4,159
Views
28
CrossRef citations to date
0
Altmetric
Review

Advances and prospects in the food applications of pectin hydrogels

ORCID Icon, & ORCID Icon

References

  • Abdallah, D. J., S. A. Sirchio, and R. G. Weiss. 2000. Hexatriacontane organogels. The first determination of the conformation and molecular packing of a low-molecular-mass organogelator in its gelled state. Langmuir 16 (20):7558–61. doi: 10.1021/la000730k.
  • Abu-Jdayil, B. 2003. Modelling the time-dependent rheological behavior of semisolid foodstuffs. Journal of Food Engineering 57 (1):97–102. doi: 10.1016/S0260-8774(02)00277-7.
  • Aegerter, M. A., N. Leventis, and M. M. Koebel. 2011. Aerogels handbook. New York, NY: Springer.
  • Ahmed, E. M. 2015. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research 6 (2):105–21. doi: 10.1016/j.jare.2013.07.006.
  • Alves, V. D., R. Castelló, A. R. Ferreira, N. Costa, I. M. Fonseca, and I. M. Coelhoso. 2011. Barrier properties of carrageenan/pectin biodegradable composite films. Procedia Food Science 1:240–5. doi: 10.1016/j.profoo.2011.09.038.
  • Anandharamakrishnan, C., and S. P. Ishwarya. 2015. Spray drying techniques for food ingredient encapsulation. Chichester, West Sussex: John Wiley and Sons, Ltd.
  • Anandharamakrishnan, C., and S. P. Ishwarya. 2019. Essentials and applications of food engineering. Boca Raton, FL: CRC Press.
  • Anttila, H., T. Sontag-Strohm, and H. Salovaara. 2008. Viscosity of beta-glucan in oat. Agricultural and Food Science 13 (1–2):80–7. doi: 10.2137/1239099041838012.
  • Axelos, M. A. V., and J. F. Thibault. 1991. The chemistry and technology of pectin. New York, NY: Academic Press.
  • Bacelar, A. H., I. F. Cengiz, J. Silva-Correia, R. A. Sousa, J. M. Oliveira, and R. L. Reis. 2017. Handbook of intelligent scaffolds for tissue engineering and regenerative medicine. 2nd ed. (ed. G. Khang). Singapore: Pan Stanford Publishing Private Ltd.
  • Bekhit, M., L. Sánchez-González, G. B. Messaoud, and S. Desobry. 2016. Encapsulation of Lactococcuslactis subsp. lactis on alginate/pectin composite microbeads: Effect of matrix composition on bacterial survival and nisin release. Journal of Food Engineering 180:1–9. doi: 10.1016/j.jfoodeng.2016.01.031.
  • Benelam, B. 2009. Satiation, satiety and their effects on eating behaviour. Nutrition Bulletin 34 (2):126–73. doi: 10.1111/j.1467-3010.2009.01753.x.
  • Bepeyeva, A., J. M. S. de Barros, H. Albadran, A. K. Kakimov, K. Z. Kakimova, D. Charalampopoulos, and V. V. Khutoryanskiy. 2017. Encapsulation of Lactobacillus casei into calcium pectinate-chitosan beads for enteric delivery. Journal of Food Science 82 (12):2954–9. doi: 10.1111/1750-3841.13974.
  • Botega, Z. D. C., A. G. Marangoni, A. K. Smith, and H. D. Goff. 2013. Development of formulations and processes to incorporate wax oleogels in ice cream. Journal of Food Science 78 (12):C1845–51. doi: 10.1111/1750-3841.12248.
  • Braccini, I., and S. Perez. 2001. Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg-box model revisited. Biomacromolecules 2 (4):1089–96. doi: 10.1021/bm010008g.
  • Bray, G. A., W. E. Heisel, A. Afshin, M. D. Jensen, W. H. Dietz, M. Long, R. F. Kushner, S. R. Daniels, T. A. Wadden, A. G. Tsai, et al. 2018. The science of obesity management: An endocrine society scientific statement. Endocrine Reviews 39 (2):79–132. doi: 10.1210/er.2017-00253.
  • Burey, P., B. R. Bhandari, T. Howes, and M. J. Gidley. 2008. Hydrocolloid gel particles: Formation, characterization, and application. Critical Reviews in Food Science and Nutrition 48 (5):361–77. doi: 10.1080/10408390701347801.
  • Caló, E., and V. V. Khutoryanskiy. 2015. Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal 65:252–67. doi: 10.1016/j.eurpolymj.2014.11.024.
  • Cao, Y., and R. Mezzenga. 2020. Design principles of food gels. Nature Food 1 (2):106–18. doi: 10.1038/s43016-019-0009-x.
  • Cernencu, A. I., A. Lungu, I.-C. Stancu, A. Serafim, E. Heggset, K. Syverud, and H. Iovu. 2019. Bioinspired 3D printable pectin-nanocellulose ink formulations. Carbohydrate Polymers 220:12–21. doi: 10.1016/j.carbpol.2019.05.026.
  • Chan, S. Y., W. S. Choo, D. J. Young, and X. J. Loh. 2017. Pectin as a rheology modifier: Origin, structure, commercial production and rheology. Carbohydrate Polymers 161:118–39. doi: 10.1016/j.carbpol.2016.12.033.
  • Chang, K. L. B., and J. Lin. 2000. Swelling behavior and the release of protein from chitosan pectin composite particles. Carbohydrate Polymers 43 (2):163–9. doi: 10.1016/S0144-8617(00)00145-4.
  • Chen, H.-B., B.-S. Chiou, Y.-Z. Wang, and D. A. Schiraldi. 2013. Biodegradable Pectin/Clay Aerogels. ACS Applied Materials & Interfaces 5 (5):1715–21. doi: 10.1021/am3028603.
  • Choi, B., X. J. Loh, A. Tan, C. K. Loh, E. Ye, M. K. Joo, and B. Jeong. 2015. In-situ gelling polymers: For biomedical applications. Singapore: Springer.
  • Chotiko, A., and S. Sathivel. 2016. Three protective agents for pectin-rice bran capsules for encapsulating Lactobacillus plantarum. Food Bioscience 16:56–65. doi: 10.1016/j.fbio.2016.10.001.
  • Chung, C., B. Degner, E. A. Decker, and D. J. McClements. 2013. Oil-filled hydrogel particles for reduced-fat food applications: Fabrication, characterization, and properties. Innovative Food Science & Emerging Technologies 20:324–34. doi: 10.1016/j.ifset.2013.08.006.
  • Chutkan, R., G. Fahey, W. L. Wright, and J. McRorie. 2012. Viscous versus nonviscous soluble fiber supplements: Mechanisms and evidence for fiber-specific health benefits . Journal of the American Academy of Nurse Practitioners 24 (8):476–87. doi: 10.1111/j.1745-7599.2012.00758.x.
  • Cohen, D. L., I. L. Jeffrey, M. Cutler, D. Coulter, A. Vesco, and H. Lipson. 2009. Hydrocolloid printing: A novel platform for customized food production. Proceedings of Solid Freeform Fabrication Symposium (SFF'09), Austin, TX, pp. 3–5.
  • Cook, M. T., D. Charalampopoulos, and V. V. Khutoryanskiy. 2014. Hydrogels in cell-based therapies. 1st ed. London, UK: Royal Society of Chemistry.
  • Cook, M. T., G. Tzortzis, V. V. Khutoryanskiy, and D. Charalampopoulos. 2013. Layer-by-layer coating of alginate matrices with chitosan-alginate for the improved survival and targeted delivery of probiotic bacteria after oral administration. Journal of Materials Chemistry B 1 (1):52–60. doi: 10.1039/C2TB00126H.
  • Corcoran, B. M., C. Stanton, G. F. Fitzgerald, and R. P. Ross. 2005. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Applied and Environmental Microbiology 71 (6):3060–7. doi: 10.1128/AEM.71.6.3060-3067.2005.
  • Dafe, A., H. Etemadi, A. Dilmaghani, and G. R. Mahdavinia. 2017. Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. International Journal of Biological Macromolecules 97:536–43. doi: 10.1016/j.ijbiomac.2017.01.060.
  • Derossi, A., R. Caporizzi, D. Azzollini, and C. Severini. 2018. Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering 220:65–75. doi: 10.1016/j.jfoodeng.2017.05.015.
  • Einhorn-Stoll, U. 2018. Pectin-water interactions in foods–From powder to gel. Food Hydrocolloids 78:109–19. doi: 10.1016/j.foodhyd.2017.05.029.
  • Evageliou, V., R. K. Richardson, and E. R. Morris. 2000. Effect of pH, sugar type and thermal annealing on high-methoxy pectin gels. Carbohydrate Polymers 42 (3):245–59. doi: 10.1016/S0144-8617(99)00191-5.
  • Farris, S., K. M. Schaich, L. Liu, P. H. Cooke, L. Piergiovanni, and K. L. Yam. 2011. Gelatin–pectin composite films from polyion-complex hydrogels. Food Hydrocolloids 25 (1):61–70. doi: 10.1016/j.foodhyd.2010.05.006.
  • Farris, S., K. M. Schaich, L. Liu, L. Piergiovanni, and K. L. Yam. 2009. Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: A review. Trends in Food Science & Technology 20 (8):316–32. doi: 10.1016/j.tifs.2009.04.003.
  • Fraeye, I., I. Colle, E. Vandevenne, T. Duvetter, S. V. Buggenhout, P. Moldenaers, A. V. Loey, and M. Hendrickx. 2010. Influence of pectin structure on texture of pectin–calcium gels. Innovative Food Science & Emerging Technologies 11 (2):401–9. doi: 10.1016/j.ifset.2009.08.015.
  • Francis, F. P., and R. Chidambaram. 2019. Hybrid hydrogel dispersed low fat and heat resistant chocolate. Journal of Food Engineering 256:9–17. doi: 10.1016/j.jfoodeng.2019.03.012.
  • Fu, J. T., and M. A. Rao. 2001. Rheology and structure development during gelation of low-methoxyl pectin gels: The effect of sucrose. Food Hydrocolloids 15 (1):93–100. doi: 10.1016/S0268-005X(00)00056-4.
  • Galisteo, M., R. Moron, L. Rivera, R. Romero, A. Anguera, and A. Zarzuelo. 2010. Plantago ovata husks-supplemented diet ameliorates metabolic alterations in obese Zucker rats through activation of AMP-activated protein kinase. Comparative study with other dietary fibers. Clinical Nutrition (Edinburgh, Scotland) 29 (2):261–7. doi: 10.1016/j.clnu.2009.08.011.
  • Gebara, C., K. S. Chaves, M. C. E. Ribeiro, F. N. Souza, C. R. F. Grosso, and M. L. Gigante. 2013. Viability of Lactobacillus acidophilus La5 in pectin–whey protein microparticles during exposure to simulated gastrointestinal conditions. Food Research International 51 (2):872–8. doi: 10.1016/j.foodres.2013.02.008.
  • Gentes, M. C., D. St-Gelais, and S. L. Turgeon. 2010. Stabilization of whey protein isolate-pectin complexes by heat. Journal of Agricultural and Food Chemistry 58 (11):7051–8. doi: 10.1021/jf100957b.
  • Gerez, C. L., G. Font de Valdez, M. L. Gigante, and C. R. F. Grosso. 2012. Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH. Letters in Applied Microbiology 54 (6):552–6. doi: 10.1111/j.1472-765X.2012.03247.x.
  • Ghibaudo, F., E. Gerbino, A. A. Hugo, M. G. Simões, P. Alves, B. F. O. Costa, C. D. V. Orto, A. Gómez-Zavaglia, and P. N. Simões. 2018. Development and characterization of iron-pectin beads as a novel system for iron delivery to intestinal cells. Colloids and Surfaces. B, Biointerfaces 170:538–43. doi: 10.1016/j.colsurfb.2018.06.052.
  • Glicksman, M. 1983. Red Seaweed extracts (agar, carrageenans, and furcellaran). Food Hydrocolloids 2:73–113. doi: 10.1201/9780429290374-7.
  • Grant, G. T., E. R. Morris, D. A. Rees, P. J. Smith, and D. Thom. 1973. Biological interactions between polysaccharides and divalent cations: The egg‐box model. FEBS Letters 32 (1):195–8. doi: 10.1016/0014-5793(73)80770-7.
  • Grosso, C. R. F., and M. A. Rao. 1998. Dynamic rheology of structure development in low-methoxyl pectin + Ca2++sugar gels. Food Hydrocolloids 12 (3):357–63. doi: 10.1016/S0268-005X(98)00034-4.
  • Günter, E. A., D. S. Khramova, P. A. Markov, O. V. Popeyko, A. K. Melekhin, V. S. Beloserov, E. A. Martinson, S. G. Litvinets, and S. V. Popov. 2019. Swelling behavior and satiating effect of the gel microparticles obtained from callus cultures pectins. International Journal of Biological Macromolecules 123:300–7. doi: 10.1016/j.ijbiomac.2018.11.081.
  • Guo, J., M. M. Giusti, and G. Kaletunç. 2018. Encapsulation of purple corn and blueberry extracts in alginate-pectin hydrogel particles: Impact of processing and storage parameters on encapsulation efficiency. Food Research International (Ottawa, Ont.) 107:414–22. doi: 10.1016/j.foodres.2018.02.035.
  • Guo, J., and G. Kaletunç. 2016. Dissolution kinetics of pH responsive alginate-pectin hydrogel particles. Food Research International (Ottawa, Ont.) 88 (Pt A):129–39. doi: 10.1016/j.foodres.2016.05.020.
  • Gutowska, A., B. Jeong, and M. Jasionowski. 2001. Injectable gels for tissue engineering. The Anatomical Record 263 (4):342–9. doi: 10.1002/ar.1115.
  • Haghighi, M., and M. Mousavi. 2012. Smart, active, pectin-based biopackaging: Sketching the case of functional polyphenol-rich mixed-fibre gels. Conference Paper: 5th International Symposium on Food Packaging, Berlin, Germany.
  • Hansen, M. B. 2003. Neurohumoral control of gastrointestinal motility. Physiological Research 52 (1):1–30.
  • IUPAC. 2014. Compendium of chemical terminology.
  • Jakóbik-Kolon, A., J. Bok-Badura, K. Karoń, K. Mitko, and A. Milewski. 2017. Hybrid pectin-based biosorbents for zinc ions removal. Carbohydrate Polymers 169:213–9. doi: 10.1016/j.carbpol.2017.03.095.
  • Jantrawut, P., A. Assifaoui, and O. Chambin. 2013. Influence of low methoxyl pectin gel textures and in vitro release of rutin from calcium pectinate beads. Carbohydrate Polymers 97 (2):335–42. doi: 10.1016/j.carbpol.2013.04.091.
  • Kaczmarczyk, M. M., M. J. Miller, and G. G. Freund. 2012. The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism: clinical and Experimental 61 (8):1058–66. doi: 10.1016/j.metabol.2012.01.017.
  • Kastner, H., U. Einhorn-Stoll, and B. Senge. 2012. New parameters for the examination of the pectin gelation process. Gums and Stabilisers for the Food Industry 16:191. doi: 10.1039/9781849734554-00191.
  • Kastner, H., K. Kern, R. Wilde, A. Berthold, U. Einhorn-Stoll, and S. Drusch. 2014. Structure formation in sugar containing pectin gels – Influence of tartaric acid content (pH) and cooling rate on the gelation of high-methoxylated pectin. Food Chemistry 144:44–9. doi: 10.1016/j.foodchem.2013.06.127.
  • Kayitmazer, A. B., D. Seeman, B. B. Minsky, P. L. Dubin, and Y. S. Xu. 2013. Protein-polyelectrolyte interactions. Soft Matter 9 (9):2553–83. doi: 10.1039/c2sm27002a.
  • Khotimchenko, M., V. Kovalev, and Y. Khotimchenko. 2007. Equilibrium studies of sorption of lead(II) ions by different pectin compounds. Journal of Hazardous Materials 149 (3):693–9. doi: 10.1016/j.jhazmat.2007.04.030.
  • Khramova, D. S., F. V. Vityazev, N. Y. Saveliev, A. A. Burkov, V. S. Beloserov, E. A. Martinson, S. G. Litvinets, and S. V. Popov. 2019. Pectin gelling in acidic gastric condition increases rheological properties of gastric digesta and reduces glycaemic response in mice. Carbohydrate Polymers 205:456–64. doi: 10.1016/j.carbpol.2018.10.053.
  • Kim, J., M. Naeem, B. K. Jhun, and J.-K. Yoo. 2016. Probiotic delivery systems: A brief overview. Journal of Pharmaceutical Investigation 46 (4):377–86. doi: 10.1007/s40005-016-0259-7.
  • Kizilay, E., A. B. Kayitmazer, and P. L. Dubin. 2011. Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Advances in Colloid and Interface Science 167 (1-2):24–37. doi: 10.1016/j.cis.2011.06.006.
  • Kristensen, M., and M. G. Jensen. 2011. Dietary fibres in the regulation of appetite and food intake. Importance of viscosity. Appetite 56 (1):65–70. doi: 10.1016/j.appet.2010.11.147.
  • Lim, J., S. Ko, and S. Lee. 2014. Use of Yuja (Citrus junos) pectin as a fat replacer in baked foods. Food Science and Biotechnology 23 (6):1837–41. doi: 10.1007/s10068-014-0251-9.
  • Liu, H., X. M. Xu, and S. D. Guo. 2007. Rheological, texture and sensory properties of low-fat mayonnaise with different fat mimetics. LWT - Food Science and Technology 40 (6):946–54. doi: 10.1016/j.lwt.2006.11.007.
  • Liu, L. S., M. L. Fishman, K. B. Hicks, M. Kende, and G. Ruthel. 2006. Pectin/zein beads for potential colon-specific drug delivery: Synthesis and in vitro evaluation. Drug Delivery 13 (6):417–23. doi: 10.1080/10717540500394935.
  • Lopes da Silva, J. A., and M. A. Rao. 2006. Food polysaccharides and their applications. 2nd ed. Boca Raton, FL: CRC Press.
  • López-Mata, M. A., M. Gastelum-Cabrera, E. Valbuena-Gregorio, P. B. Zamudio-Flores, S. E. Burruel-Ibarra, G. G. Morales-Figueroa, L. Quihui-Cota, and J. E. Juárez-Onofre. 2018. Physicochemical properties of novel pectin/Aloe gel membranes. Iranian Polymer Journal 27 (8):545–53. doi: 10.1007/s13726-018-0631-8.
  • Luo, Q. L., Z. H. Tang, X. F. Zhang, Y. H. Zhong, S. Z. Yao, L. S. Wang, C. W. Lin, and X. Luo. 2016. Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale. International Journal of Biological Macromolecules 89:219–27. doi: 10.1016/j.ijbiomac.2016.04.067.
  • Luo, S.-Z., X.-F. Hu, Y.-J. Jia, L.-H. Pan, Z. Zheng, Y.-Y. Zhao, D.-D. Mu, X.-Y. Zhong, and S.-T. Jiang. 2019. Camellia oil-based oleogels structuring with tea polyphenol-palmitate particles and citrus pectin by emulsion-templated method: Preparation, characterization and potential application. Food Hydrocolloids 95:76–87. doi: 10.1016/j.foodhyd.2019.04.016.
  • Maftoonazad, N., and H. S. Ramaswamy. 2008. Effect of pectin-based coating on the kinetics of quality change associated with stored avocados. Journal of Food Processing and Preservation 32 (4):621–43. doi: 10.1111/j.1745-4549.2008.00203.x.
  • Mantha, S., S. Pillai, P. Khayambashi, A. Upadhyay, Y. Zhang, O. Tao, H. M. Pham, and S. D. Tran. 2019. Smart hydrogels in tissue engineering and regenerative medicine. Materials 12 (20):3323. doi: 10.3390/ma12203323.
  • Marangoni, A. G., and N. Garti. 2018. Edible oleogels: Structure and health implications. 2nd ed. Urbana, IL: AOCS Press.
  • Mata, Y. N., M. L. Blázquez, A. Ballester, F. González, and J. A. Munoz. 2009a. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus. Journal of Hazardous Materials 163 (2-3):555–62. doi: 10.1016/j.jhazmat.2008.07.015.
  • Mata, Y. N., M. L. Blázquez, A. Ballester, F. González, and J. A. Munoz. 2009b. Sugar-beet pulp pectin gels as biosorbent for heavy metals: Preparation and determination of biosorption and desorption characteristics. Chemical Engineering Journal 150 (2-3):289–301. doi: 10.1016/j.cej.2009.01.001.
  • Mata, Y. N., M. L. Blazquez, A. Ballester, F. Gonzalez, and J. A. Munoz. 2010. Studies on sorption, desorption, regeneration and reuse of sugar-beet pectin gels for heavy metal removal. Journal of Hazardous Materials 178 (1-3):243–8. doi: 10.1016/j.jhazmat.2010.01.069.
  • McClements, D. J. 2017. Recent progress in hydrogel delivery systems for improving nutraceutical bioavailability. Food Hydrocolloids 68:238–45. doi: 10.1016/j.foodhyd.2016.05.037.
  • Moreira, H. R., F. Munarin, R. Gentilini, L. Visai, P. L. Granja, M. C. Tanzi, and P. Petrini. 2014. Injectable pectin hydrogels produced by internal gelation: PH dependence of gelling and rheological properties. Carbohydrate Polymers 103:339–47. doi: 10.1016/j.carbpol.2013.12.057.
  • Morris, E. R., D. A. Powell, M. J. Gidley, and D. A. Rees. 1982. Conformations and interactions of pectins: I. Polymorphism between gel and solid states of calcium polygalacturonate. Journal of Molecular Biology 155 (4):507–16. doi: 10.1016/0022-2836(82)90484-3.
  • Mundargi, R. C., V. Rangaswamy, and T. M. Aminabhavi. 2011. Poly(N-vinylcaprolactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery. Journal of Microencapsulation 28 (5):384–94. doi: 10.3109/02652048.2011.576782.
  • Nešić, A., M. Gordić, S. Davidović, Ž. Radovanović, J. Nedeljković, I. Smirnova, and P. Gurikov. 2018. Pectin-based nanocomposite aerogels for potential insulated food packaging application. Carbohydrate Polymers 195:128–35. doi: 10.1016/j.carbpol.2018.04.076.
  • Ni, Y., and K. M. Yates. 2002. In-situ gel formation of pectin. US Patent. US 2002/0119941A1.
  • Oakenfull, D., and A. Scott. 1984. Hydrophobic interaction in the gelation of high methoxyl pectins. Journal of Food Science 49 (4):1093–8. doi: 10.1111/j.1365-2621.1984.tb10401.x.
  • Oliveira, G. F., P. C. Ferrari, L. Q. Carvalho, and R. C. Evangelista. 2010. Chitosan–pectin multiparticulate systems associated with enteric polymers for colonic drug delivery. Carbohydrate Polymers 82 (3):1004–9. doi: 10.1016/j.carbpol.2010.06.041.
  • Patel, A. R., N. Cludts, M. D. B. Sintang, A. Lesaffer, and K. Dewettinck. 2014. Edible oleogels based on water soluble food polymers: Preparation, characterization and potential application. Food & Function 5 (11):2833–41. doi: 10.1039/c4fo00624k.
  • Patel, A. R., P. S. Rajarethinem, A. Grędowska, O. Turhan, A. Lesaffer, W. H. De Vos, D. Van de Walle, and K. Dewettinck. 2014. Edible applications of shellac oleogels: Spreads, chocolate paste and cakes. Food and Function 5 (4):645–52. doi: 10.1039/C4FO00034J.
  • Patel, A. R., D. Schatteman, W. H. De Vos, A. Lesaffer, and K. Dewettinck. 2013. Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. Journal of Colloid and Interface Science 411:114–21. doi: 10.1016/j.jcis.2013.08.039.
  • Patel, H., A. Srinatha, and B. K. Sridhar. 2014. External cross-linked mucoadhesive microbeads for prolonged drug release: Development and in vitro characterization. Indian Journal of Pharmaceutical Sciences 76 (5):437–44.
  • Pelkman, C. L., J. L. Navia, A. E. Miller, and R. J. Pohle. 2007. Novel calcium-gelled, alginate-pectin beverage reduced energy intake in nondieting overweight and obese women: Interactions with dietary restraint status. The American Journal of Clinical Nutrition 86 (6):1595–602. doi: 10.1093/ajcn/86.5.1595.
  • Pérez-Luna, V. H., and O. González-Reynoso. 2018. Encapsulation of biological agents in hydrogels for therapeutic applications. Gels 4 (3):61. doi: 10.1016/S0981-9428(00)00169-8.
  • Pollock, K., G. Yu, R. Moller-Trane, M. Koran, P. I. Dosa, D. H. McKenna, and A. Hubel. 2016. Combinations of osmolytes, including monosaccharides, disaccharides, and sugar alcohols act in concert during cryopreservation to improve mesenchymal stromal cell survival. Tissue Engineering. Part C, Methods 22 (11):999–1008. doi: 10.1089/ten.tec.2016.0284.
  • Popov, S. V., P. A. Markov, O. A. Patova, F. V. Vityazev, L. A. Bakutova, M. F. Borisenkov, E. A. Martinson, B. A. Ananchenko, E. A. Durnev, A. A. Burkov, et al. 2017. In vitro gastrointestinal-resistant pectin hydrogel particles for β-glucuronidase adsorption. Journal of Biomaterials Science. Polymer Edition 28 (3):293–311.,doi: 10.1080/09205063.2016.1268461.
  • Pornsak, S., and J. Nurairat. 1998. Calcium pectinate gel beads for controlled release drug delivery: I. Preparation and in vitro release studies. International Journal of Pharmaceutics 160:207–12. doi: 10.1016/S0378-5173(97)00310-4.
  • Prezotti, F. G., B. S. F. Cury, and R. C. Evangelista. 2014. Mucoadhesive beads of gellan gum/pectin intended to controlled delivery of drugs. Carbohydrate Polymers 113:286–95. doi: 10.1016/j.carbpol.2014.07.021.
  • Raj, S. A. A., S. Rubila, R. Jayabalan, and T. V. Ranganathan. 2012. A review on pectin: Chemistry due to general properties of pectin and its pharmaceutical uses. Scientific Reports 1:550–1. doi: 10.4172/scientificreports.550.
  • Rashidova, S., R. Milusheva, L. Semenova, M. Y. Mukhamedjanova, N. L. Voropaeva, S. Vasilyeva, R. Faizieva, and I. N. Ruban. 2004. Characteristics of Interactions in the Pectin–Chitosan System. Chromatographia 59 (11-12):779–82. doi: 10.1365/s10337-004-0289-6.
  • Reddy, S. G. 2016. Studies on the swelling properties of biodegradable sodium alginate and lignosulphonic acid blends for controlled drug delivery. Thesis, submitted to Amrita Vishwa Vidyapeetham (University), 153. http://hdl.handle.net/10603/103678.
  • Remuñán-López, C., and R. Bodmeier. 1997. Mechanical, water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. Journal of Controlled Release 44 (2-3):215–25. doi: 10.1016/S0168-3659(96)01525-8.
  • Santipanichwong, R., M. Suphantharika, J. Weiss, and D. J. McClements. 2008. Core‐shell biopolymer nanoparticles produced by electrostatic deposition of beet pectin onto heat‐denatured β‐lactoglobulin aggregates. Journal of Food Science 73 (6):N23–30. doi: 10.1111/j.1750-3841.2008.00804.x.
  • Saura-Calixto, F. 2011. Dietary fiber as a carrier of dietary antioxidants: An essential physiological function. Journal of Agricultural and Food Chemistry 59 (1):43–9. doi: 10.1021/jf1036596.
  • Scherer, G. W. 2001. Encyclopedia of materials: Science and technolog. Amsterdam, the Netherlands: Elsevier Science.
  • Schmidt, U. S., L. Schütz, and H. P. Schuchmann. 2017. Interfacial and emulsifying properties of citrus pectin: Interaction of pH, ionic strength and degree of esterification. Food Hydrocolloids 62:288–98. doi: 10.1016/j.foodhyd.2016.08.016.
  • Schmitt, C., C. Sanchez, F. Thomas, and J. Hardy. 1999. Complex coacervation between beta-lactoglobulin and gum in aqueous medium. Food Hydrocolloids 13 (6):483–96. doi: 10.1016/S0268-005X(99)00032acacia-6.
  • Schrieber, R., and H. Gareis. 2007. Gelatine handbook. Theory and industrial practice. Weinheim, Germany: Wiley-VCH Verlag GmBH and Co. KGaA.
  • Sharma, B. R., L. Naresh, N. C. Dhuldhoya, S. U. Merchant, and U. C. Merchant. 2006. An overview on pectins. Times Food Processing Journal 26 (3):44–51.
  • Singh, J., K. Kaur, and P. Kumar. 2018. Optimizing microencapsulation of α-tocopherol with pectin and sodium alginate. Journal of Food Science and Technology 55 (9):3625–31. doi: 10.1007/s13197-018-3288-6.
  • Singha, N. R., M. Karmakar, M. Mahapatra, H. Mondal, A. Dutta, C. Roy, and P. K. Chattopadhyay. 2017. Systematic synthesis of pectin-g-(sodium acrylate-co-N-isopropylacrylamide) interpenetrating polymer network for superadsorption of dyes/M(ii): determination of physicochemical changes in loaded hydrogels. Polymer Chemistry 8 (20):3211–37. doi: 10.1039/C7PY00316A.
  • Sinha, V. R., and R. Kumria. 2001. Polysaccharides in colon-specific drug delivery. International Journal of Pharmaceutics 224 (1-2):19–38. doi: 10.1016/S0378-5173(01)00720-7.
  • Solak, A. O., and S. M. Dyankova. 2014. Composite films from sodium alginate and high methoxyl pectin – Physicochemical properties and biodegradation in soil. Ecologia Balkanica 6:25–34.
  • Søndergaard, K. M., A. G. Juul, and L. Nørbøge. 2000. Pectin composition as fat replacer and emulsifier. WO2000040098A1, WIPO (PCT).
  • Sperber, B. L. H. M., H. A. Schols, M. A. Cohen Stuart, W. Norde, and A. G. J. Voragen. 2009. Influence of the overall charge and local charge density of pectin on the complex formation between pectin and β-lactoglobulin. Food Hydrocolloids 23 (3):765–72. doi: 10.1016/j.foodhyd.2008.04.008.
  • Sriamornsak, P., and R. A. Kennedy. 2008. Swelling and diffusion studies of calcium polysaccharide gels intended for film coating. International Journal of Pharmaceutics 358 (1-2):205–13. doi: 10.1016/j.ijpharm.2008.03.009.
  • Steinert, R. E., C. Feinle-Bisset, L. Asarian, M. Horowitz, C. Beglinger, and N. Geary. 2017. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiological Reviews 97 (1):411–63. doi: 10.1152/physrev.00031.2014.
  • Sudhakar, P., K. R. Madhusudana, S. A. Siraj, K. ChandraBabu, R. Chowdoji, and M. C. S. Subha. 2013. Controlled release of hypertensive drug from pH/thermoresponsive polymeric micro beads. Indian Journal of Advances in Chemical Science 1:50–6.
  • Sun, J., W. Zhou, D. Huang, J. Y. Fuh, and G. S. Hong. 2015. An overview of 3D printing technologies for food fabrication. Food and Bioprocess Technology 8 (8):1605–15. doi: 10.1007/s11947-015-1528-6.
  • Swanson, B. G. 2003. Encyclopedia of food sciences and nutrition. 2nd ed. South Africa: Academic Press (Elsevier).
  • Tan, C., H. Wei, X. Zhao, C. Xu, and J. Peng. 2017. Effects of dietary fibers with high water-binding capacity and swelling capacity on gastrointestinal functions, food intake and body weight in male rats. Food & Nutrition Research 61 (1):1308118. doi: 10.1080/16546628.2017.1308118.
  • Thakur, B. R., R. K. Singh, and A. K. Handa. 1997. Chemistry and uses of pectin—A review. Critical Reviews in Food Science and Nutrition 37 (1):47–73. doi: 10.1080/10408399709527767.
  • Torpol, K., S. Sriwattana, J. Sangsuwan, P. Wiriyacharee, and W. Prinyawiwatkul. 2019. Optimising chitosan–pectin hydrogel beads containing combined garlic and holy basil essential oils and their application as antimicrobial inhibitor. International Journal of Food Science & Technology 54 (6):2064–74. doi: 10.1111/ijfs.14107.
  • Ullah, F., M. B. H. Othman, F. Javed, Z. Ahmad, and H. M. Akil. 2015. Classification, processing and application of hydrogels: A review. Materials Science & Engineering. C, Materials for Biological Applications 57:414–33. doi: 10.1016/j.msec.2015.07.053.
  • Van Buren, J. P. 1991. The chemistry and technology of pectin. San Diego: Academic Press. doi: 10.1016/C2009-0-02630-0.
  • Vancauwenberghe, V., V. B. M. Mbong, E. Vanstreels, P. Verboven, J. Lammertyn, and B. Nicolaï. 2019. 3D printing of plant tissue for innovative food manufacturing: Encapsulation of alive plant cells into pectin based bio-ink. Journal of Food Engineering 263:454–64. doi: 10.1016/j.jfoodeng.2017.12.003.
  • Vancauwenberghe, V., P. Verboven, J. Lammertyn, and B. Nicolaï. 2018. Development of a coaxial extrusion deposition for 3D printing of customizable pectin-based food simulant. Journal of Food Engineering 225:42–52. doi: 10.1016/j.jfoodeng.2018.01.008.
  • Vancauwenberghe, V., L. Katalagarianakis, Z. Wang, M. Meerts, M. Hertog, P. Verboven, P. Moldenaers, M. E. Hendrickx, J. Lammertyn, and B. Nicolaï. 2017. Pectin based food-ink formulations for 3-D printing of customizable porous food simulants. Innovative Food Science & Emerging Technologies 42:138–50. doi: 10.1016/j.ifset.2017.06.011.
  • Vaziri, A. S., I. Alemzadeh, M. Vossoughi, and A. C. Khorasani. 2018. Co-microencapsulation of Lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatin biocomposites. Carbohydrate Polymers 199:266–75. doi:10.1093/glycob/cwv091.
  • Verkempinck, S. H. E., C. Kyomugasho, L. Salvia-Trujillo, S. Denis, M. Bourgeois, A. M. Van Loey, M. E. Hendrickx, and T. Grauwet. 2018. Emulsion stabilizing properties of citrus pectin and its interactions with conventional emulsifiers in oil-in-water emulsions. Food Hydrocolloids 85:144–57. doi: 10.1016/j.foodhyd.2018.07.014.
  • Walkinshaw, M. D., and S. Arnott. 1981. Conformations and interactions of pectins: II. Models for junction zones in pectinic acid and calcium pectate gels. Journal of Molecular Biology 153 (4):1075–85. doi: 10.1016/0022-2836(81)90468-X.
  • WHO. 2013. Global action plan for the prevention and control of noncommunicable diseases 2013–2020. Geneva, Switzerland: WHO.
  • WHO. 2018, February 16. Obesity and overweight. Accessed October 6, 2019. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
  • Willats, W. G., J. P. Knox, and J. D. Mikkelsen. 2006. Pectin: New insights into an old polymer are starting to gel. Trends in Food Science & Technology 17 (3):97–104. doi: 10.1016/j.tifs.2005.10.008.
  • Worthy, W. 1991. Low-calorie fat replacer is based on pectin. Chemical and Engineering News 69:26. doi: 10.1021/cen-v069n041.p026.
  • Wu, B., B. Degner, and D. J. McClements. 2014. Soft matter strategies for controlling food texture: Formation of hydrogel particles by biopolymer complex coacervation. Journal of Physics. Condensed Matter 26 (46):464104. doi: 10.1088/0953-8984/26/46/464104.
  • Ye, S., Z. Zhu, Y. Wen, C. Su, L. Jiang, S. He, and W. Shao. 2019. Facile and green preparation of pectin/cellulose composite films with enhanced antibacterial and antioxidant behaviors. Polymers 11 (1):57–68. doi: 10.3390/polym11010057.
  • Zhao, S., W. J. Malfait, N. Guerrero-Alburquerque, M. M. Koebel, and G. Nyström. 2018. Biopolymer aerogels and foams: Chemistry, properties, and applications. Angewandte Chemie (International ed. in English) 57 (26):7580–608. doi: 10.1002/anie.201709014.
  • Zhao, S., Y. Zhang, Y. Liu, F. Yang, Z. Xiu, X. Ma, and G. Sun. 2018. Preparation and optimization of calcium pectate beads for cell encapsulation. Journal of Applied Polymer Science 135 (2):45685. doi: 10.1002/app.45685.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.