769
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Application of new emerging techniques in combination with classical methods for the determination of the quality and authenticity of olive oil: a review

, , &

References

  • Al Riza, D. F., N. Kondo, V. K. Rotich, C. Perone, and F. Giametta. 2021. Cultivar and geographical origin authentication of Italian extra virgin olive oil using front-face fluorescence spectroscopy and chemometrics. Food Control. 121:107604. doi: 10.1016/j.foodcont.2020.107604.
  • Alamprese, C., and E. Casiraghi. 2015. Application of FT-NIR and FT-IR spectroscopy to fish fillet authentication. LWT - Food Science and Technology 63 (1):720–5. doi: 10.1016/j.lwt.2015.03.021.
  • Al-Shdiefat, S. M. M. 2019. Effect of the planting location (elevation) on the composition of fatty acids in olive oil. Journal of Agricultural Science 11 (2):271. doi: 10.5539/jas.v11n2p271.
  • Andueza, D., B. P. Mourot, A. Aït-Kaddour, S. Prache, and J. Mourot. 2015. Utilisation de la spectroscopie dans le proche infrarouge et de la spectroscopie de fluorescence pour estimer la qualité et la traçabilité de la viande. INRA Productions Animales 28 (2):197–208. doi: 10.20870/productions-animales.2015.28.2.3025.
  • Angelova, A., M. Drechsler, V. M. Garamus, and B. Angelov. 2018. Liquid crystalline nanostructures as pegylated reservoirs of omega-3 polyunsaturated fatty acids: structural insights toward delivery formulations against neurodegenerative disorders. American Chemical Society3: 3235–47. doi: 10.1021/ACSOMEGA.7B01935.
  • Apetrei, I. M., and C. Apetrei. 2014. Detection of virgin olive oil adulteration using a voltammetric e-tongue. Computers and Electronics in Agriculture 108:148–54. doi: 10.1016/j.compag.2014.08.002.
  • Aroca-Santos, R., M. Lastra-Mejías, J. C. Cancilla, and J. S. Torrecilla. 2019. Linear and non-linear quantification of extra virgin olive oil, soybean oil, and sweet almond oil in blends to assess their commercial labels. Journal of Food Composition and Analysis 75:70–4. doi: 10.1016/j.jfca.2018.09.010.
  • Arvanitoyannis, I. S., and A. Vlachos. 2007. Implementation of physicochemical and sensory analysis in conjunction with multivariate analysis towards assessing olive oil authentication/adulteration. Critical Reviews in Food Science and Nutrition 47 (5):441–98. doi: 10.1080/10408390600846325.
  • Bajoub, A., E. A. Ajal, A. Fernández-Gutiérrez, and A. Carrasco-Pancorbo. 2016. Evaluating the potential of phenolic profiles as discriminant features among extra virgin olive oils from Moroccan controlled designations of origin. Food Research International 84:41–51. doi: 10.1016/j.foodres.2016.03.010.
  • Bajoub, A., A. Carrasco-Pancorbo, E. A. Ajal, G. Beltrán Maza, A. Fernández-Gutiérrez, and N. Ouazzani. 2014. Contribution to the establishment of a protected designation of origin for Meknès virgin olive oil: A 4-years study of its typicality. Food Research International 66:332–43. doi: 10.1016/j.foodres.2014.09.021.
  • Bajoub, A., A. Carrasco-Pancorbo, E. A. Ajal, N. Ouazzani, and A. Fernández-Gutiérrez. 2015. Potential of LC-MS phenolic profiling combined with multivariate analysis as an approach for the determination of the geographical origin of north Moroccan virgin olive oils. Food Chemistry 166:292–300. doi: 10.1016/j.foodchem.2014.05.153.
  • Bajoub, A., S. Medina-Rodríguez, M. Gómez-Romero, E. A. Ajal, M. G. Bagur-González, A. Fernández-Gutiérrez, and A. Carrasco-Pancorbo. 2017. Assessing the varietal origin of extra-virgin olive oil using liquid chromatography fingerprints of phenolic compound, data fusion and chemometrics. Food Chemistry 215:245–55. doi: 10.1016/j.foodchem.2016.07.140.
  • Blasi, F., L. Pollini, and L. Cossignani. 2019. Varietal authentication of extra virgin olive oils by triacylglycerols and volatiles analysis. Foods 8 (2):58. doi: 10.3390/foods80200.
  • Blecker, C., J. M. Habib-Jiwan, and R. Karoui. 2012. Effect of heat treatment of rennet skim milk induced coagulation on the rheological properties and molecular structure determined by synchronous fluorescence spectroscopy and turbiscan. Food Chemistry 135 (3):1809–17. doi: 10.1016/j.foodchem.2012.06.035.
  • Borràs, E., J. Ferré, R. Boqué, M. Mestres, L. Aceña, A. Calvo, and O. Busto. 2016. Prediction of olive oil sensory descriptors using instrumental data fusion and partial least squares (PLS) regression. Talanta 155:116–23. doi: 10.1016/j.talanta.2016.04.040.
  • Borràs, E., M. Mestres, L. Aceña, O. Busto, J. Ferré, R. Boqué, and A. Calvo. 2015. Identification of olive oil sensory defects by multivariate analysis of mid infrared spectra. Food Chemistry 187:197–203. doi: 10.1016/j.foodchem.2015.04.030.
  • Boughattas, F., B. Le Fur, and R. Karoui. 2019. Identification and quantification of tuna species in canned tunas with sunflower medium by means of a technique based on front face fluorescence spectroscopy (FFFS). Food Control 101:17–23. doi: 10.1016/j.foodcont.2019.02.003.
  • Boughattas, F., B. Le Fur, and R. Karoui. 2020a. Mid infrared spectroscopy coupled with chemometric tools for qualitative analysis of canned tuna with sunflower medium. Journal of Food Composition and Analysis 91:103519. doi: 10.1016/j.jfca.2020.103519.
  • Boughattas, F., D. Vilkova, E. Kondratenko, and R. Karoui. 2020b. Targeted and untargeted techniques coupled with chemometric tools for the evaluation of sturgeon (Acipenser gueldenstaedtii) freshness during storage at 4 °C. Food Chemistry 312:126000. doi: 10.1016/j.foodchem.2019.126000.
  • Boukachabine, N., H. Ajana, and A. El Antari. 2011. A study of fatty acids and triglycerides oil composition and quality parameters of five autochthon olive varieties in Morocco. Lebanese Science Journal 12:45–65.
  • Boulfane, S., N. Maata, A. Anouar, and S. Hilali. 2015. Caractérisation physicochimique des huiles d ’ olive produites dans les huileries traditionnelles de la région de la Chaouia-Maroc. Journal of Applied Biosciences 87:8022–29.
  • Buratti, S., C. Malegori, S. Benedetti, P. Oliveri, and G. Giovanelli. 2018. E-nose, e-tongue and e-eye for edible olive oil characterization and shelf life assessment: A powerful data fusion approach. Talanta 182:131–41. doi: 10.1016/j.talanta.2018.01.096.
  • Cabrera-Bañegil, M., D. Martín-Vertedor, E. Boselli, and I. Durán-Merás. 2018. Control of olive cultivar irrigation by front-face fluorescence excitation-emission matrices in combination with PARAFAC. Journal of Food Composition and Analysis 69:189–96. doi: 10.1016/j.jfca.2018.01.021.
  • Casale, M., P. Oliveri, C. Casolino, N. Sinelli, P. Zunin, C. Armanino, M. Forina, and S. Lanteri. 2012. Characterisation of PDO olive oil Chianti Classico by non-selective (UV-visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques. Analytica Chimica Acta 712:56–63. doi: 10.1016/j.aca.2011.11.015.
  • Casale, M., and R. Simonetti. 2014. Review: Near infrared spectroscopy for analysingolive oils. Journal of near Infrared Spectroscopy 22 (2):59–80. doi: 10.1255/jnirs.1106.
  • Cayuela-Sánchez, J. A., J. Palarea-Albaladejo, J. F. García-Martín, and M. d C. Pérez-Camino. 2019. Olive oil nutritional labeling by using Vis/NIR spectroscopy and compositional statistical methods. Innovative Food Science & Emerging Technologies 51:139–47. doi: 10.1016/j.ifset.2018.05.018.
  • Cecchi, L., M. Migliorini, E. Giambanelli, A. Rossetti, A. Cane, N. Mulinacci, and F. Melani. 2020. Authentication of the geographical origin of virgin olive oils from the main worldwide producing countries: A new combination of HS-SPME-GC-MS analysis of volatile compounds and chemometrics applied to 1217 samples. Food Control 112:107156. doi: 10.1016/j.foodcont.2020.107156.
  • Cerretani, L., A. Bendini, M. Rinaldi, M. Paciulli, S. Vecchio, and E. Chiavaro. 2012. DSC evaluation of extra virgin olive oil stability under accelerated oxidative test: Effect of fatty acid composition and phenol contents. Journal of Oleo Science 61 (6):303–9. doi: 10.5650/jos.61.303.
  • Cerretani, L., A. Giuliani, R. M. Maggio, A. Bendini, T. G. Toschi, and A. Cichelli. 2010. Rapid FTIR determination of water, phenolics and antioxidant activity of olive oil. European Journal of Lipid Science and Technology 112 (10):1150–7. doi: 10.1002/ejlt.201000356.
  • Cicerale, S., X. A. Conlan, A. J. Sinclair, and R. S. J. Keast. 2009. Chemistry and health of olive oil phenolics. Critical Reviews in Food Science and Nutrition 49 (3):218–36. doi: 10.1080/10408390701856223.
  • COI. 2016. International trade standard applying to olive oils and olive-pomace oils. International Olive Council, Madrid. https://goo.gl/NNDLMR.
  • COI. 2018. World production of olive oil. International Olive Council, Madrid.
  • Covas, M. I. 2007. Olive oil and the cardiovascular system. Pharmacological Research 55 (3):175–86. doi: 10.1016/j.phrs.2007.01.010.
  • Dankowska, A., M. Małecka, and W. Kowalewski. 2013. Discrimination of edible olive oils by means of synchronous fluorescence spectroscopy with multivariate data analysis. Grasas y Aceites 64 (4):425–31. doi: 10.3989/gya.012613.
  • De Luca, M., W. Terouzi, G. Ioele, F. Kzaiber, A. Oussama, F. Oliverio, R. Tauler, and G. Ragno. 2011. Derivative FTIR spectroscopy for cluster analysis and classification of morocco olive oils. Food Chemistry 124 (3):1113–8. doi:10.1016/j.foodchem.2010.07.010.
  • Devos, O., G. Downey, and L. Duponchel. 2014. Simultaneous data pre-processing and SVM classification model selection based on a parallel genetic algorithm applied to spectroscopic data of olive oils. Food Chemistry 148:124–30. doi: 10.1016/j.foodchem.2013.10.020.
  • Dourou, A. M., S. Brizzolara, G. Meoni, L. Tenori, F. Famiani, C. Luchinat, and P. Tonutti. 2020. The inner temperature of the olives (cv. Leccino) before processing affects the volatile profile and the composition of the oil. Food Research International (Ottawa, Ont.) 129:108861. doi: 10.1016/j.foodres.2019.108861.
  • Durán Merás, I., J. Domínguez Manzano, D. Airado Rodríguez, and A. Muñoz de la Peña. 2018. Detection and quantification of extra virgin olive oil adulteration by means of autofluorescence excitation-emission profiles combined with multi-way classification. Talanta 178:751–62. doi: 10.1016/j.talanta.2017.09.095.
  • Essiari, M., R. Zouhair, and H. Chimi. 2014. Contribution to the study of the typical characteristics of the virgin olive oils produced in the region of Sais (Morocco). Olivae 119: 8–21.
  • Famiani, F., D. Farinelli, S. Urbani, R. Al Hariri, A. Paoletti, A. Rosati, S. Esposto, R. Selvaggini, A. Taticchi, and M. Servili. 2020. Harvesting system and fruit storage affect basic quality parameters and phenolic and volatile compounds of oils from intensive and super-intensive olive orchards. Scientia Horticulturae 263:109045. doi: 10.1016/j.scienta.2019.109045.
  • Ferreiro-González, M., G. F. Barbero, J. A. Álvarez, A. Ruiz, M. Palma, and J. Ayuso. 2017. Authentication of virgin olive oil by a novel curve resolution approach combined with visible spectroscopy. Food Chemistry 220:331–6. doi: 10.1016/j.foodchem.2016.10.015.
  • Garrido-Varo, A., M. T. Sánchez, M. J. De la Haba, I. Torres, and D. Pérez-Marín. 2017. Fast, low-cost and non-destructive physico-chemical analysis of virgin olive oils using near-infrared reflectance spectroscopy. Sensors 17 (11):2642. doi: 10.3390/s17112642.
  • Georgouli, K., J. Martinez Del Rincon, and A. Koidis. 2017. Continuous statistical modelling for rapid detection of adulteration of extra virgin olive oil using mid infrared and Raman spectroscopic data. Food Chemistry 217:735–42. doi: 10.1016/j.foodchem.2016.09.011.
  • Gharby, S., H. Harhar, B. Matthäus, Z. Bouzoubaa, and Z. Charrouf. 2016. The chemical parameters and oxidative resistance to heat treatment of refined and extra virgin Moroccan Picholine olive oil. Journal of Taibah University for Science 10 (1):100–6. doi: 10.1016/j.jtusci.2015.05.004.
  • Giuliani, A., L. Cerretani, and A. Cichelli. 2011. Chlorophylls in olive and in olive oil: Chemistry and occurrences. Critical Reviews in Food Science and Nutrition 51 (7):678–90. doi: 10.1080/10408391003768199.
  • Green, H. S., X. Li, M. De Pra, K. S. Lovejoy, F. Steiner, I. N. Acworth, and S. C. Wang. 2020. A rapid method for the detection of extra virgin olive oil adulteration using UHPLC-CAD profiling of triacylglycerols and PCA. Food Control. 107:106773. doi: 10.1016/j.foodcont.2019.106773.
  • Guzmán, E., V. Baeten, J. A. F. Pierna, and J. A. García-Mesa. 2015. Evaluation of the overall quality of olive oil using fluorescence spectroscopy. Food Chemistry 173:927–34. doi: 10.1016/j.foodchem.2014.10.041.
  • Haddi, Z., H. Alami, N. El Bari, M. Tounsi, H. Barhoumi, A. Maaref, N. Jaffrezic-Renault, and B. Bouchikhi. 2013. Electronic nose and tongue combination for improved classification of Moroccan virgin olive oil profiles. Food Research International 54 (2):1488–98. doi: 10.1016/j.foodres.2013.09.036.
  • Hassoun, A., and R. Karoui. 2016. Monitoring changes in whiting (Merlangius merlangus) fillets stored under modified atmosphere packaging by front face fluorescence spectroscopy and instrumental techniques. Food Chemistry 200:343–53. doi: 10.1016/j.foodchem.2016.01.028.
  • Hassoun, A., and R. Karoui. 2017. Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: Advantages and limitations. Critical Reviews in Food Science and Nutrition 57 (9):1976–98. doi: 10.1080/10408398.2015.1047926.
  • Hatzakis, E., G. Dagounakis, A. Agiomyrgianaki, and P. Dais. 2010. A facile NMR method for the quantification of total, free and esterified sterols in virgin olive oil. Food Chemistry 122 (1):346–52. doi: 10.1016/j.foodchem.2010.02.043.
  • Houlali, I., S. Rabi, M. Elbir, A. Ait Ider, A. Amhoud, A. Moubarik, A. Hasib, A. Jaouad, and M. Mbarki. 2014. Chemical characterization of the virgin olive oil in Tadla Azilal Moroccan area. Journal of Materials and Environmental Science 5 (2):599–604.
  • Iqdiam, B. M., B. A. Welt, R. Goodrich-Schneider, C. A. Sims, G. L. Baker, and M. R. Marshall. 2020. Influence of headspace oxygen on quality and shelf life of extra virgin olive oil during storage. Food Packaging and Shelf Life 23:100433. doi: 10.1016/j.fpsl.2019.100433.
  • Issaoui, M., G. Flamini, F. Brahmi, S. Dabbou, K. B. Hassine, A. Taamali, H. Chehab, M. Ellouz, M. Zarrouk, and M. Hammami. 2010. Effect of the growing area conditions on differentiation between Chemlali and Chétoui olive oils. Food Chemistry 119 (1):220–5. doi: 10.1016/j.foodchem.2009.06.012.
  • Jiang, H., and Q. Chen. 2019. Virgin olive oil using FT-NIR spectroscopy. Molecules 24 (11):2134–1. doi: 10.3390/molecules24112134.
  • Jiménez-Carvelo, A. M., V. A. Lozano, and A. C. Olivieri. 2019. Comparative chemometric analysis of fluorescence and near infrared spectroscopies for authenticity confirmation and geographical origin of Argentinean extra virgin olive oils. Food Control 96:22–8. doi: 10.1016/j.foodcont.2018.08.024.
  • Kamal, M., and R. Karoui. 2015. Analytical methods coupled with chemometric tools for determining the authenticity and detecting the adulteration of dairy products: A review. Trends in Food Science & Technology 46 (1):27–48. doi: 10.1016/j.tifs.2015.07.007.
  • Karabagias, I., C. Michos, A. Badeka, S. Kontakos, I. Stratis, and M. G. Kontominas. 2013. Classification of Western Greek virgin olive oils according to geographical origin based on chromatographic, spectroscopic, conventional and chemometric analyses. Food Research International 54 (2):1950–8. doi: 10.1016/j.foodres.2013.09.023.
  • Karoui, R., and C. Blecker. 2011. Fluorescence spectroscopy measurement for quality assessment of food systems-a review. Food and Bioprocess Technology 4 (3):364–86. doi: 10.1007/s11947-010-0370-0.
  • Karoui, R., G. Cartaud, and E. Dufour. 2006a. Front-face fluorescence spectroscopy as a rapid and nondestructive tool for differentiating various cereal products: A preliminary investigation. Journal of Agricultural and Food Chemistry 54 (6):2027–34. doi: 10.1021/jf053010y.
  • Karoui, R., É. Dufour, and J. De Baerdemaeker. 2006b. Common components and specific weights analysis: A tool for monitoring the molecular structure of semi-hard cheese throughout ripening. Analytica Chimica Acta 572 (1):125–33. doi: 10.1016/j.aca.2006.04.089.
  • Karoui, R., É. Dufour, and J. De Baerdemaeker. 2007a. Front face fluorescence spectroscopy coupled with chemometric tools for monitoring the oxidation of semi-hard cheeses throughout ripening. Food Chemistry 101 (3):1305–14. doi: 10.1016/j.foodchem.2006.01.028.
  • Karoui, R., M. Hammami, H. Rouissi, and C. Blecker. 2011. Mid infrared and fluorescence spectroscopies coupled with factorial discriminant analysis technique to identify sheep milk from different feeding systems. Food Chemistry 127 (2):743–8. doi: 10.1016/j.foodchem.2010.12.135.
  • Karoui, R., B. Kemps, F. Bamelis, B. De Ketelaere, K. Merten, R. Schoonheydt, E. Decuypere, and J. De Baerdemaeker. 2006c. Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2 - Evolution of egg yolk. European Food Research and Technology 223 (2):180–8. doi: 10.1007/s00217-005-0179-7.
  • Karoui, R., B. Kemps, F. Bamelis, B. De Ketelaere, K. Merten, R. Schoonheydt, E. Decuypere, and J. De Baerdemaeker. 2006d. Development of a rapid method based on front face fluorescence spectroscopy for the monitoring of egg freshness: 1-evolution of thick and thin egg albumens. European Food Research and Technology 223 (3):303–12. doi: 10.1007/s00217-005-0204-x.
  • Karoui, R., Lefur, B. Grondin, C. Thomas, E. Demeulemester, C. Baerdemaeker, J. De, Guillard. and A.-S. 2007b. Mid-infrared spectroscopy as a new tool for the evaluation of fish freshness. International Journal of Food Science & Technology 42 (1):57–64. doi: 10.1111/j.1365-2621.2006.01208.x.
  • Karoui, R., A. M. Mouazen, É. Dufour, L. Pillonel, D. Picque, J. De Baerdemaeker, and J. O. Bosset. 2006e. Application of the MIR for the determination of some chemical parameters in European Emmental cheeses produced during summer. European Food Research and Technology 222 (1–2):165–70. doi: 10.1007/s00217-005-0134-7.
  • Karoui, R., A. M. Mouazen, H. Ramon, R. Schoonheydt, and J. D. Baerdemaeker. 2006f. Feasibility study of discriminating the manufacturing process and sampling zone in ripened soft cheeses using attenuated total reflectance MIR and fiber optic diffuse reflectance VIS-NIR spectroscopy. Food Research International 39 (5):588–97. doi: 10.1016/j.foodres.2005.12.002.
  • Karoui, R., B. Nicolaï, and J. de Baerdemaeker. 2008. Monitoring the egg freshness during storage under modified atmosphere by fluorescence spectroscopy. Food and Bioprocess Technology 1 (4):346–56. doi: 10.1007/s11947-007-0011-4.
  • Karoui, R., R. Schoonheydt, E. Decuypere, B. Nicolaï, and J. De Baerdemaeker. 2007c. Front face fluorescence spectroscopy as a tool for the assessment of egg freshness during storage at a temperature of 12.2 °C and 87% relative humidity. Analytica Chimica Acta 582 (1):83–91. Elsevier. doi: 10.1016/j.aca.2006.09.003.
  • Karunathilaka, S. R., A. R. F. Kia, C. Srigley, J. K. Chung, and M. M. Mossoba. 2016. Nontargeted, rapid screening of extra virgin olive oil products for authenticity using near-infrared spectroscopy in combination with conformity index and multivariate statistical analyses. Journal of Food Science 81 (10):C2390–C2397. doi: 10.1111/1750-3841.13432.
  • Khlil, E., F. Mansouri, and A. Ben. 2017. Physicochemical characteristics of monovarietal olive oil produced at Beni Tajjit. South-West of the Region of Eastern Morocco 8:4264–72.
  • Köseoğlu, O., D. Sevim, and P. Kadiroğlu. 2016. Quality characteristics and antioxidant properties of Turkish monovarietal olive oils regarding stages of olive ripening. Food Chemistry 212:628–34. doi: 10.1016/j.foodchem.2016.06.027.
  • Laddomada, B., G. Colella, M. Tufariello, M. Durante, M. Angiuli, G. Salvetti, and G. Mita. 2013. Application of a simplified calorimetric assay for the evaluation of extra virgin olive oil quality. Food Research International 54 (2):2062–8. doi: 10.1016/j.foodres.2013.05.035.
  • Laroussi-Mezghani, S., P. Vanloot, J. Molinet, N. Dupuy, M. Hammami, N. Grati-Kamoun, and J. Artaud. 2015. Authentication of Tunisian virgin olive oils by chemometric analysis of fatty acid compositions and NIR spectra. Comparison with Maghrebian and French virgin olive oils. Food Chemistry 173:122–32. doi: 10.1016/j.foodchem.2014.10.002.
  • Lia, F., J. P. Formosa, M. Zammit-Mangion, and C. Farrugia. 2020. The first identification of the uniqueness and authentication of Maltese extra virgin olive oil using 3D-fluorescence spectroscopy coupled with multi-way data analysis. Foods 9 (4):498. doi: 10.3390/foods9040498.
  • Li, Y., S. Chen, H. Chen, P. Guo, T. Li, and Q. Xu. 2020. Effect of thermal oxidation on detection of adulteration at low concentrations in extra virgin olive oil: Study based on laser-induced fluorescence spectroscopy combined with KPCA–LDA. Food Chemistry 309:125669. doi: 10.1016/j.foodchem.2019.125669.
  • Li, Y., T. Fang, S. Zhu, F. Huang, Z. Chen, and Y. Wang. 2018. Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy combined with iPLS and SiPLS. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 189:37–43. doi: 10.1016/j.saa.2017.06.049.
  • Lin, P., Y. Chen, and Y. He. 2012. Identification of geographical origin of olive oil using visible and near-infrared spectroscopy technique combined with chemometrics. Food and Bioprocess Technology 5 (1):235–42. doi: 10.1007/s11947-009-0302-z.
  • Longobardi, F., A. Ventrella, C. Napoli, E. Humpfer, B. Schütz, H. Schäfer, M. G. Kontominas, and A. Sacco. 2012. Classification of olive oils according to geographical origin by using1H NMR fingerprinting combined with multivariate analysis. Food Chemistry 130 (1):177–83. doi: 10.1016/j.foodchem.2011.06.045.
  • Lukić, I., S. Carlin, I. Horvat, and U. Vrhovsek. 2019. Combined targeted and untargeted profiling of volatile aroma compounds with comprehensive two-dimensional gas chromatography for differentiation of virgin olive oils according to variety and geographical origin. Food Chemistry 270:403–14. doi: 10.1016/j.foodchem.2018.07.133.
  • Mabood, F., R. Boqué, R. Folcarelli, O. Busto, F. Jabeen, A. Al-Harrasi, and J. Hussain. 2016. The effect of thermal treatment on the enhancement of detection of adulteration in extra virgin olive oils by synchronous fluorescence spectroscopy and chemometric analysis. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 161:83–7. doi: 10.1016/j.saa.2016.02.032.
  • Maléchaux, A., S. Laroussi-Mezghani, Y. Le Dréau, J. Artaud, and N. Dupuy. 2020. Multiblock chemometrics for the discrimination of three extra virgin olive oil varieties. Food Chemistry 309:125588. doi: 10.1016/j.foodchem.2019.125588.
  • Martínez Gila, D. M., J. Gámez García, A. Bellincontro, F. Mencarelli, and J. Gómez Ortega. 2020. Fast tool based on electronic nose to predict olive fruit quality after harvest. Postharvest Biology and Technology 160:111058. doi: 10.1016/j.postharvbio.2019.111058.
  • Martín-Peláez, S., M. I. Covas, M. Fitó, A. Kušar, and I. Pravst. 2013. Health effects of olive oil polyphenols: Recent advances and possibilities for the use of health claims. Molecular Nutrition & Food Research 57 (5):760–71. doi: 10.1002/mnfr.201200421.
  • Melucci, D., A. Bendini, F. Tesini, S. Barbieri, A. Zappi, S. Vichi, L. Conte, and T. Gallina Toschi. 2016. Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chemistry 204:263–73. Elsevier Ltd. doi: 10.1016/j.foodchem.2016.02.131.
  • Milanez, K. D. T. M., T. C. A. Nóbrega, D. S. Nascimento, M. Insausti, B. S. F. Band, and M. J. C. Pontes. 2017. Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach. LWT - Food Science and Technology 85:9–15. doi: 10.1016/j.lwt.2017.06.060.
  • Monasterio, R. P., L. Olmo-García, A. Bajoub, A. Fernández-Gutiérrez, and A. Carrasco-Pancorbo. 2017. Phenolic compounds profiling of virgin olive oils from different varieties cultivated in Mendoza, Argentina, by using liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry 65 (37):8184–95. doi: 10.1021/acs.jafc.7b02664.
  • Moro, M. K., Á. C. Neto, V. Lacerda, W. Romão, L. S. Chinelatto, E. V. R. Castro, and P. R. Filgueiras. 2020. FTIR, 1H and 13C NMR data fusion to predict crude oils properties. Fuel 263:116721. doi: 10.1016/j.fuel.2019.116721.
  • Motilva, M. J., and M. P. Romero. 2010. The effect of the ripening process of the olive fruit on the chlorophyll and carotenoid fractions of drupes and virgin oils. In Olives and olive oil in health and disease prevention. Elsevier Inc. doi: 10.1016/B978-0-12-374420-3.00007-3.
  • Mouazen, A. M., R. Karoui, J. De Baerdemaeker, and H. Ramon. 2005. Classification of soil texture classes by using soil visual near infrared spectroscopy and factorial discriminant analysis techniques. Journal of near Infrared Spectroscopy 13 (4):231–40. doi: 10.1255/jnirs.541.
  • Mraicha, F., M. Ksantini, O. Zouch, M. Ayadi, S. Sayadi, and M. Bouaziz. 2010. Effect of olive fruit fly infestation on the quality of olive oil from Chemlali cultivar during ripening. Food and Chemical Toxicology 48 (11):3235–41. Elsevier Ltd. doi: 10.1016/j.fct.2010.08.031.
  • Nhouchi, Z., and R. Karoui. 2018. Application of Fourier-transform mid infrared for the monitoring of pound cakes quality during storage. Food Chemistry 252:327–34. doi: 10.1016/j.foodchem.2018.01.122.
  • Ouni, Y., A. Taamalli, A. M. Gómez-Caravaca, A. Segura-Carretero, A. Fernández-Gutiérrez, and M. Zarrouk. 2011. Characterisation and quantification of phenolic compounds of extra-virgin olive oils according to their geographical origin by a rapid and resolutive LC-ESI-TOF MS method. Food Chemistry 127 (3):1263–7. doi: 10.1016/j.foodchem.2011.01.068.
  • Oussama, A., F. Elabadi, S. Platikanov, F. Kzaiber, and R. Tauler. 2012. Detection of olive oil adulteration using FT-IR spectroscopy nd PLS with variable importance of projection (VIP) scores. Journal of the American Oil Chemists' Society 89 (10):1807–12. doi: 10.1007/s11746-012-2091-1.
  • Özdemir, İ. S., Ç. Dağ, D. Makuc, E. Ertaş, J. Plavec, and S. Bekiroğlu. 2018a. Characterisation of the Turkish and Slovenian extra virgin olive oils by chemometric analysis of the presaturation 1 H NMR spectra. LWT 92:10–5. doi: 10.1016/j.lwt.2018.02.015.
  • Özdemir, İ. S., Ç. Dağ, G. Özinanç, Ö. Suçsoran, E. Ertaş, and S. Bekiroğlu. 2018b. Quantification of sterols and fatty acids of extra virgin olive oils by FT-NIR spectroscopy and multivariate statistical analyses. LWT 91:125–32. doi: 10.1016/j.lwt.2018.01.045.
  • Pizarro, C., S. Rodríguez-Tecedor, N. Pérez-Del-Notario, I. Esteban-Díez, and J. M. González-Sáiz. 2013. Classification of Spanish extra virgin olive oils by data fusion of visible spectroscopic fingerprints and chemical descriptors. Food Chemistry 138 (2-3):915–22. doi: 10.1016/j.foodchem.2012.11.087.
  • Portarena, S., C. Baldacchini, and E. Brugnoli. 2017. Geographical discrimination of extra-virgin olive oils from the Italian coasts by combining stable isotope data and carotenoid content within a multivariate analysis. Food Chemistry 215:1–6. doi: 10.1016/j.foodchem.2016.07.135.
  • Pouliarekou, E., A. Badeka, M. Tasioula-Margari, S. Kontakos, F. Longobardi, and M. G. Kontominas. 2011. Characterization and classification of Western Greek olive oils according to cultivar and geographical origin based on volatile compounds. Journal of Chromatography. A 1218 (42):7534–42. doi: 10.1016/j.chroma.2011.07.081.
  • Rohman, A., and Y. B. C. Man. 2010. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Research International 43 (3):886–92. Elsevier Ltd. doi: 10.1016/j.foodres.2009.12.006.
  • Sánchez-López, E., M. I. Sánchez-Rodríguez, A. Marinas, J. M. Marinas, F. J. Urbano, J. M. Caridad, and M. Moalem. 2016. Chemometric study of Andalusian extra virgin olive oils Raman spectra: Qualitative and quantitative information. Talanta 156-157:180–90. doi: 10.1016/j.talanta.2016.05.014.
  • Shiroma, C., and L. Rodriguez-Saona. 2009. Application of NIR and MIR spectroscopy in quality control of potato chips. Journal of Food Composition and Analysis 22 (6):596–605. doi: 10.1016/j.jfca.2008.09.003.
  • Sinelli, N., M. Casale, V. Di Egidio, P. Oliveri, D. Bassi, D. Tura, and E. Casiraghi. 2010a. Varietal discrimination of extra virgin olive oils by near and mid infrared spectroscopy. Food Research International 43 (8):2126–31. doi: 10.1016/j.foodres.2010.07.019.
  • Šmejkalová, D., and A. Piccolo. 2010. High-power gradient diffusion NMR spectroscopy for the rapid assessment of extra-virgin olive oil adulteration. Food Chemistry 118 (1):153–8. doi: 10.1016/j.foodchem.2009.04.088.
  • Sohng, W., Y. Park, D. Jang, K. Cha, Y. M. Jung, and H. Chung. 2020. Incorporation of two-dimensional correlation analysis into discriminant analysis as a potential tool for improving discrimination accuracy: Near-infrared spectroscopic discrimination of adulterated olive oils. Talanta 212:120748. doi: 10.1016/j.talanta.2020.120748.
  • Squeo, G., F. Caponio, V. M. Paradiso, C. Summo, A. Pasqualone, I. Khmelinskii, and E. Sikorska. 2019. Evaluation of total phenolic content in virgin olive oil using fluorescence excitation-emission spectroscopy coupled with chemometrics. Journal of the Science of Food and Agriculture 99 (5):2513–20. doi: 10.1002/jsfa.9461.
  • Tan, C., Y. Huang, J. Feng, Z. Li, and S. Cai. 2018. Freshness assessment of intact fish via 2D 1H J-resolved NMR spectroscopy combined with pattern recognition methods. Sensors and Actuators B: Chemical 255:348–56. doi: 10.1016/j.snb.2017.08.060.
  • Tanouti, K., A. Elamrani, H. Serghini-Caid, A. Khalid, Y. Bahetta, A. Benali, M. Harkous, and M. Khiar. 2010. Caracterisation d ’ huiles d ’ Olive produites dans des cooperatives pilotes (Lakrarma et kenine) au niveau du Marroc oriental. Les Technologies de Laboratoire 5:18–26.
  • Torrecilla, J. S., E. Rojo, J. C. Domínguez, and F. Rodríguez. 2010. Linear and non linear chemometric models to quantify the adulteration of extra virgin olive oil. Talanta 83 (2):404–9. doi: 10.1016/j.talanta.2010.09.048.
  • Uncu, O., and B. Ozen. 2015. Prediction of various chemical parameters of olive oils with Fourier transform infrared spectroscopy. LWT - Food Science and Technology 63 (2):978–84. Ltd. doi: 10.1016/j.lwt.2015.05.002.
  • Uncu, O., B. Ozen, and F. Tokatli. 2019. Use of FTIR and UV-visible spectroscopy in determination of chemical characteristics of olive oils. Talanta 201:65–73. Elsevier B.V. doi: 10.1016/j.talanta.2019.03.116.
  • Valli, E., A. Bendini, A. Berardinelli, L. Ragni, B. Ricc, M. Grossi, and T. Gallina Toschi. 2016. Rapid and innovative instrumental approaches for quality and authenticity of olive oils. European Journal of Lipid Science and Technology 118 (11):1601–19. doi: 10.1002/ejlt.201600065.
  • Van Wetten, I. A., A. W. Van Herwaarden, R. Splinter, R. Boerrigter-Eenling, and S. M. Van Ruth. 2015. Detection of sunflower oil in extra virgin olive oil by fast differential scanning calorimetry. Thermochimica Acta 603:237–43. doi: 10.1016/j.tca.2014.11.030.
  • Vanstone, N., A. Moore, P. Martos, and S. Neethirajan. 2018. Detection of the adulteration of extra virgin olive oil by near-infrared spectroscopy and chemometric techniques. Food Quality and Safety 2 (4):189–98. doi: 10.1093/fqsafe/fyy018.
  • Vera, D. N., A. M. Jiménez-Carvelo, L. Cuadros-Rodríguez, I. Ruisánchez, and M. P. Callao. 2019. Authentication of the geographical origin of extra-virgin olive oil of the Arbequina cultivar by chromatographic fingerprinting and chemometrics. Talanta 203:194–202. doi: 10.1016/j.talanta.2019.05.064.
  • Vossen, P. 2007. Olive oil: History, production, and characteristics of the world’s classic oils. HortScience 42 (5):1093–100. doi: 10.21273/HORTSCI.42.5.1093.
  • Willenberg, I., B. Matthäus, and C. Gertz. 2019. A new statistical approach to describe the quality of extra virgin olive oils using near infrared spectroscopy (NIR) and traditional analytical parameters. European Journal of Lipid Science and Technology 121 (2):1800361–34. doi: 10.1002/ejlt.201800361.
  • Wójcicki, K., I. Khmelinskii, M. Sikorski, F. Caponio, V. M. Paradiso, C. Summo, A. Pasqualone, and E. Sikorska. 2015. Spectroscopic techniques and chemometrics in analysis of blends of extra virgin with refined and mild deodorized olive oils. European Journal of Lipid Science and Technology 117 (1):92–102. doi: 10.1002/ejlt.201300402.
  • Yan, J., L. Stuijvenberg, and S. M. Ruth. 2019. Handheld near-infrared spectroscopy for distinction of extra virgin olive oil from other olive oil grades substantiated by compositional data. European Journal of Lipid Science and Technology 121 (12):1900031–11. doi: 10.1002/ejlt.201900031.
  • Zaringhalami, S., M. Ebrahimi, Z. Piravi Vanak, and A. Ganjloo. 2015. Effects of cultivar and ripening stage of Iranian olive fruit on bioactive compounds and antioxidant activity of its virgin oil. International Food Research Journal 22:1961–7.
  • Zaroual, H., E. M. El Hadrami, and R. Karoui. 2020. A preliminary study on the potential application of Fourier‐transform mid infrared for the evaluation of overall quality and authenticity of Moroccan virgin olive oil. Journal of the Science of Food and Agriculture. doi: 10.1002/jsfa.10922.
  • Zaroual, H., El Hadrami, E. Mestafa, and R. Karoui. 2020. A preliminary study on the potential of front face fluorescence spectroscopy for the discrimination of Moroccan virgin olive oil and the prediction of their quality. Analytical Methods doi: 10.1039/D0AY01746A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.