791
Views
7
CrossRef citations to date
0
Altmetric
Reviews

A review on the application of spectroscopy to the condiments detection: from safety to authenticity

, , & ORCID Icon

References

  • Aiyama, R., V. Trivittayasil, and M. Tsuta. 2018. Discrimination of aflatoxin contamination level in nutmeg by fluorescence fingerprint measurement. Food Control 85:113–8. doi: 10.1016/j.foodcont.2017.09.028.
  • Al-Bataina, B. A., A. O. Maslat, and M. M. Al-Kofahi. 2003. Element analysis and biological studies on ten oriental spices using XRF and Ames test. Journal of Trace Elements in Medicine and Biology 17 (2):85–90. doi: 10.1016/S0946-672X(03)80003-2.
  • Amate, C. F., H. Unterluggauer, R. J. Fischer, A. R. Fernandez, and S. Masselter. 2010. Development and validation of a LC-MS/MS method for the simultaneous determination of aflatoxins, dyes and pesticides in spices. Analytical and Bioanalytical Chemistry 397 (1):93–107. doi: 10.1007/s00216-010-3526-x.
  • Anibal, C. V., P. M. Callao, and I. Ruisánchez. 2011. 1H NMR and UV-visible data fusion for determining Sudan dyes in culinary spices. Talanta 84 (3):829–33. doi: 10.1016/j.talanta.2011.02.014.
  • Anibal, C. V., L. F. Marsal, P. M. Callao, and I. Ruisanchez. 2012. Surface enhanced Raman spectroscopy (SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinary spices. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 87:135–41. doi: 10.1016/j.saa.2011.11.027.
  • Anibal, C. V., M. Odena, I. Ruisanchez, and P. M. Callao. 2009. Determining the adulteration of spices with Sudan I-II-II-IV dyes by UV-visible spectroscopy and multivariate classification techniques. Talanta 79 (3):887–92. doi: 10.1016/j.talanta.2009.05.023.
  • Anibal, C. D., M. S. Rodriguez, and L. Albertengo. 2014. UV-visible spectroscopy and multivariate classification as a screening tool to identify adulteration of culinary spices with Sudan I and blends of Sudan I + IV dyes. Food Analytical Methods 7 (5):1090–6. doi: 10.1007/s12161-013-9717-2.
  • Anibal, C. V., I. Ruisánchez, and P. M. Callao. 2011. High-resolution 1H Nuclear Magnetic Resonance spectrometry combined with chemometric treatment to identify adulteration of culinary spices with Sudan dyes. Food Chemistry 124 (3):1139–45. doi: 10.1016/j.foodchem.2010.07.025.
  • Arsenijevic, J., J. Markovic, I. Sostaric, and S. Razic. 2013. A chemometrics as a powerful tool in the elucidation of the role of metals in the biosynthesis of volatile organic compounds in Hungarian thyme samples. Plant Physiology and Biochemistry 71:298–306.
  • Atas, M., Y. Yardimci, and A. Temizel. 2011. Aflatoxin contaminated chili pepper detection by hyperspectral imaging and machine learning. Sensing for Agriculture and Food Quality and Safety III 80270F. doi: 10.1117/12.883237.
  • Ataş, M., Y. Yardimci, and A. Temizel. 2012. A new approach to aflatoxin detection in chili pepper by machine vision. Computers and Electronics in Agriculture 87:129–41. doi: 10.1016/j.compag.2012.06.001.
  • Bertani, F. R., L. Businaro, L. Gambacorta, A. Mencattini, D. Brenda, D. Di Giuseppe, A. De Ninno, M. Solfrizzo, E. Martinelli, and A. Gerardino. 2020. Optical detection of aflatoxins B in grained almonds using fluorescence spectroscopy and machine learning algorithms. Food Control 112:107073. doi: 10.1016/j.foodcont.2019.107073.
  • Bilge, G., B. Sezer, K. E. Eseller, H. Berberoglu, A. Topcu, and I. H. Boyaci. 2016. Determination of whey adulteration in milk powder by using laser induced breakdown spectroscopy. Food Chemistry 212:183–8. doi: 10.1016/j.foodchem.2016.05.169.
  • Black, C., S. A. Haughey, O. P. Chevallier, K. P. Galvin, and C. T. Elliott. 2016. A comprehensive strategy to detect the fraudulent adulteration of herbs: The oregano approach. Food Chemistry 210:551–7. doi: 10.1016/j.foodchem.2016.05.004.
  • Cai, S. S., H. P. Dong, and L. Chen. 2008. A method for detecting arsenic in spices using AOTF near infrared spectrometer. China Patent: CN200710017124.0.
  • Calle, I., M. Costas, N. Cabaleiro, I. Lavilla, and C. Bendicho. 2013. Fast method for multielemental analysis of plants and discrimination according to the anatomical part by total reflection X-ray fluorescence spectrometry. Food Chemistry 138 (1):234–41. doi: 10.1016/j.foodchem.2012.09.105.
  • Carnaghan, R. B. A., R. D. Hartley, and J. O'Kelly. 1963. Toxicity and fluorescence properties of the aflatoxins. Nature 200 (4911):1101. doi: 10.1038/2001101a0.
  • Carter, R. L. 1976. IARC monographs on the evaluation of carcinogenic risk of chemicals to man. Vol. 8. Some aromatic azo compounds. Journal of Clinical Pathology 29 (4):367. doi: 10.1136/jcp.29.4.367-c.
  • Chang, Y. Y., H. L. Wu, H. Fang, T. Wang, Z. Liu, Y. Z. Ouyang, Y. J. Ding, and R. Q. Yu. 2018. Rapid, simultaneous and interference-free determination of three rhodamine dyes illegally added into chili samples using excitation-emission matrix fluorescence coupled with second-order calibration method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 204:141–9. doi: 10.1016/j.saa.2018.06.031.
  • Chao, K. L., S. Dhakal, W. F. Schmidt, J. W. Qin, M. Kim, Y. K. Peng, and Q. Huang. 2020. Raman and IR spectroscopic modality for authentication of turmeric powder. Food Chemistry 320:126567. doi: 10.1016/j.foodchem.2020.126567.
  • Chaparro, L., A. J. Jurado, V. Somovilla, and F. Rodriguez. 2013. Feasibility of using NIR spectroscopy to detect herbicide residues in intact olives. Food Control 30 (2):504–9.
  • Chen, S., J. Y. Luo, L. W. Jiang, and P. Li. 2018. Research progress of chemometrics methods in the detection of pesticide residues in food samples. Food Research Development 039 (014):206–11.
  • Chen, F. B., L. M. Zhang, S. D. Chen, and A. L. Zou. 2011. Determination of eight elements in leaves of Illicium verum Hook.f. by flame atomic absorption spectrophotometry. China Condiment 36:102–4.
  • Cheung, W., I. T. Shadi, Y. Xu, and R. Goodacre. 2010. Quantitative analysis of the banned food dye Sudan-1 using surface enhanced Raman scattering with multivariate chemometrics. The Journal of Physical Chemistry C 114 (16):7285–90. doi: 10.1021/jp908892n.
  • Deng, X. L., J. R. Nie, Y. Q. Liu, and W. F. Zhang. 2008. Determination of lead, cadmium and chromium in food spices by microwave digestion-graphite furnace atomic absorption spectrometry. Physical Testing and Chemical Analysis Part B: Chemical Analysis 44 (4):378–9.
  • Dhakal, S., K. Chao, W. Schmidt, J. Qin, M. Kim, and D. Chan. 2016. Evaluation of turmeric powder adulterated with metanil yellow using FT-Raman and FT-IR spectroscopy. Foods 5 (4):36. doi: 10.3390/foods5020036.
  • Do, K. H., T. J. An, S. K. Oh, and Y. Moon. 2015. Nation-based occurrence and endogenous biological reduction of mycotoxins in medicinal herbs and spices. Toxins 7 (10):4111–30. doi: 10.3390/toxins7104111.
  • Du, Y. P., C. L. Xiang, Z. X. Huang, J. J. Fang, Q. Meng, and X. M. Wei. 2013. Determination and discrimination of Sudan red in paprika by near-infrared spectroscopy. Computational Applied Chemistry 30:36–8.
  • Fan, Y. X., K. Q. Lai, and Y. Q. Huang. 2014. Application of surface-enhanced Raman spectroscopy to the determination of trace chemical hazards in food products. Spectroscopy and Spectral Analysis 7:1859–64.
  • FAO (Food and Agriculture Organization of the United Nations). 2017. Discussion paper on the establishment maximum levels for mycotoxins in spices.
  • Farooqui, T. 2013. A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: A unique hypothesis. Neurochemistry International 62 (1):122–36. doi: 10.1016/j.neuint.2012.09.020.
  • Fu, X. P., and Y. B. Ying. 2016. Food safety evaluation based on near infrared spectroscopy and imaging: A review. Critical Reviews in Food Science and Nutrition 56 (11):1913–24. doi: 10.1080/10408398.2013.807418.
  • Fujita, K., J. Sugiyama, M. Tsuta, M. Shibata, M. Kokawa, H. Onda, and T. Sagawa. 2013. Detection of aflatoxins B1, B2, G1, G2 in nutmeg extract using fluorescence fingerprint. Food Science and Technology Research 19 (4):539–45. doi: 10.3136/fstr.19.539.
  • Gao, F., Y. X. Hu, D. Chen, E. C. Y. Li-Chan, E. Grant, and X. N. Lu. 2015. Determination of Sudan I in paprika powder by molecularly imprinted polymers-thin layer chromatography-surface enhanced Raman spectroscopic biosensor. Talanta 143:344–52. doi: 10.1016/j.talanta.2015.05.003.
  • Ge, X. F., Y. W. Wu, and Z. M. Zhao. 2017. Deteramination of procymidone residues content in honey by fluorescence spectroscopy. Chinese Journal of Luminescence 38:973–7.
  • Gok, S., M. Severcan, E. Goormaghtigh, I. Kandemir, and F. Severcan. 2015. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chemistry 170:234–40. doi: 10.1016/j.foodchem.2014.08.040.
  • Han, Z. Z., and L. M. Deng. 2020. Aflatoxin contaminated degree detection by hyperspectral data using band index. Food and Chemical Toxicology 137:111159.
  • Haughey, S. A., P. Galvin-King, Y. C. Ho, S. E. J. Bell, and C. T. Elliott. 2015. The feasibility of using near infrared and Raman spectroscopic techniques to detect fraudulent adulteration of chili powders with Sudan dye. Food Control 48:75–83. doi: 10.1016/j.foodcont.2014.03.047.
  • Hernandez-Hierro, J. M., R. J. Garcia-Villanova, and I. Gonzalez-Martin. 2008. Potential of near infrared spectroscopy for the analysis of mycotoxins applied to naturally contaminated red paprika found in the Spanish market. Analytica Chimica Acta 622 (1–2):189–94.
  • Hondrogiannis, E., K. Peterson, C. M. Zapf, W. Roy, B. Blackney, and K. Dailey. 2012. The use of wavelength dispersive X-ray fluorescence and discriminant analysis in the identification of the elemental composition of cumin samples and the determination of the country of origin. Food Chemistry 135 (4):2825–31. doi: 10.1016/j.foodchem.2012.07.003.
  • Huang, Y. Q., X. H. Wang, K. Q. Lai, Y. X. Fan, and B. A. Rasco. 2020. Trace analysis of organic compounds in foods with surface-enhanced Raman spectroscopy: Methodology, progress, and challenges. Comprehensive Reviews in Food Science and Food Safety 19 (2):622–42. doi: 10.1111/1541-4337.12531.
  • Hu, L. Q., C. L. Yin, S. Ma, and Z. M. Liu. 2018. Assessing the authenticity of black pepper using diffuse reflectance mid-infrared Fourier transform spectroscopy coupled with chemometrics. Computers and Electronics in Agriculture 154:491–500. doi: 10.1016/j.compag.2018.09.029.
  • Hu, Y. Q., Y. G. Jia, and J. J. Chen. 2008. A method for detecting lead in spices using AOTF near infrared spectrometer. China Patent, 2008, CN200710017122.1.
  • IARC. 1993. Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans 56:165–95.
  • Iha, M. H., and M. W. Trucksess. 2019. Management of mycotoxins in spices. Journal of AOAC International 102 (6):1732–9. doi: 10.5740/jaoacint.19-0117.
  • Jeria, Y., A. Bazaes, M. E. Baez, J. Espinoza, J. Martinez, and E. Fuentes. 2017. Photochemically induced fluorescence coupled to second-order multivariate calibration as analytical tool for determining imidacloprid in honeybees. Chemometrics and Intelligent Laboratory Systems 160:1–7. doi: 10.1016/j.chemolab.2016.11.001.
  • Juan, A. 2020. Chapter 2.5 - Multivariate curve resolution for hyperspectral image analysis. Data Handling in Science and Technology 32:115–50.
  • Kabak, B., and D. W. Dobson. 2017. Mycotoxins in spices and herbs–An update. Critical Reviews in Food Science and Nutrition 57 (1):18–34. doi: 10.1080/10408398.2013.772891.
  • Karadaş, C., and D. Kara. 2012. Chemometric approach to evaluate trace metal concentrations in some spices and herbs. Food Chemistry 130 (1):196–202. doi: 10.1016/j.foodchem.2011.07.006.
  • Khuder, A., M. K. Sawan, J. Karjou, and A. K. Razouk. 2009. Determination of trace elements in Syrian medicinal plants and their infusions by energy dispersive X-ray fluorescence and total reflection X-ray fluorescence spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 64 (7):721–5. doi: 10.1016/j.sab.2009.05.020.
  • Kiani, S., S. M. Ruth, L. W. Raamsdonk, and S. Minaei. 2019. Hyperspectral imaging as a novel system for the authentication of spices: A nutmeg case study. LWT 104:61–9. doi: 10.1016/j.lwt.2019.01.045.
  • Kong, W., R. Wei, A. F. Logrieco, J. Wei, J. Wen, X. Xiao, and M. Yang. 2014. Occurrence of toxigenic fungi and determination of mycotoxins by HPLC-FLD in functional foods and spices in China markets. Food Chemistry 146:320–6. doi: 10.1016/j.foodchem.2013.09.005.
  • Kuballa, T., T. S. Brunner, T. Thongpanchang, S. G. Walch, and D. W. Lachenmeier. 2018. Application of NMR for authentication of honey, beer and spices. Current Opinion in Food Science 19:57–62. doi: 10.1016/j.cofs.2018.01.007.
  • Kucharska-Ambrożej, K., and J. Karpinska. 2020. The application of spectroscopic techniques in combination with chemometrics for detection adulteration of some herbs and spices. Microchemical Journal 153:104278. doi: 10.1016/j.microc.2019.104278.
  • Lafeuille, J. L., A. F. Salomon, A. Michelet, and K. L. Henry. 2020. A Rapid non-targeted method for detecting the adulteration of black pepper with a broad range of endogenous and exogenous material at economically motivating levels using micro-ATR-FT-MIR imaging. Journal of Agricultural and Food Chemistry 68 (1):390–401. doi: 10.1021/acs.jafc.9b03865.
  • Lee, S., S. Lohumi, H. S. Lim, T. Gotoh, B. K. Cho, M. S. Kim, and S. H. Lee. 2015. Development of a detection method for adulterated onion powder using Raman spectroscopy. Journal of the Faculty of Agriculture, Kyushu University 60 (1):151–6.
  • Li, X.-w., R. Lu, Z.-x. Wang, P. Wang, L. Zhang, and P.-x. Jia. 2018. Detection of corn and whole wheat adulteration in white pepper powder by near infrared spectroscopy. American Journal of Food Science and Technology 6 (3):114–7. doi: 10.12691/ajfst-6-3-5.
  • Lima, A. D., A. S. Batista, J. C. D. Jesus, J. D. J. Silva, A. C. M. Araujo, and L. S. Santos. 2020. Fast quantitative detection of black pepper and cumin adulterations by near-infrared spectroscopy and multivariate modeling. Food Control 107:106802. doi: 10.1016/j.foodcont.2019.106802.
  • Li, J. L., D. W. Sun, H. B. Pu, and D. S. Jayas. 2017. Determination of trace thiophanate-methyl and its metabolite carbendazim with teratogenic risk in red bell pepper (Capsicumannuum L.) by surface-enhanced Raman imaging technique. Food Chemistry 218:543–52. doi: 10.1016/j.foodchem.2016.09.051.
  • Liu, W. H., D. Zhang, H. L. He, P. X. Zhang, and Y. J. Teng. 2012. Determination of pesticide residue chlorpyrifos methyl on surface of red pepper by laser Raman spectroscopy. Chinese Journal of Spectroscopy Laboratory 29 (4):2059–62.
  • Lohumi, S., S. Lee, and B. K. Cho. 2015. Optimal variable selection for Fourier transform infrared spectroscopic analysis of starch-adulterated garlic powder. Sensors and Actuators B: Chemical 216:622–8. doi: 10.1016/j.snb.2015.04.060.
  • Lohumi, S., S. Lee, W.-H. Lee, M. S. Kim, C. Mo, H. Bae, and B.-K. Cho. 2014. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy. Journal of Agricultural and Food Chemistry 62 (38):9246–51. doi: 10.1021/jf500574m.
  • Lolli, M., D. Bertelli, M. Plessi, A. G. Sabatini, and C. Restani. 2008. Classification of Italian honeys by 2D HR-NMR. Journal of Agricultural and Food Chemistry 56 (4):1298–304. doi: 10.1021/jf072763c.
  • Lopez, M., I. Ruisanchez, and M. Pilar Callao. 2013. Figures of merit of a SERS method for Sudan I determination at traces levels. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 111:237–41. doi: 10.1016/j.saa.2013.04.031.
  • Margui, E., I. Queralt, and M. Hidalgo. 2009. Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material. Trac Trends in Analytical Chemistry 28 (3):362–72. doi: 10.1016/j.trac.2008.11.011.
  • Martins, N., C. L. Roriz, P. Morales, L. Barros, and C. R. Ferreira. 2016. Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology 52:1–15. doi: 10.1016/j.tifs.2016.03.009.
  • Ma, P., L. Y. Wang, L. Xu, J. Y. Li, X. D. Zhang, and H. Chen. 2020. Rapid quantitative determination of chlorpyrifos pesticide residues in tomatoes by surface-enhanced Raman spectroscopy. European Food Research and Technology 246 (1):239–51. doi: 10.1007/s00217-019-03408-8.
  • Ma, L., M. Zhang, Y. H. Zhang, Y. Y. Hu, and Y. Zhou. 2012. Fluorescence enhancement mechanism of aflatoxin G1 by β-cyclodextrin and its derivatives. Food Science 12:143–8.
  • Măruţoiu, C., S. Puiu, M. Moise, L. Soran, O. Măruţoiu, and L. Boboş. 2004. Optimization of the separation of some aflatoxins by thin-layer chromatography. Journal of Planar Chromatography – Modern TLC 17 (5):372–4. doi: 10.1556/JPC.17.2004.5.10.
  • McMaster, N., B. Acharya, H. Kim, J. Grothe, H. L. Mehl, and D. G. Schmale. 2019. Quantification of the mycotoxin deoxynivalenol (DON) in sorghum using GC-MS and a stable isotope dilution assay (SIDA). Food Analytical Methods 12 (10):2334–43. doi: 10.1007/s12161-019-01588-3.
  • McMullin, D., B. Mizaikoff, and R. Krska. 2015. Advancements in IR spectroscopic approaches for the determination of fungal derived contaminations in food crops. Analytical and Bioanalytical Chemistry 407 (3):653–60. doi: 10.1007/s00216-014-8145-5.
  • Moncayo, S., S. Manzoor, J. D. Rosales, J. Anzano, and J. O. Caceres. 2017. Qualitative and quantitative analysis of milk for the detection of adulteration by Laser Induced Breakdown Spectroscopy (LIBS). Food Chemistry 232:322–8. doi: 10.1016/j.foodchem.2017.04.017.
  • Moros, J., I. Llorca, M. L. Cervera, A. Pastor, S. Garrigues, and M. De La Guardia. 2008. Chemometric determination of arsenic and lead in untreated powdered red paprika by diffuse reflectance near-infrared spectroscopy. Analytica Chimica Acta 613 (2):196–206. doi: 10.1016/j.aca.2008.02.066.
  • Orrillo, I., J. P. Cruz-Tirado, A. Cardenas, M. Oruna, A. Carnero, D. F. Barbin, and R. Siche. 2019. Hyperspectral imaging as a powerful tool for identification of papaya seeds in black pepper. Food Control 101:45–52. doi: 10.1016/j.foodcont.2019.02.036.
  • Ou, W. J., Y. Y. Meng, X. Y. Zhang, and M. Kong. 2011. Application of UV-visible absorption spectroscopy and principal components-back propagation artificial neural network to identification of authentic and adulterated Honeys. Chinese Journal of Analytical Chemistry 7:1104–8.
  • Pan, X. D., P. G. Wu, and X. G. Jiang. 2016. Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China. Scientific Reports 6:20317. doi: 10.1038/srep20317.
  • Petrakis, E. A., L. R. Cagliani, M. G. Polissiou, and R. Consonni. 2015. Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by (1)H NMR metabolite fingerprinting. Food Chemistry 173:890–6. doi: 10.1016/j.foodchem.2014.10.107.
  • Petrakis, E. A., L. R. Cagliani, P. A. Tarantilis, M. G. Polissiou, and R. Consonni. 2017. Sudan dyes in adulterated saffron (Crocus sativus L.): Identification and quantification by (1)H NMR. Food Chemistry 217:418–24. doi: 10.1016/j.foodchem.2016.08.078.
  • Pitt, J. I., M. H. Taniwaki, and M. B. Cole. 2013. Mycotoxin production in major crops as influenced by growing, harvesting, storage and processing, with emphasis on the achievement of food safety objectives. Food Control 32 (1):205–15. doi: 10.1016/j.foodcont.2012.11.023.
  • Potortì, A. G., A. Tropea, V. Lo Turco, V. Pellizzeri, A. Belfita, G. Dugo, and G. Di Bella. 2020. Mycotoxins in spices and culinary herbs from Italy and Tunisia. Natural Product Research 34 (1):167–71. doi: 10.1080/14786419.2019.1598995.
  • Sahin, C. A., I. Tokgöz, and S. Bektaş. 2010. Preconcentration and determination of iron and copper in spice samples by cloud point extraction and flow injection flame atomic absorption spectrometry. Journal of Hazardous Materials 181 (1–3):359–65. doi: 10.1016/j.jhazmat.2010.05.018.
  • Sanchez, M. T., K. Flores-Rojas, J. E. Guerrero, A. Garrido-Varo, and P. Perez-Marin. 2010. Measurement of pesticide residues in peppers by near-infrared reflectance spectroscopy. Pest Management Science 66 (6):580–6. doi: 10.1002/ps.1910.
  • Schievano, E., M. Sbrizza, V. Zuccato, L. Piana, and M. Tessari. 2020. NMR carbohydrate profile in tracing acacia honey authenticity. Food Chemistry 309:125788. doi: 10.1016/j.foodchem.2019.125788.
  • Song, X. Z., Y. Huang, H. Yan, Y. M. Xiong, and S. G. Min. 2016. A novel algorithm for spectral interval combination optimization. Analytica Chimica Acta 948:19–29. doi: 10.1016/j.aca.2016.10.041.
  • Song, X. Y., S. She, M. M. Xin, L. Chen, Y. Li, Y. V. Heyden, K. M. Rogers, and L. Chen. 2020. Detection of adulteration in Chinese monofloral honey using 1H nuclear magnetic resonance and chemometrics. Journal of Food Composition and Analysis. 86:103390. doi: 10.1016/j.jfca.2019.103390.
  • Spiteri, M., E. Jamin, F. Thomas, A. Rebours, M. Lees, K. M. Rogers, and D. N. Rutledge. 2015. Fast and global authenticity screening of honey using 1H-NMR profiling. Food Chemistry 189:60–6. doi: 10.1016/j.foodchem.2014.11.099.
  • Stachowiak, M. O., C. Reiring, N. Sajic, W. Haasnoot, C. Brabet, K. Campbell, C. T. Elliott, and M. Salden. 2018. Development and in-house validation of a rapid and simple to use ELISA for the detection and measurement of the mycotoxin sterigmatocystin. Analytical and Bioanalytical Chemistry 410 (12):3017–23. doi: 10.1007/s00216-018-0988-8.
  • Storelli, M. M. 2014. Evaluation of toxic metal (Hg, Cd, Pb), polychlorinated biphenyl (PCBs), and pesticide (DDTs) levels in aromatic herbs collected in selected areas of Southern Italy. Environmental Science and Pollution Research International 21 (2):946–53. doi: 10.1007/s11356-013-1967-4.
  • Sun, X. D., and X. L. Dong. 2015. Quantitative analysis of dimethoate pesticide residues in honey by surface-enhanced Raman spectroscopy. Spectrosc. Spectr. Anal 6:1572–6.
  • Thanushree, M. P., D. Sailendri, K. S. Yoha, J. A. Moses, and C. Anandharamakrishnan. 2019. Mycotoxin contamination in food: An exposition on spices. Trends in Food Science & Technology 93:69–80. doi: 10.1016/j.tifs.2019.08.010.
  • Tiwari, M., R. Agrawal, A. K. Pathak, A. K. Rai, and G. K. Rai. 2013. Laser-induced breakdown spectroscopy: An approach to detect adulteration in turmeric. Spectroscopy Letters 46 (3):155–9. doi: 10.1080/00387010.2012.702707.
  • Tripathi, S., and H. N. Mishra. 2009. A rapid FT-NIR method for estimation of aflatoxin B1 in red chili powder. Food Control 20 (9):840–6. doi: 10.1016/j.foodcont.2008.11.003.
  • Vadivel, V., N. Ravichandran, P. Rajalakshmi, P. Brindha, A. Gopal, and C. Kumaravelu. 2018. Microscopic, phytochemical, HPTLC, GC-MS and NIRS methods to differentiate herbal adulterants: Pepper and papaya seeds. Journal of Herbal Medicine 11:36–45. doi: 10.1016/j.hermed.2018.01.004.
  • Vera, D. N., I. Ruisanchez, and M. Pilar Callao. 2018. Establishing time stability for multivariate qualitative methods. Case study: Sudan I and IV adulteration in food spices. Food Control 92 (92):341–7. doi: 10.1016/j.foodcont.2018.04.057.
  • Wannaz, E. D., H. A. Carreras, C. A. Perez, and M. L. Pignata. 2006. Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina. The Science of the Total Environment 361 (1–3):267–78. doi: 10.1016/j.scitotenv.2005.11.005.
  • Wilde, A. S., S. A. Haughey, P. Galvin-King, and C. T. Elliott. 2019. The feasibility of applying NIR and FT-IR fingerprinting to detect adulteration in black pepper. Food Control 100:1–7. doi: 10.1016/j.foodcont.2018.12.039.
  • Williams, J. H., T. D. Phillips, P. E. Jolly, J. K. Stiles, C. M. Jolly, and D. Aggarwal. 2004. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. The American Journal of Clinical Nutrition 80 (5):1106–22. doi: 10.1093/ajcn/80.5.1106.
  • Wu, X. Y., S. P. Zhu, H. Huang, and D. Xu. 2017. Quantitative identification of adulterated Sichuan pepper powder by near-infrared spectroscopy coupled with chemometrics. Journal of Food Quality 2017:1–7. doi: 10.1155/2017/5019816.
  • Wu, X. Y., S. P. Zhu, Q. Wang, Y. K. Long, D. Xu, and C. Tang. 2018. Qualitative identification of adulterated Huajiao powder using near infrared spectroscopy based on DPLS and SVM. Spectrosc. Spectr. Anal 8:2369–73.
  • Xing, F. G., H. B. Yao, Y. Liu, X. F. Dai, R. L. Brown, and D. Bhatnagar. 2019. Recent developments and applications of hyperspectral imaging for rapid detection of mycotoxins and mycotoxigenic fungi in food products. Critical Reviews in Food Science and Nutrition 59 (1):173–80. doi: 10.1080/10408398.2017.1363709.
  • Xu, M. L., Y. Gao, X. X. Han, and B. Zhao. 2017. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: A review. Journal of Agricultural and Food Chemistry 65 (32):6719–26. doi: 10.1021/acs.jafc.7b02504.
  • Xu, R., J. W. Wu, Y. G. Liu, R. H. Zhao, B. Chen, M. H. Yang, and J. Chen. 2011. Analysis of pesticide residues using the quick easy cheap effective rugged and safe (QuEChERS) pesticide multiresidue method in traditional Chinese medicine by gas chromatography with electron capture detection. Chemosphere 84 (7):908–12. doi: 10.1016/j.chemosphere.2011.06.013.
  • Yan, X., H. X. Li, and X. G. Su. 2018. Review of optical sensors for pesticides. Trac Trends in Analytical Chemistry 103:1–20. doi: 10.1016/j.trac.2018.03.004.
  • Yang, L., X. Wang, J. Wang, J. J. Xu, and S. A. Tang. 2016. Research on constituents of Pipernigrus L. Journal of Tianjin Medical University 22:300–1.
  • Yang, T., R. Zhou, D. Jiang, H. Fu, R. Su, Y. Liu, and H. Su. 2016. Rapid detection of pesticide residues in Chinese herbal medicines by Fourier transform infrared spectroscopy coupled with partial least squares regression. Journal of Spectroscopy 2016 (9492030):1–9. doi: 10.1155/2016/9492030.
  • You, W., and X. Y. Hu. 2012. Determination of copper, lead and manganese in six edible spices by FAAS with microwave digestion. Chinese Journal of Spectroscopy Laboratory 29:2015–8.
  • Zalacain, A., S. A. Ordoudi, E. Diaz-Plaza, M. Carmona, I. Blazquez, M. Z. Tsimidou, and G. L. Alonso. 2005. Near-infrared spectroscopy in saffron quality control: Determination of chemical composition and geographical origin. Journal of Agricultural and Food Chemistry 53 (24):9337–41. doi: 10.1021/jf050846s.
  • Zougagh, M., A. Rios, and M. Valcarcel. 2005. An automated screening method for the fast, simple discrimination between natural and artificial colorants in commercial saffron products. Analytica Chimica Acta 535 (1–2):133–8. doi: 10.1016/j.aca.2004.11.060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.