2,012
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Addition of milk to coffee beverages; the effect on functional, nutritional, and sensorial properties

, , , , , , , , , & show all

References

  • Acidri, R., Y. Sawai, Y. Sugimoto, T. Handa, D. Sasagawa, T. Masunaga, S. Yamamoto, and E. Nishihara. 2020. Phytochemical profile and antioxidant capacity of coffee plant organs compared to green and roasted coffee beans. Antioxidants 9 (2):93. doi: 10.3390/antiox9020093.
  • Akash, M. S. H., K. Rehman, and S. Chen. 2014. Effects of coffee on type 2 diabetes mellitus. Nutrition (Burbank, Los Angeles County, Calif.) 30 (7-8):755–63. doi: 10.1016/j.nut.2013.11.020.
  • AL Doghaither, H. A., M. M. Alyousef, N. M. AL Selami, A. B. Al-Ghafari, and U. M. Omar. 2017. Addition of evaporated milk alters antioxdant properties of most commonly consumed coffee in Saudi Arabia. Malaysian Applied Biology Journal 46 (2):97–104.
  • Al-Ghafari, A. B., R. H. Alharbi, M. M. Al-Jehani, S. A. Bujeir, H. A. Al-Doghaither, and U. M. Omar. 2017. The effect of adding different concentrations of cows’ milk on the antioxidant properties of coffee. Biosciences Biotechnology Research Asia 14 (1):177–84.
  • Ali, M., T. Homann, M. Khalil, H.-P. Kruse, and H. Rawel. 2013. Milk whey protein modification by coffee-specific phenolics: Effect on structural and functional properties. Journal of Agricultural and Food Chemistry 61 (28):6911–6920. doi: 10.1021/jf402221m.
  • Alongi, M., S. Calligaris, and M. Anese. 2019. Fat concentration and high-pressure homogenization affect chlorogenic acid bioaccessibility and α-glucosidase inhibitory capacity of milk-based coffee beverages. Journal of Functional Foods 58:130–7. doi: 10.1016/j.jff.2019.04.057.
  • Alperet, D. J., S. A. Rebello, E. Y.-H. Khoo, Z. Tay, S. S.-Y. Seah, B.-C. Tai, E.-S. Tai, S. Emady-Azar, C. J. Chou, C. Darimont, et al. 2020. The effect of coffee consumption on insulin sensitivity and other biological risk factors for type 2 diabetes: A randomized placebo-controlled trial. The American Journal of Clinical Nutrition 111 (2):448–58. doi: 10.1093/ajcn/nqz306.
  • Alsufiani, M. H., and U. M. Omar. 2017. A comparative study to evaluate the polyphenol content and antioxidant activity of coffee with fresh whole milk and evaporated milk. Food and Public Health 7 (4): 75–8. doi: 10.5923/j.fph.20170704.01.
  • Bandyopadhyay, P., A. K. Ghosh, and C. Ghosh. 2012. Recent developments on polyphenol–protein interactions: effects on tea and coffee taste, antioxidant properties and the digestive system. Food & Function 3 (6):592–605. doi: 10.1039/c2fo00006g.
  • Basnet, P., K. Matsushige, K. Hase, S. Kadota, and T. Namba. 1996. Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective activity in experimental liver injury models. Biological and Pharmaceutical Bulletin 19 (11):1479–84. doi: 10.1248/bpb.19.1479.
  • Belitz, H.-D., W. Grosch, and P. Schieberle. 2009. Coffee, tea, cocoa. Food chemistry, 938–70. Online 978-3-540-69934-7.
  • Bhagat, A. R., A. M. Delgado, M. Issaoui, N. Chammem, M. Fiorino, A. Pellerito, and S. Natalello. 2019. Review of the role of fluid dairy in delivery of polyphenolic compounds in the diet: chocolate milk, coffee beverages, matcha green tea, and beyond. Journal of AOAC International 102 (5):1365–1372. doi: 10.5740/jaoacint.19-0129.
  • Bothiraj, K., and V. Vanitha. 2020. Green coffee bean seed and their role in antioxidant–A review. International Journal of Research in Pharmaceutical Sciences 11 (1):233–40.
  • Bruce, M., N. Scott, M. Lader, and V. Marks. 1986. The psychopharmacological and electrophysiological effects of single doses of caffeine in healthy human subjects. British Journal of Clinical Pharmacology 22 (1):81–7. doi: 10.1111/j.1365-2125.1986.tb02883.x.
  • Bücking, M., and H. Steinhart. 2002. Headspace GC and sensory analysis characterization of the influence of different milk additives on the flavor release of coffee beverages. Journal of Agricultural and Food Chemistry 50 (6):1529–1534. doi: 10.1021/jf011117p.
  • Carlström, M., and S. C. Larsson. 2018. Coffee consumption and reduced risk of developing type 2 diabetes: A systematic review with meta-analysis. Nutrition Reviews 76 (6):395–417. doi: 10.1093/nutrit/nuy014.
  • Castle, T. J., and J. Nielsen. 1999. The great coffee book. California, USA: Springer Science & Business.
  • Cho, B.-H., S.-M. Choi, J.-T. Kim, and B. C. Kim. 2018. Association of coffee consumption and non-motor symptoms in drug-naïve, early-stage Parkinson's disease. Parkinsonism & Related Disorders 50:42–7. doi: 10.1016/j.parkreldis.2018.02.016.
  • Chojnicka-Paszun, A., H. De Jongh, and C. De Kruif. 2012. Sensory perception and lubrication properties of milk: Influence of fat content. International Dairy Journal 26 (1):15–22. doi: 10.1016/j.idairyj.2012.04.003.
  • Clifford, M. N., K. L. Johnston, S. Knight, and N. Kuhnert. 2003. Hierarchical scheme for LC-MS n identification of chlorogenic acids. Journal of Agricultural and Food Chemistry 51 (10):2900–11. doi: 10.1021/jf026187q.
  • Clifford, M., and J. Ramirez-Martinez. 1991. Phenols and caffeine in wet-processed coffee beans and coffee pulp. Food Chemistry 40 (1):35–42. doi: 10.1016/0308-8146(91)90017-I.
  • Colombo, R., and A. Papetti. 2020. An outlook on the role of decaffeinated coffee in neurodegenerative diseases. Critical Reviews in Food Science and Nutrition 60 (5):760–79. doi: 10.1080/10408398.2018.1550384.
  • Corti, R., C. Binggeli, I. Sudano, L. Spieker, E. Hänseler, F. Ruschitzka, W. F. Chaplin, T. F. Lüscher, and G. Noll. 2002. Coffee acutely increases sympathetic nerve activity and blood pressure independently of caffeine content: Role of habitual versus nonhabitual drinking. Circulation 106 (23):2935–40. doi: 10.1161/01.cir.0000046228.97025.3a.
  • Cross, M. L., and H. S. Gill. 2000. Immunomodulatory properties of milk. British Journal of Nutrition 84 (S1):81–S89. doi: 10.1017/S0007114500002294.
  • D Dupas, C., A. Marsset-Baglieri, C. Ordonaud, D. Tomé, and M. N. Maillard. 2006b. Coffee antioxidant properties: Effects of milk addition and processing conditions. Journal of Food Science 71 (3):S253–S258. doi: 10.1111/j.1365-2621.2006.tb15650.x.
  • Dewettinck, K., R. Rombaut, N. Thienpont, T. T. Le, K. Messens, and J. Van Camp. 2008. Nutritional and technological aspects of milk fat globule membrane material. International Dairy Journal 18 (5):436–57. doi: 10.1016/j.idairyj.2007.10.014.
  • Duarte, S. M. d S., C. M. P. d Abreu, H. C. d Menezes, M. H. d Santos, and C. M. C. P. Gouvêa. 2005. Effect of processing and roasting on the antioxidant activity of coffee brews. Ciência e Tecnologia de Alimentos 25 (2):387–93. doi: 10.1590/S0101-20612005000200035.
  • Duarte, G. S., and A. Farah. 2011. Effect of simultaneous consumption of milk and coffee on chlorogenic acids' bioavailability in humans. Journal of Agricultural and Food Chemistry 59 (14):7925–31. doi: 10.1021/jf201906p.
  • Dubeau, S., G. Samson, and H.-A. Tajmir-Riahi. 2010. Dual effect of milk on the antioxidant capacity of green, Darjeeling, and English breakfast teas. Food Chemistry 122 (3):539–45. doi:10.1016/j.foodchem.2010.03.005.
  • Dubrin, B. 2012. Tea culture: History, traditions, celebrations, recipes & more: History, traditions, celebrations, recipes & more. Watertown, MA: Charlesbridge.
  • Dupas, C., A. Marsset-Baglieri, C. Ordonaud, D. Tomé, and M. N. Maillard. 2006a. Chlorogenic acid is poorly absorbed, independently of the food matrix: A Caco-2 cells and rat chronic absorption study. Molecular Nutrition & Food Research 50 (11):1053–1060. doi: 10.1002/mnfr.200600034.
  • Durak, A., U. Gawlik-Dziki, and Ł. Pecio. 2014. Coffee with cinnamon - Impact of phytochemicals interactions on antioxidant and anti-inflammatory in vitro activity . Food Chemistry 162:81–8. doi: 10.1016/j.foodchem.2014.03.132.
  • El-Messery, T. M., E. A. Mwafy, A. M. Mostafa, H. M. F. El-Din, A. Mwafy, R. Amarowicz, and B. Ozçelik. 2020. Spectroscopic studies of the interaction between isolated polyphenols from coffee and the milk proteins. Surfaces and Interfaces 20:100558. doi: 10.1016/j.surfin.2020.100558.
  • Farah, A. 2009. Coffee as a speciality and functional beverage. In Functional and speciality beverage technology, 370–95. USA: Elsevier.
  • Farah, A. 2012. Coffee constituents. Coffee: Emerging Health Effects and Disease Prevention 1:22–58.
  • Farah, A., and C. M. Donangelo. 2006. Phenolic compounds in coffee. Brazilian Journal of Plant Physiology 18 (1):23–36. doi: 10.1590/S1677-04202006000100003.
  • Ferrazzano, G. F., I. Amato, A. Ingenito, A. De Natale, and A. Pollio. 2009. Anti-cariogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea). Fitoterapia 80 (5):255–62. doi: 10.1016/j.fitote.2009.04.006.
  • Fried, E. 1993. The lowdown on caffe latte. Black Enterprise 24 (4):139.
  • Gallo, M., G. Vinci, G. Graziani, C. De Simone, and P. Ferranti. 2013. The interaction of cocoa polyphenols with milk proteins studied by proteomic techniques. Food Research International 54 (1):406–415. doi: 10.1016/j.foodres.2013.07.011.
  • Gebeyehu, G. M., D. G. Feleke, M. D. Molla, and T. D. Admasu. 2020. Effect of habitual consumption of Ethiopian Arabica coffee on the risk of cardiovascular diseases among non-diabetic healthy adults. Heliyon 6 (9):e04886. doi: 10.1016/j.heliyon.2020.e04886.
  • Gevins, A., M. E. Smith, and L. K. McEvoy. 2002. Tracking the cognitive pharmacodynamics of psychoactive substances with combinations of behavioral and neurophysiological measures. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology 26 (1):27–39. doi: 10.1016/S0893-133X(01)00300-1.
  • Ghosh, P., and N. Venkatachalapathy. 2014. Processing and drying of coffee–a review. Int. J. Eng. Res. Technol 3 (12):784–794.
  • Ginz, M., H. H. Balzer, A. G. Bradbury, and H. G. Maier. 2000. Formation of aliphatic acids by carbohydrate degradation during roasting of coffee. European Food Research and Technology 211 (6):404–410. doi: 10.1007/s002170000215.
  • Gmeiner, B. M. K., and C. Seelos. 1994. Nonreaction of phosphotyrosine with the folin phenol reagent. Analytical Chemistry 66 (6):917–918. doi: 10.1021/ac00078a025.
  • Grosso, G.,. J. Godos, F. Galvano, and E. L. Giovannucci. 2017. Coffee, caffeine, and health outcomes: An umbrella review. Annual Review of Nutrition 37:131–156. doi: 10.1146/annurev-nutr-071816-064941.
  • Haque, E., R. Chand, and S. Kapila. 2008. Biofunctional Properties of bioactive peptides of milk origin. Food Reviews International 25 (1):28–43. doi: 10.1080/87559120802458198.
  • Hartati, I., I. Riwayati, and L. Kurniasari. 2012. Potential production of food colorant from coffee pulp. Prosiding SNST Fakultas Teknik 1 (1): 66–71.
  • Hassimotto, N. M. A., M. D. S. Pinto, and F. M. Lajolo. 2008. Antioxidant Status in Humans after Consumption of Blackberry ( Rubus fruticosus L.) Juices With and Without Defatted Milk. Journal of Agricultural and Food Chemistry 56 (24):11727–33. doi:10.1021/jf8026149.
  • Haug, A., A. T. Hostmark, and O. M. Harstad. 2007. Bovine milk in human nutrition - A review. Lipids in Health and Disease 6 (1):25. doi: 10.1186/1476-511X-6-25.
  • Hayat, U., A. A. Siddiqui, H. Okut, S. Afroz, S. Tasleem, and A. Haris. 2021. The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: A meta-analysis of 11 epidemiological studies. Annals of Hepatology 20:100254. doi: 10.1016/j.aohep.2020.08.071.
  • Herden, L., and R. Weissert. 2018. The impact of coffee and caffeine on multiple sclerosis compared to other neurodegenerative diseases. Frontiers in Nutrition 5:133. doi: 10.3389/fnut.2018.00133.
  • Higurashi, S., Y. Haruta-Ono, H. Urazono, T. Kobayashi, and Y. Kadooka. 2015. Improvement of skin condition by oral supplementation with sphingomyelin-containing milk phospholipids in a double-blind, placebo-controlled, randomized trial. Journal of Dairy Science 98 (10):6706–6712. doi: 10.3168/jds.2015-9529.
  • Hoffmann, J. 2018. The World Atlas of Coffee: from beans to brewing-coffees explored, explained and enjoyed. London, UK: Mitchell Beazley.
  • ICO. 2019. Coffee Market Report – October 2019. London, UK: International Coffee Organization.
  • Ito, O., S. Kamata, M. Hayashi, and K. Ushiyama. 1993. Milk fat globule membrane substances inhibit mouse intestinal β‐glucuronidase. Journal of Food Science 58 (4):753–755. doi: 10.1111/j.1365-2621.1993.tb09351.x.
  • Jacobo-Velazquez, D. A., and L. Cisneros-Zevallos. 2009. Correlations of antioxidant activity against phenolic content revisited: A new approach in data analysis for food and medicinal plants. Journal of Food Science 74 (9):R107–R113. doi: 10.1111/j.1750-3841.2009.01352.x.
  • Jakobek, L. 2015. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry 175:556–567. doi: 10.1016/j.foodchem.2014.12.013.
  • Jeon, J.-S., H.-T. Kim, I.-H. Jeong, S.-R. Hong, M.-S. Oh, M.-H. Yoon, J.-H. Shim, J. H. Jeong, and A. A. El-Aty. 2019. Contents of chlorogenic acids and caffeine in various coffee-related products. Journal of Advanced Research 17:85–94. doi: 10.1016/j.jare.2019.01.002.
  • Jiang, J.,. Z. Zhang, J. Zhao, and Y. J. F. c Liu. 2018. The effect of non-covalent interaction of chlorogenic acid with whey protein and casein on physicochemical and radical-scavenging activity of in vitro protein digests. Food Chemistry 268:334–341. doi: 10.1016/j.foodchem.2018.06.015.
  • Jöbstl, E., J. O'Connell, J. P. A. Fairclough, and M. P. Williamson. 2004. Molecular model for astringency produced by polyphenol/protein interactions. Biomacromolecules 5 (3):942–949. doi: 10.1021/bm0345110.
  • Kamili, A., E. Wat, R. W. S. Chung, S. Tandy, J. M. Weir, P. J. Meikle, and J. S. Cohn. 2010. Hepatic accumulation of intestinal cholesterol is decreased and fecal cholesterol excretion is increased in mice fed a high-fat diet supplemented with milk phospholipids. Nutrition & Metabolism 7 (1):90. doi: 10.1186/1743-7075-7-90.
  • Keenan, T. W., and D. P. Dylewski. (Ed.). 1995. Intracellular origin of milk lipid globules and the nature and structure of the milk fat globule membrane (Vol. 2). London, UK: Chapman & Hall.
  • Kenneally, P. 2014. Hey hipsters, hands off my flat white. The Guardian. Retrieved September, 20.
  • Kidd, P. 2002. Phospholipids: Versatile nutraceuticals for functional foods. Functional Foods and Nutraceuticals :1, 1–5.
  • Klag, M. J., N.-Y. Wang, L. A. Meoni, F. L. Brancati, L. A. Cooper, K.-Y. Liang, J. H. Young, and D. E. Ford. 2002. Coffee intake and risk of hypertension: The Johns Hopkins precursors study. Archives of Internal Medicine 162 (6):657–662. doi: 10.1001/archinte.162.6.657.
  • Kleinwächter, M., G. Bytof, and D. Selmar. 2015. Coffee beans and processing. In Coffee in health and disease prevention, 73–81. Elsevier, USA.
  • Komes, D., A. Bušić, A. Vojvodić, A. Belščak-Cvitanović, and M. Hruškar. 2015. Antioxidative potential of different coffee substitute brews affected by milk addition. European Food Research and Technology 241 (1):115–125. doi: 10.1007/s00217-015-2440-z.
  • Kumazawa, K., and H. Masuda. 2003. Investigation of the change in the flavor of a coffee drink during heat processing. Journal of Agricultural and Food Chemistry 51 (9):2674–2678. doi: 10.1021/jf021025f.
  • Kvistgaard, A. S., L. T. Pallesen, C. F. Arias, S. Lopez, T. E. Petersen, C. W. Heegaard, and J. T. Rasmussen. 2004. Inhibitory effects of human and bovine milk constituents on rotavirus infections. Journal of Dairy Science 87 (12):4088–4096. <Go to ISI>://WOS:000225227800012 doi: 10.3168/jds.S0022-0302(04)73551-1.
  • Kyle, J. A. M., P. C. Morrice, G. Mcneill, and G. G. Duthie. 2007. Effects of Infusion Time and Addition of Milk on Content and Absorption of Polyphenols from Black Tea. Journal of Agricultural and Food Chemistry 55 (12):4889–94. doi:10.1021/jf070351y.
  • Lamothe, S., N. Azimy, L. Bazinet, C. Couillard, and M. Britten. 2014. Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food & Function 5 (10):2621–2631. doi: 10.1039/C4FO00203B.
  • Laovachirasuwan, P., T. Luiton, J. Pholsrida, S. Thammavong, and M. Phadungkit. 2019. In vitro total phenolic content and antioxidant activities of green and roasted coffee bean extracts used in eye shadow formulation. Asia-Pacific Journal of Science and Technology 24 (03):1–8.
  • Lecomte, M., C. Bourlieu, and M.-C. Michalski. 2017. Nutritional properties of milk lipids: Specific function of the milk fat globule. In Dairy in human health and disease across the lifespan, 435–52. USA: Elsevier.
  • Leenen, R., A. Roodenburg, L. Tijburg, and S. Wiseman. 2000. A single dose of tea with or without milk increases plasma antioxidant activity in humans. European Journal of Clinical Nutrition 54 (1):87–92. doi: 10.1038/sj.ejcn.1600900.
  • Li, T., X. Li, T. Dai, P. Hu, X. Niu, C. Liu, and J. Chen. 2020. Binding mechanism and antioxidant capacity of selected phenolic acid- β-casein complexes. Food Research International 129:108802 doi:10.1016/j.foodres.2019.108802.
  • Lieberman, H. R. 2001. The effects of ginseng, ephedrine, and caffeine on cognitive performance, mood and energy. Nutrition Reviews 59 (4):91–102. doi: 10.1111/j.1753-4887.2001.tb06995.x.
  • Lindmark-Månsson, H., and B. Åkesson. 2000. Antioxidative factors in milk. British Journal of Nutrition 84 (S1):103–110. doi: 10.1017/S0007114500002324.
  • Liu, J., Q. Wang, H. Zhang, D. Yu, S. Jin, and F. Ren. 2016. Interaction of chlorogenic acid with milk proteins analyzed by spectroscopic and modeling methods. Spectroscopy Letters 49 (1):44–50. doi: 10.1080/00387010.2015.1066826.
  • Lokuruka, M. N. 2007. Role of fatty acids of milk and dairy products in cardiovascular diseases: A review. African Journal of Food. Agriculture, Nutrition and Development 7 (1):1–16.
  • Lorist, M. M., and M. Tops. 2003. Caffeine, fatigue, and cognition. Brain and Cognition 53 (1):82–94. doi: 10.1016/s0278-2626(03)00206-9.
  • Maia, S. R. M., H. Tracy, W. Nick, and L. D. R. Andrade. 2013. Caffeine and chlorogenic acids in coffee and effects on selected neurodegenerative diseases. Journal of Pharmaceutical and Scientific Innovation 2 (4):9–17.
  • Mehra, R., P. Marnila, and H. Korhonen. 2006. Milk immunoglobulins for health promotion. International Dairy Journal 16 (11):1262–1271. doi: 10.1016/j.idairyj.2006.06.003.
  • Mehta, B. M. 2015. Chemical composition of milk and milk products. In Handbook of food chemistry, 511–53, Heidelberg: Springer . .
  • Meisel, H. 1997. Biochemical properties of regulatory peptides derived from mil proteins. Biopolymers 43 (2):119–128. doi: 10.1002/(SICI)1097-0282(1997)43:2<119::AID-BIP4>3.0.CO;2-Y.
  • Miller, E. W. 2003. The food lover's guide to florence: With culinary excursions in tuscany. London, UK: Springer Science & Business.
  • Minekus, M.,. M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, et al. 2014. A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function. 5 (6):1113–1124. doi: 10.1039/C3FO60702J.
  • Moss, M., and D. Freed. 2003. The cow and the coronary: Epidemiology, biochemistry and immunology. International Journal of Cardiology 87 (2-3):203–216. doi: 10.1016/s0167-5273(02)00201-2.
  • Muralidhara, B., and V. Prakash. 1995. Interaction of 3'-O-caffeoyl D-quinic acid with human serum albumin. International Journal of Peptide and Protein Research 46 (1):1–8. doi: 10.1111/j.1399-3011.1995.tb00575.x.
  • Mussatto, S. I., E. M. Machado, S. Martins, and J. A. Teixeira. 2011. Production, composition, and application of coffee and its industrial residues. Food and Bioprocess Technology 4 (5):661–672. doi: 10.1007/s11947-011-0565-z.
  • Nicolopoulos, K., A. Mulugeta, A. Zhou, and E. Hyppönen. 2020. Association between habitual coffee consumption and multiple disease outcomes: A Mendelian randomisation phenome-wide association study in the UK Biobank. Clinical Nutrition 39 (11):3467–3476. doi: 10.1016/j.clnu.2020.03.009.
  • Niseteo, T., D. Komes, A. Belščak-Cvitanović, D. Horžić, and M. Budeč. 2012. Bioactive composition and antioxidant potential of different commonly consumed coffee brews affected by their preparation technique and milk addition. Food Chemistry 134 (4):1870–1877. doi: 10.1016/j.foodchem.2012.03.095.
  • Norris, G. H., M. Milard, M. C. Michalski, and C. N. Blesso. 2019. Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. Journal of Nutritional Biochemistry 73: 1–17.
  • Ortega, N., J. Reguant, M.-P. Romero, A. Macia, and M.-J. Motilva. 2009. Effect of fat content on the digestibility and bioaccessibility of cocoa polyphenol by an in vitro digestion model. Journal of Agricultural and Food Chemistry 57 (13):5743–5749. doi: 10.1021/jf900591q.
  • Öste, R., M. Jägerstad, and I. Andersson. 1997. Vitamins in milk and milk products.
  • Otemuyiwa, I. O., M. F. Williams, and S. A. Adewusi. 2017. Antioxidant activity of health tea infusions and effect of sugar and milk on in-vitro availability of phenolics in tea, coffee and cocoa drinks. Nutrition & Food Science 47 (4):458–468. doi: 10.1108/NFS-08-2016-0134.
  • Ozdal, T., E. Capanoglu, and F. Altay. 2013. A review on protein–phenolic interactions and associated changes. Food Research International 51 (2):954–70. doi:10.1016/j.foodres.2013.02.009.
  • Özyurt, V. H., and S. Ötleş. 2016. Gidalarin yapisindaki fenolik bileşiklerin ve proteinlerin interaksiyon mekanizmalari ve interaksiyona etki eden faktörler. GIDA/The Journal of Food. doi:10.15237/gida.GD15042.
  • Parat-Wilhelms, M., M. Denker, K. Borcherding, W. Hoffmann, A. Luger, and H. Steinhart. 2005. Influence of defined milk products on the flavour of white coffee beverages using static headspace gas chromatography–mass spectrometry/olfactometry and sensory analysis. European Food Research and Technology 221 (3-4):265–273. doi: 10.1007/s00217-005-1152-1.
  • Parodi, P. W. 2001. Cow's milk components with anti-cancer potential. Australian Journal of Dairy Technology 56 (2):65–73.
  • Pendergrast, M. 2010. Uncommon grounds: The history of coffee and how it transformed our world. New York, NY: Basic Books.
  • Plug, H, and P. Haring. 1993. The role of ingredient-flavour interactions in the development of fat-free foods. Trends in Food Science & Technology 4 (5):150–2. doi:10.1016/0924-2244(93)90035-9.
  • Poole, R., S. Ewings, J. Parkes, J. A. Fallowfield, and P. Roderick. 2019. Misclassification of coffee consumption data and the development of a standardised coffee unit measure. BMJ Nutrition, Prevention & Health 2 (1):11–000013. doi: 10.1136/bmjnph-2018-000013.
  • Poole, R., O. J. Kennedy, P. Roderick, J. A. Fallowfield, P. C. Hayes, and J. Parkes. 2017. Coffee consumption and health: Umbrella review of meta-analyses of multiple health outcomes. BMJ 359: 1–18.
  • Quan, W., X. Qie, Y. Chen, M. Zeng, F. Qin, J. Chen, and Z. He. 2020. Effect of milk addition and processing on the antioxidant capacity and phenolic bioaccessibility of coffee by using an in vitro gastrointestinal digestion model. Food Chemistry 308:125598. doi: 10.1016/j.foodchem.2019.125598.
  • Raikos, V. 2010. Effect of heat treatment on milk protein functionality at emulsion interfaces. A review. Food Hydrocolloids 24 (4):259–265. doi: 10.1016/j.foodhyd.2009.10.014.
  • Rashidinejad, A. 2015. Cheese as a delivery vehicle for green tea catechins. Dunedin: University of Otago.
  • Rashidinejad, A., E. J. Birch, and D. W. Everett. 2016a. Antioxidant activity and recovery of green tea catechins in full-fat cheese following gastrointestinal simulated digestion. Journal of Food Composition and Analysis 48:13–24. doi: 10.1016/j.jfca.2016.02.004.
  • Rashidinejad, A., E. J. Birch, and D. W. Everett. 2016b. Interactions between milk fat globules and green tea catechins. Food Chemistry 199:347–355. doi: 10.1016/j.foodchem.2015.12.030.
  • Rashidinejad, A., E. J. Birch, J. Hindmarsh, and D. W. Everett. 2017. Molecular interactions between green tea catechins and cheese fat studied by solid-state nuclear magnetic resonance spectroscopy. Food Chemistry 215:228–234. doi: 10.1016/j.foodchem.2016.07.179.
  • Rashidinejad, A., E. J. Birch, D. Sun-Waterhouse, and D. W. Everett. 2013. Effects of catechin on the phenolic content and antioxidant properties of low‐fat cheese. International Journal of Food Science & Technology 48 (12):2448–2455. doi: 10.1111/ijfs.12234.
  • Rashidinejad, A., E. J. Birch, D. Sun-Waterhouse, and D. W. Everett. 2017. Addition of milk to tea infusions: Helpful or harmful? Evidence from in vitro and in vivo studies on antioxidant properties. Critical Reviews in Food Science and Nutrition 57 (15):3188–3196. doi: 10.1080/10408398.2015.1099515.
  • Rawel, H., and S. Kulling. 2007. Nutritional contribution of coffee, cacao and tea phenolics to human health. Journal Für Verbraucherschutz Und Lebensmittelsicherheit 2 (4):399–406. doi: 10.1007/s00003-007-0247-y.
  • Reddy, V. C., G. V. Vidya Sagar, D. Sreeramulu, L. Venu, and M. Raghunath. 2005. Addition of Milk Does Not Alter the Antioxidant Activity of Black Tea. Annals of Nutrition and Metabolism 49 (3):189–95. doi:10.1159/000087071.
  • Renouf, M., C. Marmet, P. Guy, A.-L. Fraering, K. Longet, J. Moulin, M. Enslen, D. Barron, C. Cavin, F. Dionisi, et al. 2010. Nondairy creamer, but not milk, delays the appearance of coffee phenolic acid equivalents in human plasma. The Journal of Nutrition 140 (2):259–263. doi: 10.3945/jn.109.113027.
  • Richardson, N., D. Booth, and N. Stanley. 1993. Effect of homogenization and fat content on oral perception of low and high viscosity model creams. Journal of Sensory Studies 8 (2):133–143. doi: 10.1111/j.1745-459X.1993.tb00208.x.
  • Richelle, M., I. Tavazzi, and E. Offord. 2001. Comparison of the antioxidant activity of commonly consumed polyphenolic beverages (coffee, cocoa, and tea) prepared per cup serving. Journal of Agricultural and Food Chemistry 49 (7):3438–3442. doi: 10.1021/jf0101410.
  • Rodriguez-Alcala, L. M., M. P. Castro-Gomez, L. L. Pimentel, and J. Fontecha. 2017. Milk fat components with potential anticancer activity-a review. Bioscience Reports 37 (6):1–18. doi: 10.1042/BSR20170705.
  • Rodríguez-Artalejo, F., and E. López-García. 2018. Coffee consumption and cardiovascular disease: A condensed review of epidemiological evidence and mechanisms. Journal of Agricultural and Food Chemistry 66 (21):5257–5263. doi: 10.1021/acs.jafc.7b04506.
  • Ryan, L., and S. Petit. 2010. Addition of whole, semiskimmed, and skimmed bovine milk reduces the total antioxidant capacity of black tea. Nutrition Research 30 (1):14–20. doi: 10.1016/j.nutres.2009.11.005.
  • Sánchez-González, I., A. Jiménez-Escrig, and F. Saura-Calixto. 2005. In vitro antioxidant activity of coffees brewed using different procedures (Italian, espresso and filter). Food Chemistry 90 (1-2):133–139. doi: 10.1016/j.foodchem.2004.03.037.
  • Sánchez-Rangel, J. C., J. Benavides, J. B. Heredia, L. Cisneros-Zevallos, and D. A. Jacobo-Velázquez. 2013. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Analytical Methods 5 (21):5990–5999. doi: 10.1039/c3ay41125g.
  • Schramm, D. D., M. Karim, H. R. Schrader, R. R. Holt, N. J. Kirkpatrick, J. A. Polagruto, J. L. Ensunsa, H. H. Schmitz, and C. L. Keen. 2003. Food effects on the absorption and pharmacokinetics of cocoa flavanols. Life Sciences 73 (7):857–869. doi: 10.1016/S0024-3205(03)00373-4.
  • Siebert, K. J., N. V. Troukhanova, and P. Y. Lynn. 1996. Nature of polyphenol − protein interactions. Journal of Agricultural and Food Chemistry 44 (1):80–85. doi: 10.1021/jf9502459.
  • Singh, H., and S. Gallier. 2017. Nature's complex emulsion: The fat globules of milk. Food Hydrocolloids 68:81–89. doi: 10.1016/j.foodhyd.2016.10.011.
  • Singh, H., and A. Ye. 2020. Interactions and functionality of milk proteins in food emulsions. In Milk proteins, 467–97. USA: Elsevier.
  • Smith, R. F. 1985. A history of coffee. In Coffee, 1–12. London: Springer.
  • Stojadinovic, M., J. Radosavljevic, J. Ognjenovic, J. Vesic, I. Prodic, D. Stanic-Vucinic, and T. C. Velickovic. 2013. Binding affinity between dietary polyphenols and β-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed. Food Chemistry 136 (3-4):1263–1271. doi: 10.1016/j.foodchem.2012.09.040.
  • Tagliazucchi, D., A. Helal, E. Verzelloni, and A. Conte. 2012. The type and concentration of milk increase the in vitro bioaccessibility of coffee chlorogenic acids. Journal of Agricultural and Food Chemistry 60 (44):11056–11064. doi: 10.1021/jf302694a.
  • Tfouni, S. A., C. S. Serrate, F. M. Leme, M. C. Camargo, C. R. Teles, K. M. Cipolli, and R. P. Furlani. 2013. Polycyclic aromatic hydrocarbons in coffee brew: Influence of roasting and brewing procedures in two Coffea cultivars. LWT- Food Science and Technology 50 (2):526–30. doi:10.1016/j.lwt.2012.08.015.
  • Thurston, R. W., J. Morris, and S. Steiman. 2013. Coffee: A comprehensive guide to the bean, the beverage, and the industry. Paris: Rowman & Littlefield Publishers.
  • Trevisan, M. T., R. F. de Almeida, G. Soto, E. D. M. Virginio Filho, C. M. Ulrich, and R. W. Owen. 2016. Quantitation by HPLC-UV of mangiferin and isomangiferin in coffee (Coffea arabica) leaves from Brazil and Costa Rica after solvent extraction and infusion. Food Analytical Methods 9 (9):2649–2655. doi: 10.1007/s12161-016-0457-y.
  • Vojdani, A., A. Campbell, E. Anyanwu, A. Kashanian, K. Bock, and E. Vojdani. 2002. Antibodies to neuron-specific antigens in children with autism: Possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. Journal of Neuroimmunology 130 (1-2):248–248. doi: 10.1016/S0165-5728(02)00180-7.
  • Weinberg, B. A., and B. K. Bealer. 2001. The world of caffeine: The science and culture of the world's most popular drug. Oxfordshire: Routledge.
  • Wijarnpreecha, K., C. Thongprayoon, and P. Ungprasert. 2017. Coffee consumption and risk of nonalcoholic fatty liver disease: A systematic review and meta-analysis. European Journal of Gastroenterology & Hepatology 29 (2):e8–e12. doi: 10.1097/MEG.0000000000000776.
  • Yildirim-Elikoglu, S., and Y. K. Erdem. 2018. Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry. Food Reviews International 34 (7):665–697. doi: 10.1080/87559129.2017.1377225.
  • Yu, G., V. Maskray, S. Jackson, C. Swift, and B. Tiplady. 1991. A comparison of the central nervous system effects of caffeine and theophylline in elderly subjects. British Journal of Clinical Pharmacology 32 (3):341–345. doi: 10.1111/j.1365-2125.1991.tb03909.x.
  • Ziyatdinova, G., A. Nizamova, and H. J. F. A. M. Budnikov. 2011. Novel coulometric approach to evaluation of total free polyphenols in tea and coffee beverages in presence of milk proteins. Food Analytical Methods 4 (3):334–340. doi: 10.1007/s12161-010-9174-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.