1,006
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Latest developments in the applications of microfluidization to modify the structure of macromolecules leading to improved physicochemical and functional properties

&

References

  • Adjei-Fremah, S., M. Worku, M. O. De Erive, F. He, T. Wang, and G. Chen. 2019. Effect of microfluidization on microstructure, protein profile and physicochemical properties of whole cowpea flours. Innovative Food Science & Emerging Technologies 57:102207. doi: 10.1016/j.ifset.2019.102207.
  • Alkanawati, M. S., F. R. Wurm, H. Therien-Aubin, and K. Landfester. 2018. Large-scale preparation of polymer nanocarriers by high-pressure microfluidization. Macromolecular Materials and Engineering 303 (1):1700505. doi: 10.1002/mame.201700505.
  • Bai, L., and D. J. McClements. 2016. Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers. Journal of Colloid and Interface Science 466:206–12. doi: 10.1016/j.jcis.2015.12.039.
  • Bai, L., S. Huan, J. Gu, and D. J. McClements. 2016. Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocolloids 61:703–11. doi: 10.1016/j.foodhyd.2016.06.035.
  • Bitik, A., G. Sumnu, and M. Oztop. 2019. Physicochemical and structural characterization of microfluidized and sonicated legume starches. Food and Bioprocess Technology 12 (7):1144–56. doi: 10.1007/s11947-019-02264-4.
  • Chaudhry, Q., M. Scotter, J. Blackburn, B. Ross, A. Boxall, L. Castle, R. Aitken, and R. Watkins. 2008. Applications and implications of nanotechnologies for the food sector. Food Additives & Contaminants: Part A 25 (3):241–58. doi: 10.1080/02652030701744538.
  • Chen, H., Q. Hong, J. Zhong, L. Zhou, W. Liu, S. Luo, and C. Liu. 2019. The enhancement of gastrointestinal digestibility of β-LG by dynamic high-pressure microfluidization to reduce its antigenicity. International Journal of Food Science & Technology 54 (5):1677–83. doi: 10.1111/ijfs.14044.
  • Chen, J., D. Gao, L. Yang, and Y. Gao. 2013. Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Research International 54 (2):1821–7. doi: 10.1016/j.foodres.2013.09.025.
  • Chen, J., R.-H. Liang, W. Liu, C.-M. Liu, T. Li, Z.-C. Tu, and J. Wan. 2012. Degradation of high-methoxyl pectin by dynamic high pressure microfluidization and its mechanism. Food Hydrocolloids 28 (1):121–9. doi: 10.1016/j.foodhyd.2011.12.018.
  • Chen, Y., Z. Tu, H. Wang, L. Zhang, X. Sha, J. Pang, P. Yang, G. Liu, and W. Yang. 2016. Glycation of β-lactoglobulin under dynamic high pressure microfluidization treatment: Effects on IgE-binding capacity and conformation. Food Research International 89 (Pt 1):882–8. doi: 10.1016/j.foodres.2016.10.020.
  • Chen, Y., Z. Tu, H. Wang, Q. Zhang, L. Zhang, X. Sha, T. Huang, D. Ma, J. Pang, and P. Yang. 2017. The reduction in the IgE-binding ability of β-lactoglobulin by dynamic high-pressure microfluidization coupled with glycation treatment revealed by high-resolution mass spectrometry. Journal of Agricultural and Food Chemistry 65 (30):6179–87. doi: 10.1021/acs.jafc.7b00934.
  • Cikrikci, S., I. Demirkesen, and B. Mert. 2016. Production of hazelnut skin fibres and utilisation in a model bakery product. Quality Assurance and Safety of Crops & Foods 8 (2):195–206. doi: 10.3920/QAS2015.0587.
  • Cook, E. J., and A. P. Lagace. 1985. Apparatus for forming emulsions. https://patents.google.com/patent/US4533254A/en
  • Dabbour, M., R. He, B. Mintah, J. Xiang, and H. Ma. 2019. Changes in functionalities, conformational characteristics and antioxidative capacities of sunflower protein by controlled enzymolysis and ultrasonication action. Ultrasonics Sonochemistry 58:104625. doi: 10.1016/j.ultsonch.2019.104625.
  • Djemaoune, Y., E. Cases, and R. Saurel. 2019. The effect of high-pressure microfluidization treatment on the foaming properties of pea albumin aggregates. Journal of Food Science 84 (8):2242–9. doi: 10.1111/1750-3841.14734.
  • Duan, D., Z. Tu, H. Wang, X. Sha, and X. Zhu. 2017. Physicochemical and rheological properties of modified rice amylose by dynamic high-pressure microfluidization. International Journal of Food Properties 20 (4):734–44. doi: 10.1080/10942912.2016.1178283.
  • Fan, Q., P. Wang, X. Zheng, S. S. Hamzah, H. Zeng, Y. Zhang, and J. Hu. 2020. Effect of dynamic high pressure microfluidization on the solubility properties and structure profiles of proteins in water-insoluble fraction of edible bird’s nests. LWT 132:109923. doi: 10.1016/j.lwt.2020.109923.
  • Galooyak, S. S., and B. Dabir. 2015. Three-factor response surface optimization of nano-emulsion formation using a microfluidizer. Journal of Food Science and Technology 52 (5):2558–71. doi: 10.1007/s13197-014-1363-1.
  • Ganesan, P., G. Karthivashan, S. Y. Park, J. Kim, and D.-K. Choi. 2018. Microfluidization trends in the development of nanodelivery systems and applications in chronic disease treatments. International Journal of Nanomedicine 13:6109–21. doi: 10.2147/IJN.S178077.
  • Ge, Z., Y. Zhang, X. Jin, W. Wang, X. Wang, M. Liu, L. Zhang, and W. Zong. 2021. Effects of dynamic high-pressure microfluidization on the physicochemical, structural and functional characteristics of Eucommia ulmoides Oliver seed meal proteins. LWT 138:110766. doi: 10.1016/j.lwt.2020.110766.
  • Gong, K., L. Chen, H. Xia, H. Dai, X. Li, L. Sun, W. Kong, and K. Liu. 2019. Driving forces of disaggregation and reaggregation of peanut protein isolates in aqueous dispersion induced by high-pressure microfluidization. International Journal of Biological Macromolecules 130:915–21. doi: 10.1016/j.ijbiomac.2019.02.123.
  • He, F., T. Wang, S. Zhu, and G. Chen. 2016. Modeling the effects of microfluidization conditions on properties of corn bran. Journal of Cereal Science 71:86–92. doi: 10.1016/j.jcs.2016.08.002.
  • He, X., S. Luo, M. Chen, W. Xia, J. Chen, and C. Liu. 2020. Effect of industry-scale microfluidization on structural and physicochemical properties of potato starch. Innovative Food Science & Emerging Technologies 60:102278. doi: 10.1016/j.ifset.2019.102278.
  • Hu, C., Z. Xiong, H. Xiong, L. Chen, and Z. Zhang. 2020a. Effects of dynamic high-pressure microfluidization treatment on the functional and structural properties of potato protein isolate and its complex with chitosan. Food Research International 109868:109868. doi: 10.1016/j.foodres.2020.109868.
  • Hu, C., Z. Xiong, H. Xiong, L. Chen, Z. Zhang, and Q. Li. 2020b. The formation mechanism and thermodynamic properties of potato protein isolate-chitosan complex under dynamic high-pressure microfluidization (DHPM) treatment . International Journal of Biological Macromolecules 154:486–92. doi: 10.1016/j.ijbiomac.2020.02.327.
  • Hu, X., M. Zhao, W. Sun, G. Zhao, and J. Ren. 2011. Effects of microfluidization treatment and transglutaminase cross-linking on physicochemical, functional, and conformational properties of peanut protein isolate. Journal of Agricultural and Food Chemistry 59 (16):8886–94. doi: 10.1021/jf201781z.
  • Huang, L., M. Shen, X. Zhang, L. Jiang, Q. Song, and J. Xie. 2018. Effect of high-pressure microfluidization treatment on the physicochemical properties and antioxidant activities of polysaccharide from Mesona chinensis Benth. Carbohydrate Polymers 200:191–9. doi: 10.1016/j.carbpol.2018.07.087.
  • Huang, X., Z. Tu, Y. Jiang, H. Xiao, Q. Zhang, and H. Wang. 2012. Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of lentinan. International Journal of Biological Macromolecules 51 (5):926–32. doi: 10.1016/j.ijbiomac.2012.07.018.
  • Iordache, M., and P. Jelen. 2003. High pressure microfluidization treatment of heat denatured whey proteins for improved functionality. Innovative Food Science & Emerging Technologies 4 (4):367–76. doi: 10.1016/S1466-8564(03)00061-4.
  • Jafari, S. M., E. Assadpoor, Y. He, and B. Bhandari. 2008. Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids 22 (7):1191–202. doi: 10.1016/j.foodhyd.2007.09.006.
  • Jafari, S. M., Y. He, and B. Bhandari. 2007. Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering 82 (4):478–88. https://doi.org/10.1016/j.foodeng.2007.03.007. doi: 10.1016/j.jfoodeng.2007.03.007.
  • Jing, S., S. Wang, Q. Li, L. Zheng, L. Yue, S. Fan, and G. Tao. 2016. Dynamic high pressure microfluidization-assisted extraction and bioactivities of Cyperus esculentus (C. esculentus L.) leaves flavonoids. Food Chemistry 192:319–27. doi: 10.1016/j.foodchem.2015.06.097.
  • Juodeikiene, G., D. Zadeike, K. Trakselyte-Rupsiene, K. Gasauskaite, E. Bartkiene, V. Lele, P. Viskelis, J. Bernatoniene, L. Ivanauskas, and V. Jakstas. 2020. Functionalisation of flaxseed proteins assisted by ultrasonication to produce coatings enriched with raspberries phytochemicals. LWT 124:109180. doi: 10.1016/j.lwt.2020.109180.
  • Karacam, C. H., S. Sahin, and M. H. Oztop. 2015. Effect of high pressure homogenization (microfluidization) on the quality of Ottoman Strawberry (F-Ananassa) juice. Lwt - Food Science and Technology 64 (2):932–7. doi: 10.1016/j.lwt.2015.06.064.
  • Kasaai, M. R., G. Charlet, P. Paquin, and J. Arul. 2003. Fragmentation of chitosan by microfluidization process. Innovative Food Science & Emerging Technologies 4 (4):403–13. doi: 10.1016/S1466-8564(03)00047-X.
  • Kivela, R., L. Pitkanen, P. Laine, V. Aseyev, and T. Sontag-Strohm. 2010. Influence of homogenisation on the solution properties of oat beta-glucan. Food Hydrocolloids. 24 (6-7):611–8. doi: 10.1016/j.foodhyd.2010.02.008.
  • Koo, C. K. W., C. Chung, R. Picard, T. Ogren, W. Mutilangi, and D. J. McClements. 2018. Modulation of physical properties of microfluidized whey protein fibrils with chitosan. Food Research International 113:149–55. doi: 10.1016/j.foodres.2018.07.012.
  • Kumar, A., P. C. Badgujar, V. Mishra, R. Sehrawat, O. A. Babar, and A. Upadhyay. 2019. Effect of microfluidization on cholesterol, thermal properties and in vitro and in vivo protein digestibility of milk. LWT 116:108523. doi: 10.1016/j.lwt.2019.108523.
  • Lagoueyte, N., and P. Paquin. 1998. Effects of microfluidization on the functional properties of xanthan gum. Food Hydrocolloids 12 (3):365–71. doi: 10.1016/S0268-005X(98)00004-6.
  • Laneuville, S. I., S. L. Turgeon, and P. Paquin. 2013. Changes in the physical properties of xanthan gum induced by a dynamic high-pressure treatment. Carbohydrate Polymers 92 (2):2327–36. doi: 10.1016/j.carbpol.2012.11.077.
  • Leyva-Daniel, D. E., L. Alamilla-Beltrán, F. Villalobos-Castillejos, A. Monroy-Villagrana, J. Jiménez-Guzmán, and J. Welti-Chanes. 2020. Microfluidization as a honey processing proposal to improve its functional quality. Journal of Food Engineering 274:109831. doi: 10.1016/j.jfoodeng.2019.109831.
  • Li, J., J. Liu, Y. Ye, P. Yang, and Z. Tu. 2019. Reduced IgE/IgG binding capacities of bovine α-Lactalbumin by glycation after dynamic high-pressure microfluidization pretreatment evaluated by high resolution mass spectrometry. Food Chemistry 299:125166. doi: 10.1016/j.foodchem.2019.125166.
  • Li, Y., R. Wang, R. Liang, J. Chen, X. He, R. Chen, W. Liu, and C. Liu. 2018. Dynamic high-pressure microfluidization assisting octenyl succinic anhydride modification of rice starch. Carbohydrate Polymers 193:336–42. doi: 10.1016/j.carbpol.2018.03.103.
  • Liu, C., R. Liang, T. Dai, J. Ye, Z. Zeng, S. Luo, and J. Chen. 2016. Effect of dynamic high pressure microfluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch. Food Hydrocolloids 57:55–61. doi: 10.1016/j.foodhyd.2016.01.015.
  • Liu, C.-M., L. Liang, X.-X. Shuai, R.-H. Liang, and J. Chen. 2018. Dynamic high-pressure microfluidization-treated pectin under different ethanol concentrations. Polymers 10 (12):1410. doi: 10.3390/polym10121410.
  • Liu, G.-X., Z.-C. Tu, H. Wang, L. Zhang, T. Huang, and D. Ma. 2017. Monitoring of the functional properties and unfolding change of ovalbumin after DHPM treatment by HDX and FTICR MS: Functionality and unfolding of oval after DHPM by HDX and FTICR MS. Food Chemistry 227:413–21. doi: 10.1016/j.foodchem.2017.01.109.
  • Liu, H., W. Bai, L. He, X. Li, F. Shah, and Q. Wang. 2020. Degradation mechanism of Saccharomyces cerevisiae β-D-glucan by ionic liquid and dynamic high pressure microfluidization. Carbohydrate Polymers 241:116123. doi: 10.1016/j.carbpol.2020.116123.
  • Liu, H., Y. Li, J. Gao, A. Shi, L. Liu, H. Hu, N. Putri, H. Yu, W. Fan, and Q. Wang. 2016. Effects of microfluidization with ionic liquids on the solubilization and structure of β-d-glucan. International Journal of Biological Macromolecules 84:394–401. doi: 10.1016/j.ijbiomac.2015.12.014.
  • Liu, W., J. Liu, C. Liu, Y. Zhong, W. Liu, and J. Wan. 2009. Activation and conformational changes of mushroom polyphenoloxidase by high pressure microfluidization treatment. Innovative Food Science & Emerging Technologies 10 (2):142–7. doi: 10.1016/j.ifset.2008.11.009.
  • Liu, W., Z.-Q. Zhang, C.-M. Liu, M.-Y. Xie, Z.-C. Tu, J.-H. Liu, and R.-H. Liang. 2010. The effect of dynamic high-pressure microfluidization on the activity, stability and conformation of trypsin. Food Chemistry 123 (3):616–21. doi: 10.1016/j.foodchem.2010.04.079.
  • Lobo, L., and A. Svereika. 2003. Coalescence during emulsification: 2. Role of small molecule surfactants. Journal of Colloid and Interface Science 261 (2):498–507. doi: 10.1016/S0021-9797(03)00069-9.
  • Martin-Piñero, M. J., J. Muñoz, and M.-C. Alfaro-Rodriguez. 2020. Improvement of the rheological properties of rosemary oil nanoemulsions prepared by microfluidization and vacuum evaporation. Journal of Industrial and Engineering Chemistry 91:340–6. doi: 10.1016/j.jiec.2020.08.018.
  • Mert, B. 2012. Using high pressure microfluidization to improve physical properties and lycopene content of ketchup type products. Journal of Food Engineering 109 (3):579–87. doi: 10.1016/j.jfoodeng.2011.10.021.
  • Mert, B., A. Tekin, I. Demirkesen, and G. Kocak. 2014. Production of microfluidized wheat bran fibers and evaluation as an ingredient in reduced flour bakery product. Food and Bioprocess Technology 7 (10):2889–901. doi: 10.1007/s11947-014-1258-1.
  • Mert, I. D. 2020. The applications of microfluidization in cereals and cereal-based products: An overview. Critical Reviews in Food Science and Nutrition 60 (6):1007–18. doi: 10.1080/10408398.2018.1555134.
  • Morales-Medina, R., D. Dong, S. Schalow, and S. Drusch. 2020. Impact of microfluidization on the microstructure and functional properties of pea hull fibre. Food Hydrocolloids 103:105660. doi: 10.1016/j.foodhyd.2020.105660.
  • Nekkanti, V., V. Vabalaboina, and R. Pillai. 2012. Drug nanoparticles – An overview. In The delivery of nanoparticles, ed. A. A. Hassim, 111-132. 1st ed. London: InTechOpen. doi: 10.5772/34680.
  • Oliete, B., F. Potin, E. Cases, and R. Saurel. 2018. Modulation of the emulsifying properties of pea globulin soluble aggregates by dynamic high-pressure fluidization. Innovative Food Science & Emerging Technologies 47:292–300. doi: 10.1016/j.ifset.2018.03.015.
  • Oliete, B., F. Potin, E. Cases, and R. Saurel. 2019. Microfluidization as homogenization technique in pea globulin-based emulsions. Food and Bioprocess Technology 12 (5):877–82. doi: 10.1007/s11947-019-02265-3.
  • Olson, D. W., C. H. White, and R. L. Richter. 2004. Effect of pressure and fat content on particle sizes in microfluidized milk*. Journal of Dairy Science 87 (10):3217–23. doi: 10.3168/jds.S0022-0302(04)73457-8.
  • Otoni, C. G., A. S. Carvalho, M. V. C. Cardoso, O. D. Bernardinelli, M. V. Lorevice, L. A. Colnago, W. Loh, and L. H. C. Mattoso. 2018. High-pressure microfluidization as a green tool for optimizing the mechanical performance of all-cellulose composites. ACS Sustainable Chemistry & Engineering 6 (10):12727–35. doi: 10.1021/acssuschemeng.8b01855.
  • Ozturk, O. K., and B. Mert. 2018a. The effects of microfluidization on rheological and textural properties of gluten-free corn breads. Food Research International 105:782–92. doi: 10.1016/j.foodres.2017.12.008.
  • Ozturk, O. K., and B. Mert. 2018b. The use of microfluidization for the production of xanthan and citrus fiber-based gluten-free corn breads. LWT 96:34–41. doi: 10.1016/j.lwt.2018.05.025.
  • Ozturk, O. K., and B. Mert. 2019. Characterization and evaluation of emulsifying properties of high pressure microfluidized and pH shifted corn gluten meal. Innovative Food Science & Emerging Technologies 52:179–88. doi: 10.1016/j.ifset.2018.12.006.
  • Ozturk, O. K., and P. S. Takhar. 2018. Water transport in starchy foods: Experimental and mathematical aspects. Trends in Food Science & Technology 78:11–24. doi: 10.1016/j.tifs.2018.05.015.
  • Páez-Hernández, G., P. Mondragón-Cortez, and H. Espinosa-Andrews. 2019. Developing curcumin nanoemulsions by high-intensity methods: Impact of ultrasonication and microfluidization parameters. LWT 111:291–300. doi: 10.1016/j.lwt.2019.05.012.
  • Paquin, P., and J. Giasson. 1989. Microfluidization as an homogenization process for cream liqueur. Le Lait 69 (6):491–8. doi: 10.1051/lait:1989633.
  • Ronkart, S. N., M. Paquot, C. Deroanne, C. Fougnies, S. Besbes, and C. S. Blecker. 2010. Development of gelling properties of inulin by microfluidization. Food Hydrocolloids 24 (4):318–24. doi: 10.1016/j.foodhyd.2009.10.009.
  • Rosa-Sibakov, N., J. Sibakov, P. Lahtinen, and K. Poutanen. 2015. Wet grinding and microfluidization of wheat bran preparations: Improvement of dispersion stability by structural disintegration. Journal of Cereal Science 64:1–10. doi: 10.1016/j.jcs.2015.04.002.
  • Santos, J., M. Jiménez, N. Calero, T. Undabeytia, and J. Muñoz. 2019. A comparison of microfluidization and sonication to obtain lemongrass submicron emulsions. Effect of diutan gum concentration as stabilizer. LWT 114:108424. doi: 10.1016/j.lwt.2019.108424.
  • Sha, X.-M., Z.-Z. Hu, Z.-C. Tu, L.-Z. Zhang, D.-L. Duan, T. Huang, H. Wang, L. Zhang, X. Li, and H. Xiao. 2018. Influence of dynamic high pressure microfluidization on functional properties and structure of gelatin from bighead carp (Hypophthalmichthys nobilis) scale. Journal of Food Processing and Preservation 42 (5):e13607. doi: 10.1111/jfpp.13607.
  • Shen, L., and C.-H. Tang. 2012. Microfluidization as a potential technique to modify surface properties of soy protein isolate. Food Research International 48 (1):108–18. doi: 10.1016/j.foodres.2012.03.006.
  • Tu, Z., Y. Yin, H. Wang, G. Liu, L. Chen, P. Zhang, Y. Kou, and L. Zhang. 2013. Effect of dynamic high-pressure microfluidization on the morphology characteristics and physicochemical properties of maize amylose. Starch - Stärke 65 (5-6):390–7. doi: 10.1002/star.201200120.
  • Villay, A., F. L. de Filippis, L. Picton, D. L. Cerf, C. Vial, and P. Michaud. 2012. Comparison of polysaccharide degradations by dynamic high-pressure homogenization. Food Hydrocolloids 27 (2):278–86. doi: 10.1016/j.foodhyd.2011.10.003.
  • Wang, H., T. Huang, Z.-c. Tu, C.-y. Ruan, and D. Lin. 2016. The adsorption of lead (II) ions by dynamic high pressure micro-fluidization treated insoluble soybean dietary fiber. Journal of Food Science and Technology 53 (6):2532–9. doi: 10.1007/s13197-016-2203-2.
  • Wang, L., J. Wu, X. Luo, Y. Li, R. Wang, Y. Li, J. Li, and Z. Chen. 2018. Dynamic high-pressure microfluidization treatment of rice bran: Effect on Pb(II) ions adsorption in vitro. Journal of Food Science 83 (7):1980–9. doi: 10.1111/1750-3841.14201.
  • Wang, N., L. Wu, S. Huang, Y. Zhang, F. Zhang, and J. Zheng. 2020. Combination treatment of bamboo shoot dietary fiber and dynamic high-pressure microfluidization on rice starch: Influence on physicochemical, structural, and in vitro digestion properties. Food Chemistry, 128724. doi: 10.1016/j.foodchem.2020.128724.
  • Wang, T., F. He, and G. Chen. 2014. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. Journal of Functional Foods 7:101–11. doi: 10.1016/j.jff.2014.01.033.
  • Wang, T., J. Raddatz, and G. Chen. 2013. Effects of microfluidization on antioxidant properties of wheat bran. Journal of Cereal Science 58 (3):380–6. doi: 10.1016/j.jcs.2013.07.010.
  • Wang, T., X. Sun, J. Raddatz, and G. Chen. 2013. Effects of microfluidization on microstructure and physicochemical properties of corn bran. Journal of Cereal Science 58 (2):355–61. doi: 10.1016/j.jcs.2013.07.003.
  • Wang, T., X. Sun, Z. Zhou, and G. Chen. 2012. Effects of microfluidization process on physicochemical properties of wheat bran. Food Research International 48 (2):742–7. doi: 10.1016/j.foodres.2012.06.015.
  • Wang, W., Y. Feng, W. Chen, K. Adie, D. Liu, and Y. Yin. 2021. Citrus pectin modified by microfluidization and ultrasonication: Improved emulsifying and encapsulation properties. Ultrasonics Sonochemistry 70:105322. doi: 10.1016/j.ultsonch.2020.105322.
  • Wang, X., S. Wang, W. Wang, Z. Ge, L. Zhang, C. Li, B. Zhang, and W. Zong. 2019. Comparison of the effects of dynamic high-pressure microfluidization and conventional homogenization on the quality of peach juice. Journal of the Science of Food and Agriculture 99 (13):5994–6000. doi: 10.1002/jsfa.9874.
  • Wang, X.-M., X.-M. Zhu, N.-H. Zhang, Z.-C. Tu, H. Wang, G.-X. Liu, and Y.-H. Ye. 2018. Morphological and structural characteristics of rice amylose by dynamic high-pressure microfluidization modification. Journal of Food Processing and Preservation 42 (10):e13764. doi: 10.1111/jfpp.13764.
  • Yildiz, E., I. Demirkesen, and B. Mert. 2016. High pressure microfluidization of agro by-product to functionalized dietary fiber and evaluation as a novel bakery ingredient. Journal of Food Quality 39 (6):599–610. doi: 10.1111/jfq.12246.
  • Zhang, G., and B. R. Hamaker. 2009. Slowly digestible starch: Concept, mechanism, and proposed extended glycemic index. Critical Reviews in Food Science and Nutrition 49 (10):852–67. doi: 10.1080/10408390903372466.
  • Zhang, G., and B. R. Hamaker. 2017. The nutritional property of endosperm starch and its contribution to the health benefits of whole grain foods. Critical Reviews in Food Science and Nutrition 57 (18):3807–17. doi: 10.1080/10408398.2015.1130685.
  • Zhang, W., F. Xie, X. Lan, S. Gong, and Z. Wang. 2018. Characteristics of pectin from black cherry tomato waste modified by dynamic high-pressure microfluidization. Journal of Food Engineering 216:90–7. doi: 10.1016/j.jfoodeng.2017.07.032.
  • Zheng, Y., Z. Guo, B. Zheng, S. Zeng, and H. Zeng. 2020. Insight into the formation mechanism of lotus seed starch-lecithin complexes by dynamic high-pressure homogenization. Food Chemistry 315:126245. doi: 10.1016/j.foodchem.2020.126245.
  • Zhong, J., H. Yu, Y. Tu, L. Zhou, W. Liu, S. Luo, C. Liu, and S. Prakash. 2019. Comparison of antigenicity and conformational changes to β-lactoglobulin following kestose glycation reaction with and without dynamic high-pressure microfluidization treatment. Food Chemistry 278:491–6. doi: 10.1016/j.foodchem.2018.11.094.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.