2,179
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Proteins extracted from seaweed Undaria pinnatifida and their potential uses as foods and nutraceuticals

, &

References

  • Admassu, H., M. A. A. Gasmalla, R. Yang, and W. Zhao. 2018a. Bioactive peptides derived from seaweed protein and their health benefits: Antihypertensive, antioxidant, and antidiabetic properties. Journal of Food Science 83 (1):6–16. doi: 10.1111/1750-3841.14011.
  • Admassu, H., M. A. Gasmalla, R. Yang, and W. Zhao. 2018b. Identification of bioactive peptides with α-amylase inhibitory potential from enzymatic protein hydrolysates of red seaweed (Porphyra spp.). Journal of Agricultural and Food Chemistry 66 (19):4872–82. doi: 10.1021/acs.jafc.8b00960.
  • Alegría, A., G. Garcia-Llatas, and A. Cilla. 2015. Static digestion models: General introduction. In The impact of food bioactives on health, ed. K. Verhoeckx, P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, T. Requena, D. Swiatecka, and H. Wichers, 3–12. USA: Springer.
  • Amano, H., and H. Noda. 1990. Proteins of protoplasts from red alga Porphyra yezoensis. Nippon Suisan Gakkaishi 56 (11):1859–64. doi: 10.2331/suisan.56.1859.
  • Anguizola, J., R. Matsuda, O. S. Barnaby, K. S. Hoy, C. Wa, E. DeBolt, M. Koke, and D. S. Hage. 2013. Review: Glycation of human serum albumin. Clinica Chimica Acta; International Journal of Clinical Chemistry 425:64–76. doi: 10.1016/j.cca.2013.07.013.
  • Ashokkumar, M., D. Sunartio, S. Kentish, R. Mawson, L. Simons, K. Vilkhu, and C. K. Versteeg. 2008. Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system. Innovative Food Science & Emerging Technologies 9 (2):155–60. doi: 10.1016/j.ifset.2007.05.005.
  • Athukorala, Y., K. W. Lee, S. K. Kim, and Y. J. Jeon. 2007. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresource Technology 98 (9):1711–6. doi: 10.1016/j.biortech.2006.07.034.
  • Barba, F. J., N. Grimi, and E. Vorobiev. 2015. New approaches for the use of non-conventional cell disruption technologies to extract potential food additives and nutraceuticals from microalgae. Food Engineering Reviews 7 (1):45–62. doi: 10.1007/s12393-014-9095-6.
  • Barbarino, E., and S. O. Lourenço. 2005. An evaluation of methods for extraction and quantification of protein from marine macro-and microalgae. Journal of Applied Phycology 17 (5):447–60. doi: 10.1007/s10811-005-1641-4.
  • Beak, E. Y. 2007. A study on the distribution structure of seaweed market in Korea. Korea Marit Review 272:55–68.
  • Beaulieu, L., S. Bondu, K. Doiron, L. E. Rioux, and S. L. Turgeon. 2015. Characterisation of antibacterial activity from protein hydrolysates of the macroalga Saccharina longicruris and identification of peptides implied in bioactivity. Journal of Functional Foods 17:685–97. doi: 10.1016/j.jff.2015.06.026.
  • Berning, J. R. 2000. The vegetarian athlete. In Nutrition in sport, ed. R. J. Maughan, 442–56. USA: John Wiley and Sons.
  • Bleakley, S., and M. Hayes. 2017. Algal proteins: Extraction, application, and challenges concerning production. Foods 6 (5):33–67. doi: 10.3390/foods6050033.
  • Burtin, P. 2003. Nutritional value of seaweeds. Electronic Journal of Environmental, Agricultural and Food Chemistry 2 (4):498–503.
  • Cazón, J. P., M. Viera, S. Sala, and E. Donati. 2014. Biochemical characterization of Macrocystis pyrifera and Undaria pinnatifida (Phaeophyceae) in relation to their potentiality as biosorbents. Phycologia 53 (1):100–8. doi: 10.2216/12-106.1.
  • Černá, M. 2011. Seaweed proteins and amino acids as nutraceuticals. Advances in Food and Nutrition Research 64:297–312. doi: 10.1016/B978-0-12-387669-0.00024-7.
  • Chang, C. Y., K. C. Wu, and S. H. Chiang. 2007. Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates. Food Chemistry 100 (4):1537–43. doi: 10.1016/j.foodchem.2005.12.019.
  • Cheng, L. Y., G. Q. Huang, and J. X. Xiao. 2014. Study on the ultrasonic-assisted extraction of polysaccharide from Undaria pinnatifida and its characterization. Science and Technology of Food Industry 6:57–9.
  • Chronakis, I. S., and M. Madsen. 2011. Algal proteins. In Handbook of food proteins, G. O. Phillips and P. A. Williams, 353–94. UK: Woodhead Publishing.
  • Cian, R. E., M. A. Fajardo, M. Alaiz, J. Vioque, R. J. González, and S. R. Drago. 2014. Chemical composition, nutritional and antioxidant properties of the red edible seaweed Porphyra columbina. International Journal of Food Sciences and Nutrition 65 (3):299–305. doi: 10.3109/09637486.2013.854746.
  • Cofrades, S., I. López-Lopez, L. Bravo, C. Ruiz-Capillas, S. Bastida, M. T. Larrea, and F. Jiménez-Colmenero. 2010. Nutritional and antioxidant properties of different brown and red Spanish edible seaweeds. Food Science and Technology International 16 (5):361–70. doi: 10.1177/1082013210367049.
  • Cofrades, S., I. López-López, M. T. Solas, L. Bravo, and F. Jiménez-Colmenero. 2008. Influence of different types and proportions of added edible seaweeds on characteristics of low-salt gel/emulsion meat systems. Meat Science 79 (4):767–76. doi: 10.1016/j.meatsci.2007.11.010.
  • Cordeiro, R. A., V. M. Gomes, A. F. U. Carvalho, and V. M. M. Melo. 2006. Effect of proteins from the red seaweed Hypnea musciformis (Wulfen) Lamouroux on the growth of human pathogen yeasts. Brazilian Archives of Biology and Technology 49 (6):915–21. doi: 10.1590/S1516-89132006000700008.
  • Cotas, J., A. Leandro, D. Pacheco, A. Gonçalves, and L. Pereira. 2020. A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life 10 (3):19–42. doi: 10.3390/life10030019.
  • Cruz-Jentoft, A. J., J. P. Baeyens, J. M. Bauer, Y. Boirie, T. Cederholm, F. Landi, F. C. Martin, J. P. Michel, Y. Rolland, S. M. Schneider, et al. 2010. Sarcopenia: European consensus on definition and diagnosis report of the European working group on sarcopenia in older people. Age and Ageing 39 (4):412–23. doi: 10.1093/ageing/afq034.
  • Dagevos, H., E. Tolonen, and J. Quist. 2019. Building a market for new meat alternatives: Business activity and consumer appetite in the Netherlands. In Environmental, Health, and Business Opportunities in the New Meat Alternatives Market, ed. D. Bogueva, D. Marinova, T. Raphaely, and K. Schmidinger, 183–201. USA: IGI Global.
  • Dawczynski, C., R. Schubert, and G. Jahreis. 2007. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry 103 (3):891–9. doi: 10.1016/j.foodchem.2006.09.041.
  • De Corato, U., R. Salimbeni, A. De Pretis, N. Avella, and G. Patruno. 2017. Antifungal activity of crude extracts from brown and red seaweeds by a supercritical carbon dioxide technique against fruit postharvest fungal diseases. Postharvest Biology and Technology 131:16–30. doi: 10.1016/j.postharvbio.2017.04.011.
  • Dierick, N., A. Ovyn, and S. De Smet. 2009. Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and on iodine content in edible tissues in pigs. Journal of the Science of Food and Agriculture 89 (4):584–94. doi: 10.1002/jsfa.3480.
  • El-Deek, A. A., and M. A. Brikaa. 2009. Nutritional and biological evaluation of marine seaweed as a feedstuff and as a pellet binder in poultry diet. International Journal of Poultry Science 8 (9):875–81. doi: 10.3923/ijps.2009.875.881.
  • Esfandi, R., M. E. Walters, and A. Tsopmo. 2019. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 5 (4):e01538. doi: 10.1016/j.heliyon.2019.e01538.
  • Evans, F. D., and A. T. Critchley. 2014. Seaweeds for animal production use. Journal of Applied Phycology 26 (2):891–9. doi: 10.1007/s10811-013-0162-9.
  • Fan, X., L. Bai, X. Mao, and X. Zhang. 2017. Novel peptides with anti-proliferation activity from the Porphyra haitanesis hydrolysate. Process Biochemistry 60:98–107. doi: 10.1016/j.procbio.2017.05.018.
  • FAO. 2016. State of world fisheries and aquaculture, Contributing to food security and nutrition for all. Accessed April 2, 2020. https://www.fao.org.
  • FAO. 1991. Protein quality evaluation, report of the joint FAO/WHO expert consultation. Rome: FAO Food and Nutrition Paper 51.
  • Fitzgerald, C., E. Gallagher, L. Doran, M. Auty, J. Prieto, and M. Hayes. 2014. Increasing the health benefits of bread: Assessment of the physical and sensory qualities of bread formulated using a renin inhibitory Palmaria palmate protein hydrolysate. Lwt - Food Science and Technology 56 (2):398–405. doi: 10.1016/j.lwt.2013.11.031.
  • Fitzgerald, C., E. Gallagher, D. Tasdemir, and M. Hayes. 2011. Heart health peptides from macroalgae and their potential use in functional foods. Journal of Agricultural and Food Chemistry 59 (13):6829–36. doi: 10.1021/jf201114d.
  • FitzGerald, J. R., and A. B. Murray. 2006. Bioactive peptides and lactic fermentations. International Journal of Dairy Technology 59 (2):118–25. doi: 10.1111/j.1471-0307.2006.00250.x.
  • FitzGerald, R. J., B. A. Murray, and D. J. Walsh. 2004. Hypotensive peptides from milk proteins. The Journal of Nutrition 134 (4):980S–8S. doi: 10.1093/jn/134.4.980S.
  • Fleurence, J. 1999a. Seaweed proteins: Biochemical nutritional aspects and potential uses. Trends in Food Science & Technology 10 (1):25–8. doi: 10.1016/S0924-2244(99)00015-1.
  • Fleurence, J. 1999b. The enzymatic degradation of algal cell walls: A useful approach for improving protein accessibility. Journal of Applied Phycology 11 (3):313–4. ? doi: 10.1023/A:1008183704389.
  • Fleurence, J. 2004. Seaweed proteins. In Proteins in food processing, ed. R. Y. Yada. 197–213. UK: Woodhead publishing limited.
  • Fleurence, J., M. Morançais, J. Dumay, P. Decottignies, V. Turpin, M. Munier, N. Garcia-Bueno, and P. Jaouen. 2012. What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends in Food Science & Technology 27 (1):57–61. doi: 10.1016/j.tifs.2012.03.004.
  • Freitas, A. C., D. Rodrigues, T. A. Rocha-Santos, A. M. Gomes, and A. C. Duarte. 2012. Marine biotechnology advances towards applications in new functional foods. Biotechnology Advances 30 (6):1506–15. doi: 10.1016/j.biotechadv.2012.03.006.
  • Gale, A. J. 2011. Continuing education course# 2: Current understanding of hemostasis. Toxicologic Pathology 39 (1):273–80.
  • Galland-Irmouli, A. V., J. Fleurence, R. Lamghari, M. Luçon, C. Rouxel, O. Barbaroux, J. P. Bronowicki, C. Villaume, and J. L. Guéant. 1999. Nutritional value of proteins from edible seaweed Palmaria palmata (Dulse). The Journal of Nutritional Biochemistry 10 (6):353–9. doi: 10.1016/S0955-2863(99)00014-5.
  • Gallego, R., M. Bueno, and M. Herrero. 2019. Sub-and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae–An update. TrAC Trends in Analytical Chemistry 116:198–213. doi: 10.1016/j.trac.2019.04.030.
  • Ganeva, V., B. Galutzov, and J. Teissié. 2003. High yield electroextraction of proteins from yeast by a flow process. Analytical Biochemistry 315 (1):77–84. doi: 10.1016/S0003-2697(02)00699-1.
  • Ge, B., and B. Yang. 2010. Comparative study on three methods of removing proteins from polysaccharide extract from Undaria pinnatifida. Food and Drug 12 (3):96–8.
  • Gressler, V., N. S. Yokoya, M. T. Fujii, P. Colepicolo, J. Mancini Filho, R. P. Torres, and E. Pinto. 2010. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chemistry 120 (2):585–90. doi: 10.1016/j.foodchem.2009.10.028.
  • Guedes, A. C., H. M. Amaro, and X. F. Malcata. 2011. Microalgae as sources of high added-value compounds-a brief review of recent work. Biotechnology Progress 27 (3):597–613. doi: 10.1002/btpr.575.
  • Han, S. W., K. M. Chee, and S. J. Cho. 2015. Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food Chemistry 172:766–9. doi: 10.1016/j.foodchem.2014.09.127.
  • Harnedy, P. A., and R. J. FitzGerald. 2011. Bioactive proteins, peptides, and amino acids from MACROALGAE(1). Journal of Phycology 47 (2):218–32. doi: 10.1111/j.1529-8817.2011.00969.x.
  • Harnedy, P. A., M. B. O'Keeffe, and R. J. FitzGerald. 2015. Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chemistry 172:400–6. doi: 10.1016/j.foodchem.2014.09.083.
  • Harrysson, H.,. M. Hayes, F. Eimer, N. G. Carlsson, G. B. Toth, and I. Undeland. 2018. Production of protein extracts from Swedish red, green, and brown seaweeds, Porphyra umbilicalis Kützing, Ulva lactuca Linnaeus, and Saccharina latissima (Linnaeus) J. V. Lamouroux using three different methods. Journal of Applied Phycology 30 (6):3565–80. doi: 10.1007/s10811-018-1481-7.
  • Hata, Y., K. Nakajima, J. I. Uchida, H. Hidaka, and T. Nakano. 2001. Clinical effects of brown seaweed, Undaria pinnatifida (wakame), on blood pressure in hypertensive subjects. Journal of Clinical Biochemistry and Nutrition 30:43–53. doi: 10.3164/jcbn.30.43.
  • Heo, S. J., E. J. Park, K. W. Lee, and Y. J. Jeon. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresource Technology 96 (14):1613–23. doi: 10.1016/j.biortech.2004.07.013.
  • Herrero, M., A. Cifuentes, and E. Ibañez. 2006. Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae. Food Chemistry 98 (1):136–48. doi: 10.1016/j.foodchem.2005.05.058.
  • Hewitt, C. L., M. L. Campbell, F. Mcennulty, K. M. Moore, N. B. Murfet, B. Robertson, and B. Schaffelke. 2005. Efficacy of physical removal of a marine pest: The introduced kelp Undaria pinnatifida in a Tasmanian Marine Reserve. Biological Invasions 7 (2):251–63. doi: 10.1007/s10530-004-0739-y.
  • Hirayama, M., H. Shibata, K. Imamura, T. Sakaguchi, and K. Hori. 2016. High-mannose specific lectin and its recombinants from a carrageenophyta Kappaphycus alvarezii represent a potent anti-HIV activity through high-affinity binding to the viral envelope glycoprotein gp120. Marine Biotechnology (New York, N.Y.) 18 (1):144–60. doi: 10.1007/s10126-015-9677-1.
  • Horie, Y., K. Sugase, and K. Horie. 1995. Physiological differences of soluble and insoluble dietary fibre fractions of brown algae and mushrooms in pepsin activity in vitro and protein digestibility. Asia Pacific Journal of Clinical Nutrition 4 (2):251–5.
  • Hur, S. J., B. O. Lim, E. A. Decker, and D. J. McClements. 2011. In vitro human digestion models for food applications. Food Chemistry 125 (1):1–12. doi: 10.1016/j.foodchem.2010.08.036.
  • Indumathi, P., and A. Mehta. 2016. A novel anticoagulant peptide from the Nori hydrolysate. Journal of Functional Foods 20:606–17. doi: 10.1016/j.jff.2015.11.016.
  • Ismail, B. P., L. Senaratne-Lenagala, A. Stube, and A. Brackenridge. 2020. Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Animal Frontiers: The Review Magazine of Animal Agriculture 10 (4):53–63. doi: 10.1093/af/vfaa040.
  • Je, J. Y., P. J. Park, E. K. Kim, J. S. Park, H. D. Yoon, K. R. Kim, and C. B. Ahn. 2009. Antioxidant activity of enzymatic extracts from the brown seaweed Undaria pinnatifida by electron spin resonance spectroscopy. Lwt - Food Science and Technology 42 (4):874–8. doi: 10.1016/j.lwt.2008.10.012.
  • Joshi, V. K., and S. Kumar. 2015. Meat Analogues: Plant based alternatives to meat products. International Journal of Food and Fermentation Technology 5 (2):107–19. doi: 10.5958/2277-9396.2016.00001.5.
  • Kalra, E. K. 2003. Nutraceutical-definition and introduction. Aaps Pharmsci 5 (3):27–8. doi: 10.1208/ps050325.
  • Kårlund, A., C. Gómez-Gallego, A. M. Turpeinen, O.-M. Palo-Oja, H. El-Nezami, and M. Kolehmainen. 2019. Protein supplements and their relation with nutrition, microbiota composition and health: Is more protein always better for sports people. ? Nutrients 11 (4):829–48. doi: 10.3390/nu11040829.
  • Kazir, M., Y. Abuhassira, A. Robin, O. Nahor, J. Luo, A. Israel, A. Golberg, and Y. D. Livney. 2019. Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocolloids 87:194–203. doi: 10.1016/j.foodhyd.2018.07.047.
  • Kim, C. J., K. E. Hwang, D. H. Song, T. J. Jeong, H. W. Kim, Y. B. Kim, K. H. Jeon, and Y. S. Choi. 2015. Optimization for reduced-fat / low-NaCl meat emulsion systems with sea mustard (Undaria pinnatifida) and phosphate. Korean Journal for Food Science of Animal Resources 35 (4):515–23. doi: 10.5851/kosfa.2015.35.4.515.
  • Kim, S. J., J. S. Moon, J. M. Kim, S. G. Kang, and S. T. Jung. 2006. Preparation of jam using Undaria pinnatifida sporophyll. Journal of the Korean Society of Food Science and Nutrition 33 (3):598–602.
  • Kim, S. K., and I. Wijesekara. 2010. Development and biological activities of marine-derived bioactive peptides. Journal of Functional Foods 2 (1):1–9. doi: 10.1016/j.jff.2010.01.003.
  • Kolb, N., L. Vallorani, N. Milanović, and V. Stocchi. 2004. Evaluation of marine algae wakame (Undaria pinnatifida) and kombu (Laminaria digitata japonica) as food supplements. Food Technology and Biotechnology 42 (1):57–61.
  • Korhonen, H., and A. Pihlanto. 2006. Bioactive peptides: Production and functionality. International Dairy Journal 16 (9):945–60. doi: 10.1016/j.idairyj.2005.10.012.
  • Kyriakopoulou, K.,. B. Dekkers, and A. J. van der Goot. 2019. Plant-based meat analogues. In Sustainable meat production and processing, ed. C. M. Galanakis, 103–26. UK: Academic Press.
  • Lawes, C. M., S. Vander Hoorn, and A. Rodgers. 2008. Global burden of blood-pressure-related disease. Lancet (London, England) 371 (9623):1513–8. doi: 10.1016/S0140-6736(08)60655-8.
  • Leandro, A., L. Pereira, and A. Gonçalves. 2019. Diverse applications of marine macroalgae. Marine Drugs 18 (1):17–32. doi: 10.3390/md18010017.
  • Liao, W. R., J. Y. Lin, W. Y. Shieh, W. L. Jeng, and R. Huang. 2003. Antibiotic activity of lectins from marine algae against marine vibrios. Journal of Industrial Microbiology & Biotechnology 30 (7):433–9. doi: 10.1007/s10295-003-0068-7.
  • Lorenzo, J. M., P. E. Munekata, B. Gómez, F. J. Barba, L. Mora, C. Pérez-Santaescolástica, and F. Toldrá. 2018. Bioactive peptides as natural antioxidants in food products. Trends in Food Science & Technology 79:136–47. doi: 10.1016/j.tifs.2018.07.003.
  • Machů, L., L. Mišurcová, D. Samek, J. Hrabě, and M. Fišera. 2014. In vitro digestibility of different commercial edible algae products. Journal of Aquatic Food Product Technology 23 (5):423–35. doi: 10.1080/10498850.2012.721873.
  • Mak, W., S. K. Wang, T. Liu, N. Hamid, Y. Li, J. Lu, and W. L. White. 2014. Anti-proliferation potential and content of fucoidan extracted from sporophyll of New Zealand Undaria pinnatifida. Frontiers in Nutrition 1:9–13. doi: 10.3389/fnut.2014.00009.
  • Mao, X., L. Bai, X. Fan, and X. Zhang. 2017. Anti-proliferation peptides from protein hydrolysates of Pyropia haitanensis. Journal of Applied Phycology 29 (3):1623–33. doi: 10.1007/s10811-016-1037-7.
  • Matsubara, K., Y. Matsuura, K. Hori, and K. Miyazawa. 2000. An anticoagulant proteoglycan from the marine green alga, Codium pugniformis. Journal of Applied Phycology 12 (1):9–13. doi: 10.1023/A:1008174115350.
  • Minato, K., Y. Sato, S. Kobayashi, F. Kariya, K. Kobayashi, M. Narusawa, and T. Ohmori. 2006. Nutritional status of Japanese male collegiate athletes. Japanese Journal of Physical Fitness and Sports Medicine 55 (Supplement):S189–S192. doi: 10.7600/jspfsm.55.S189.
  • MišurCoVá, L., S. KráčMar, B. KLeJduS, and J. VaCeK. 2010. Nitrogen content, dietary fiber, and digestibility in algal food products. Czech Journal of Food Sciences 28 (No. 1):27–35. doi: 10.17221/111/2009-CJFS.
  • Mori, T., B. R. O'Keefe, R. C. Sowder, S. Bringans, R. Gardella, S. Berg, P. Cochran, J. A. Turpin, R. W. Buckheit, J. B. McMahon, et al. 2005. Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. The Journal of Biological Chemistry 280 (10):9345–53. doi: 10.1074/jbc.M411122200.
  • Mu, J., M. Hirayama, Y. Sato, K. Morimoto, and K. Hori. 2017. A novel high-mannose specific lectin from the green alga Halimeda renschii exhibits a potent anti-influenza virus activity through high-affinity binding to the viral hemagglutinin. Marine Drugs 15 (8):255–67. doi: 10.3390/md15080255.
  • Niu, J., X. Chen, X. Lu, S. G. Jiang, H. Z. Lin, Y. J. Liu, Z. Huang, J. Wang, Y. Wang, and L. X. Tian. 2015. Effects of different levels of dietary wakame (Undaria pinnatifida) on growth, immunity and intestinal structure of juvenile Penaeus monodon. Aquaculture 435:78–85. doi: 10.1016/j.aquaculture.2014.08.013.
  • O’Connor, J., S. Meaney, G. A. Williams, and M. Hayes. 2020. Extraction of protein from four different seaweeds using three different physical pre-treatment strategies. Molecules 25 (8):2005–16. doi: 10.3390/molecules25082005.
  • Ortiz, J., N. Romero, P. Robert, J. Araya, J. Lopez-Hernández, C. Bozzo, E. Navarrete, A. Osorio, and A. Rios. 2006. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry 99 (1):98–104. doi: 10.1016/j.foodchem.2005.07.027.
  • Paiva, L., E. Lima, R. F. Patarra, A. I. Neto, and J. Baptista. 2014. Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chemistry 164:128–35. doi: 10.1016/j.foodchem.2014.04.119.
  • Pangestuti, R., and S. K. Kim. 2015. Seaweed proteins, peptides, and amino acids. In Seaweed Sustainability, ed. Tiwari, B. K. and D. J. Troy, 125–40. USA: Academic Press.
  • Park, N. Y., I. Kim, and Y. J. Jeong. 2008. Effects of extraction conditions on the componential extraction of brown seaweed (Undaria pinnatifida). Journal of Food Science and Nutrition 13 (4):321–6.
  • Passos, F., J. Carretero, and I. Ferrer. 2015. Comparing pretreatment methods for improving microalgae anaerobic digestion: Thermal, hydrothermal, microwave and ultrasound. Chemical Engineering Journal 279:667–72. doi: 10.1016/j.cej.2015.05.065.
  • Pati, M. P., S. D. Sharma, L. Nayak, and C. R. Panda. 2016. Uses of seaweed and its application to human welfare. International Journal of Pharmacy and Pharmaceutical Sciences 8 (10):12–20. doi: 10.22159/ijpps.2016v8i10.12740.
  • Pereira, M. S., F. R. Melo, and P. A. Mourão. 2002. Is there a correlation between structure and anticoagulant action of sulfated galactans and sulfated fucans? Glycobiology 12 (10):573–80. doi: 10.1093/glycob/cwf077.
  • Pimentel, F. B., R. C. Alves, P. A. Harnedy, R. J. FitzGerald, and M. B. P. Oliveira. 2019. Macroalgal-derived protein hydrolysates and bioactive peptides: Enzymatic release and potential health enhancing properties. Trends in Food Science & Technology 93:106–24. doi: 10.1016/j.tifs.2019.09.006.
  • Pliego-Cortés, H., I. Wijesekara, M. Lang, N. Bourgougnon, and G. Bedoux. 2019. Current knowledge and challenges in extraction, characterization and bioactivity of seaweed protein and seaweed-derived proteins. Accessed April 10, 2020. http://www.books.google.com.
  • Prabhasankar, P., P. Ganesan, N. Bhaskar, A. Hirose, N. Stephen, L. R. Gowda, M. Hosokawa, and K. Miyashita. 2009. Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation. Food Chemistry 115 (2):501–8. doi: 10.1016/j.foodchem.2008.12.047.
  • Qi, H., Z. Xu, Y. B. Li, X. L. Ji, X. F. Dong, and C. X. Yu. 2017. Seafood flavourings characterization as prepared from the enzymatic hydrolysis of Undaria pinnatifida sporophyll by-product. International Journal of Food Properties 20 (12):2867–76. doi: 10.1080/10942912.2016.1256302.
  • Qu, W., H. Ma, T. Wang, and H. Zheng. 2013. Alternating two-frequency countercurrent ultrasonicassisted extraction of protein and polysaccharide from Porphyra yezoensis. Transactions of the Chinese Society of Agricultural Engineering 29:285–92.
  • Rafiquzzaman, S. M., E. Y. Kim, Y. R. Kim, T. J. Nam, and I. S. Kong. 2013. Antioxidant activity of glycoprotein purified from Undaria pinnatifida measured by an in vitro digestion model. International Journal of Biological Macromolecules 62:265–72. doi: 10.1016/j.ijbiomac.2013.09.009.
  • Rafiquzzaman, S. M., E. Y. Kim, J. M. Lee, M. Mohibbullah, M. B. Alam, I. S. Moon, J. M. Kim, and I. S. Kong. 2015. Anti-Alzheimers and anti-inflammatory activities of a glycoprotein purified from the edible brown alga Undaria pinnatifida. Food Research International 77:118–24. doi: 10.1016/j.foodres.2015.08.021.
  • Rivero-Pino, F., F. J. Espejo-Carpio, and E. M. Guadix. 2020. Antidiabetic food-derived peptides for functional feeding: Production, functionality and in vivo evidences. Foods 9 (8):983–1016. doi: 10.3390/foods9080983.
  • Roohinejad, S., M. Koubaa, F. J. Barba, S. Saljoughian, M. Amid, and R. Greiner. 2017. Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Research International (Ottawa, Ont.) 99 (Pt 3):1066–83. doi: 10.1016/j.foodres.2016.08.016.
  • Rostom, H., and B. Shine. 2018. Basic metabolism: Proteins. Surgery (Oxford) 36 (4):153–8. doi: 10.1016/j.mpsur.2018.01.009.
  • Samarakoon, K., and Y. J. Jeon. 2012. Bio-functionalities of proteins derived from marine algae. Food Research International 48 (2):948–60. doi: 10.1016/j.foodres.2012.03.013.
  • Sánchez-Machado, D. I., López-Cervantes, J. López-Hernández, J., and P. Paseiro-Losada, Simal-Lozano. 2003. High-performance liquid chromatographic analysis of amino acids in edible seaweeds after derivatization with phenyl isothiocyanate. Chromatographia 58 (3-4):159–63.
  • Sato, M., T. Hosokawa, T. Yamaguchi, T. Nakano, K. Muramoto, T. Kahara, K. Funayama, A. Kobayashi, and T. Nakano. 2002. Angiotensin I-converting enzyme inhibitory peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry 50 (21):6245–52. doi: 10.1021/jf020482t.
  • Sato, M., T. Oba, T. Yamaguchi, T. Nakano, T. Kahara, K. Funayama, A. Kobayashi, and T. Nakano. 2002. Antihypertensive effects of hydrolysates of wakame (Undaria pinnatifida) and their angiotensin-I-converting enzyme inhibitory activity. Annals of Nutrition & Metabolism 46 (6):259–67. doi: 10.1159/000066495.
  • Seyfi, R., F. A. Kahaki, T. Ebrahimi, S. Montazersaheb, S. Eyvazi, V. Babaeipour, and V. Tarhriz. 2020. Antimicrobial peptides (AMPs): Roles, functions and mechanism of action. International Journal of Peptide Research and Therapeutics 26 (3):1451–63. doi: 10.1007/s10989-019-09946-9.
  • Sheih, I. C., T. J. Fang, T. K. Wu, and P. H. Lin. 2010. Anticancer and antioxidant activities of the peptide fraction from algae protein waste. Journal of Agricultural and Food Chemistry 58 (2):1202–7. doi: 10.1021/jf903089m.
  • Suarez-Jimenez, G. M., A. Burgos-Hernandez, and J. M. Ezquerra-Brauer. 2012. Bioactive peptides and depsipeptides with anticancer potential: Sources from marine animals. Marine Drugs 10 (5):963–86. doi: 10.3390/md10050963.
  • Suetsuna, K., and T. Nakano. 2000. Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida). The Journal of Nutritional Biochemistry 11 (9):450–4. doi: 10.1016/S0955-2863(00)00110-8.
  • Suetsuna, K., K. Maekawa, and J. R. Chen. 2004. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. The Journal of Nutritional Biochemistry 15 (5):267–72. doi: 10.1016/j.jnutbio.2003.11.004.
  • Syed, A. A., and A. Mehta. 2018. Target specific anticoagulant peptides: A review. International Journal of Peptide Research and Therapeutics 24 (1):1–12. doi: 10.1007/s10989-018-9682-0.
  • Taboada, M. C., R. Millán, and M. I. Miguez. 2013. Nutritional value of the marine algae wakame (Undaria pinnatifida) and nori (Porphyra purpurea) as food supplements. Journal of Applied Phycology 25 (5):1271–6. doi: 10.1007/s10811-012-9951-9.
  • Trottet, G., S. Fernandes, G. Grunz, J. P. Thoma, K. Brunner-Komorek, and S. A. Nestec. 2018. A process for preparing a meat-analogue food product. U.S. Patent Application 15/558, 344.
  • Uchida, M., K. Numaguchi, and M. Murata. 2004. Mass preparation of marine silage from Undaria pinnatifida and its dietary effect for young pearl oysters. Fisheries Science 70 (3):456–62. doi: 10.1111/j.1444-2906.2004.00825.x.
  • Valko, M., D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser. 2007. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology 39 (1):44–84. doi: 10.1016/j.biocel.2006.07.001.
  • Vieira, E. F., C. Soares, S. Machado, M. Correia, M. J. Ramalhosa, M. T. Oliva-Teles, A. Paula Carvalho, V. F. Domingues, F. Antunes, T. A. C. Oliveira, et al. 2018. Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Food Chemistry 269:264–75. doi: 10.1016/j.foodchem.2018.06.145.
  • Wagner, E. K., M. J. Hewlett, D. C. Bloom, and D. Camerini. 1999. Basic virology (Vol. 3). Malden, MA: Blackwell Science.
  • Wang, L., Y. J. Park, Y. J. Jeon, and B. Ryu. 2018. Bioactivities of the edible brown seaweed, Undaria pinnatifida. Aquaculture 495:873–80. doi: 10.1016/j.aquaculture.2018.06.079.
  • Xie, M., D. Liu, and Y. Yang. 2020. Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification. Open Biology 10 (7):200004 doi: 10.1098/rsob.200004.
  • Ye, J., Y. Li, K. Teruya, Y. Katakura, A. Ichikawa, H. Eto, M. Hosoi, M. Hosoi, S. Nishimoto, and S. Shirahata. 2005. Enzyme-digested fucoidan extracts derived from seaweed Mozuku of Cladosiphon novae-caledoniae kylin Inhibit Invasion and Angiogenesis of Tumor Cells. Cytotechnology 47 (1-3):117–26. doi: 10.1007/s10616-005-3761-8.
  • Zhang, H., Z. Pang, and C. Han. 2014. Undaria pinnatifida (Wakame): A seaweed with pharmacological properties. Science International 2 (2):32–6. doi: 10.17311/sciintl.2014.32.36.
  • Zhou, A. Y., J. Robertson, N. Hamid, Q. Ma, and J. Lu. 2015. Changes in total nitrogen and amino acid composition of New Zealand Undaria pinnatifida with growth, location and plant parts. Food Chemistry 186:319–25. doi: 10.1016/j.foodchem.2014.06.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.