yap, D. R. Hill, S. E. Kentish, P. J. Scales, and G. J. Martin. 2013. Quantitative evaluation of the ease of rupture of industrially promising microalgae by high pressure homogenization. Bioresource Technology 140:165–71. doi: 10.1016/j.biortech.2013.04.074.
  • Stirk, W. A., P. Bálint, M. Vambe, C. Lovász, Z. Molnár, J. Van Staden, and V. Ördög. 2020. Effect of cell disruption methods on the extraction of bioactive metabolites from microalgal biomass. Journal of Biotechnology 307:35–43. doi: 10.1016/j.jbiotec.2019.10.012.
  • Su, Y., K. Song, P. Zhang, Y. Su, J. Cheng, and X. Chen. 2017. Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews 74:402–11. doi: 10.1016/j.rser.2016.12.078.
  • Suarez Garcia, E., C. A. Suarez Ruiz, T. Tilaye, M. H. M. Eppink, R. H. Wijffels, and C. Van den Berg. 2018. Fractionation of proteins and carbohydrates from crude microalgae extracts using an ionic liquid based-aqueous two phase system. Separation and Purification Technology 204:56–65. doi: 10.1016/j.seppur.2018.04.043.
  • 't Lam, G. P., J. A. van der Kolk, A. Chordia, M. H. Vermuë, G. Olivier, M. H. Eppink, and R. H. Wijffels. 2017. Mild and selective protein release of cell wall deficient microalgae with the pulsed electric field. ACS Sustainable Chemistry & Engineering 5 (7):6046–53.
  • Toepfl, S., V. Heinz, and D. Knorr. 2006. Applications of pulsed electric field technology for the food industry. In Pulsed electric fields technology for the food industry, 197–221. Boston, MA: Springer.
  • Ursu, A. V., A. Marcati, T. Sayd, V. Sante-Lhoutellier, G. Djelveh, and P. Michaud. 2014. Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresource Technology 157:134–9. doi: 10.1016/j.biortech.2014.01.071.
  • Vanthoor-Koopmans, M., R. H. Wijffels, M. J. Barbosa, and M. H. Eppink. 2013. Biorefinery of microalgae for food and fuel. Bioresource Technology 135:142–9. doi: 10.1016/j.biortech.2012.10.135.
  • Ventura, S. P. M., F. A. E Silva, M. V. Quental, D. Mondal, M. G. Freire, and J. A. P. Coutinho. 2017. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chemical Reviews 117 (10):6984–7052. doi:10.1021/acs.chemrev.6b00550.
  • Vernes, L., M. Abert-Vian, M. El Maataoui, Y. Tao, I. Bornard, and F. Chemat. 2019. Application of ultrasound for green extraction of proteins from spirulina. Mechanism, optimization, modeling, and industrial prospects. Ultrasonics Sonochemistry. 54:48–60.
  • Wang, J. X., X. H. Xiao, and G. K. Li. 2008. Study of vacuum microwave-assisted extraction of polyphenolic compounds and pigment from Chinese herbs. Journal of Chromatography A 1198:45–53.
  • Wang, M., W. Yuan, X. Jiang, Y. Jing, and Z. Wang. 2014. Disruption of microalgal cells using high-frequency focused ultrasound. Bioresource Technology 153:315–21. doi: 10.1016/j.biortech.2013.11.054.
  • Williams, P. J. L. B., and L. M. Laurens. 2010. Microalgae as biodiesel & biomass feedstocks: Review & analysis of biochemistry, energetics & economics. Energy & Environmental Science 3 (5):554–90.
  • Xia, S., B. Gao, A. Li, J. Xiong, Z. Ao, and C. Zhang. 2014. Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Marine Drugs 12 (9):4883–97. doi: 10.3390/md12094883.
  • Zhang, R., N. Grimi, L. Marchal, N. Lebovka, and E. Vorobiev. 2019. Effect of ultrasonication, high pressure homogenization and their combination on efficiency of extraction of bio-molecules from microalgae Parachlorella kessleri. Algal Research 40:101524. doi: 10.1016/j.algal.2019.101524.
  • Zhang, R., O. Parniakov, N. Grimi, N. Lebovka, l Marchal, and E. Vorobiev. 2019. Emerging techniques for cell disruption and extraction of valuable bio-molecules of microalgae Nannochloropsis sp. Bioprocess and Biosystems Engineering 42 (2):173–86. doi: 10.1007/s00449-018-2038-5.
  • Zinkone, T. R., I. Gifuni, L. Lavenant, J. Pruvost, and L. Marchal. 2018. Bead milling disruption kinetics of microalgae: Process modeling, optimization and application to biomolecules recovery from Chlorella sorokiniana. Bioresource Technology 267:458–65. doi: 10.1016/j.biortech.2018.07.080.
  • Figure a combination of points and lines and planes that form a visible palpable shape More (Definitions, Synonyms, Translation)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.