1,335
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Advances of plant-based structured food delivery systems on the in vitro digestibility of bioactive compounds

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aberkane, L., G. Roudaut, and R. Saurel. 2014. Encapsulation and oxidative stability of PUFA-rich oil microencapsulated by spray drying using pea protein and pectin. Food and Bioprocess Technology 7 (5):1505–17. doi: 10.1007/s11947-013-1202-9.
  • Aguirre-Calvo, T. R., S. Molino, M. Perullini, J. A. Rufián-Henares, and P. R. Santagapita. 2020. Effect of in vitro digestion-fermentation of Ca(II)-alginate beads containing sugar and biopolymers over global antioxidant response and short chain fatty acids production . Food Chemistry 333:127483. doi: 10.1016/j.foodchem.2020.127483.
  • Alminger, M., A.-M. Aura, T. Bohn, C. Dufour, S. N. El, A. Gomes, S. Karakaya, M. C. Martínez-Cuesta, G. J. McDougall, T. Requena, et al. 2014. In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Comprehensive Reviews in Food Science and Food Safety 13 (4):413–36. doi: 10.1111/1541-4337.12081.
  • Ana, A. K., S. Shrestha, and M. B. Sadiq. 2019. Biopolymeric-based emulsions and their effects during processing, digestibility and bioaccessibility of bioactive compounds in food systems. Food Hydrocolloids 87:691–702.
  • Ansarifar, E., M. Mohebbi, F. Shahidi, A. Koocheki, and N. Ramezanian. 2017. Novel multilayer microcapsules based on soy protein isolate fibrils and high methoxyl pectin: Production, characterization and release modeling. International Journal of Biological Macromolecules 97:761–9. doi: 10.1016/j.ijbiomac.2017.01.056.
  • Araiza-Calahorra, A., and A. Sarkar. 2019. Designing biopolymer-coated Pickering emulsions to modulate in vitro gastric digestion: A static model study. Food & Function 10 (9):5498–509. doi: 10.1039/C9FO01080G.
  • Aryee, A. N. A., and J. I. Boye. 2016. Improving the digestibility of lentil flours and protein isolate and characterization of their enzymatically prepared hydrolysates. International Journal of Food Properties 19 (12):2649–65. doi: 10.1080/10942912.2015.1123269.
  • Assifaoui, A., O. Chambin, and P. Cayot. 2011. Drug release from calcium and zinc pectinate beads: Impact of dissolution medium composition. Carbohydrate Polymers 85 (2):388–93. doi: 10.1016/j.carbpol.2011.02.037.
  • Augustin, M. A., L. Sanguansri, J. K. Rusli, Z. Shen, L. J. Cheng, J. Keogh, and P. Clifton. 2014. Digestion of microencapsulated oil powders: In vitro lipolysis and in vivo absorption from a food matrix. Food & Function 5 (11):2905–12. doi: 10.1039/c4fo00743c.
  • Bae, I. Y., I. K. Oh, D. S. Jung, and H. G. Lee. 2019. Influence of Arabic gum on in vitro starch digestibility and noodle-making quality of Segoami. International Journal of Biological Macromolecules 125:668–73. doi: 10.1016/j.ijbiomac.2018.12.027.
  • Bajpai, S. K., and S. Sharma. 2004. Investigation of sweeling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. Reactive and Functional Polymers 59 (2):129–40. doi: 10.1016/j.reactfunctpolym.2004.01.002.
  • Bastos, L. P. H., C. H. C. Santos, M. G. Carvalho, and E. E. Garcia-Rojas. 2020. Encapsulation of the black pepper (Piper nigrum L.) essential oil by lactoferrin-sodium alginate complex coacervates: Structural characterization and simulated gastrointestinal conditions. Food Chemistry 316:126345. doi: 10.1016/j.foodchem.2020.126345.
  • Bokkhim, H., N. Bansal, L. Grondahl, and B. Bhandari. 2016. In-vitro digestion of different forms of bovine lactoferrin encapsulated in alginate micro-gel particles. Food Hydrocolloids 52:231–42. doi: 10.1016/j.foodhyd.2015.07.007.
  • Bourlieu, C., O. Ménard, A. D. L. Chevasnerie, L. Sams, F. Rousseau, M.-N. Madec, B. Robert, A. Deglaire, S. Pezennec, S. Bouhallab, et al. 2015. The structure of infant formulas impacts their lipolysis, proteolysis and disintegration during in vitro gastric digestion. Food Chemistry182:224–35. doi: 10.1016/j.foodchem.2015.03.001.
  • Brodkorb, A., L. Egger, M. Alminger, P. Alvito, R. Assunção, S. Ballance, T. Bohn, C. Bourlieu-Lacanal, R. Boutrou, F. Carriere, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14 (4):991–1014. doi: 10.1038/s41596-018-0119-1.
  • Burgos-Díaz, C., T. Wandersleben, A. M. Marqués, and M. Rubilar. 2016. Multilayer emulsions stabilized by vegetable proteins and polysaccharides. Current Opinion in Colloid & Interface Science 25:51–7. doi: 10.1016/j.cocis.2016.06.014.
  • Calvo-Lerma, J., A. Asensio-Grau, A. Heredia, and A. Andrés. 2020. Lessons learnt from MyCyFAPP Project: Effect of cystic fibrosis factors and inherent-to-food properties on lipid digestion in foods. Food Research International (Ottawa, Ont.) 133:109198. doi: 10.1016/j.foodres.2020.109198.
  • Chessa, S., H. Huatan, M. Levina, R. Y. Mehta, D. Ferrizzi, and A. R. Rajabi-Siahboomi. 2014. Application of the Dynamic Gastric Model to evaluate the effect of food on the drug release characteristics of a hydrophilic matrix formulation. International Journal of Pharmaceutics 466 (1–2):359–67. doi: 10.1016/j.ijpharm.2014.03.031.
  • Chi, C., X. Li, Y. Zhang, L. Chen, F. Xie, L. Li, and G. Bai. 2019. Modulating the in vitro digestibility and predicted glycemic index of rice starch by complexation with gallic acid. Food Hydrocolloids 89:821–8. doi: 10.1016/j.foodhyd.2018.11.016.
  • Corstens, M. N., C. C. Berton-Carabin, A. Kester, R. Fokkink, J. M. van den Broek, R. de Vries, F. J. Troost, A. A. M. Masclee, and K. Schroën. 2017. Destabilization of multilayered interfaces in digestive conditions limits their ability to prevent lipolysis in emulsions. Food Structure 12:54–63. doi: 10.1016/j.foostr.2016.07.004.
  • Costa, A. L. R., A. Gomes, G. F. Furtado, H. Tibolla, F. C. Menegalli, and R. L. Cunha. 2020. Modulating in vitro digestibility of Pickering emulsions stabilized by food-grade polysaccharides particles. Carbohydrate Polymers 227 (115344):115344. doi: 10.1016/j.carbpol.2019.115344.
  • Doherty, S. B., V. L. Gee, R. P. Ross, C. Stanton, G. F. Fitzgerald, and A. Brodkorb. 2011. Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocolloids 25 (6):1604–17. doi: 10.1016/j.foodhyd.2010.12.012.
  • Dupont, D., M. Alric, S. Blanquet-Diot, G. Bornhorst, C. Cueva, A. Deglaire, S. Denis, M. Ferrua, R. Havenaar, J. Lelieveld, et al. 2019. Can dynamic in vitro digestion systems mimic the physiological reality? Critical Reviews in Food Science and Nutrition 59 (10):1546–62. doi: 10.1080/10408398.2017.1421900.
  • Dupont, D., A. Bordoni, A. Brodkorb, F. Capozzi, T. Cirkovic Velickovic, M. Corredig, P. D. Cotter, I. De Noni, C. Gaudichon, M. Golding, et al. 2011. An international network for improving health properties of food by sharing our knowledge on the digestive process. Food Digestion 2 (1–3):23–5. doi: 10.1007/s13228-011-0011-8.
  • Dupont, D., and A. R. Mackie. 2015. Static and dynamic in vitro digestion models to study protein stability in the gastrointestinal tract. Drug Discovery Today: Disease Models 17 (Supplement C):23–7. doi: 10.1016/j.ddmod.2016.06.002.
  • Engelen, L., F. A. Fontijn-Tekamp, and A. Van der Bilt. 2005. The influence of product and oral characteristics on swallowing. Archives of Oral Biology 50 (8):739–46. doi: 10.1016/j.archoralbio.2005.01.004.
  • Espert, M., A. Salvador, and T. Sanz. 2019. Rheological and microstructural behaviour of xanthan gum and xanthan gum-Tween 80 emulsions during in vitro digestion. Food Hydrocolloids 95:454–61. doi: 10.1016/j.foodhyd.2019.05.004.
  • Esposto, B. S., P. Jauregi, D. R. Tapia-Blácido, and M. Martelli-Tosi. 2021. Liposomes vs. chitosomes: Encapsulating food bioactives. Trends in Food Science & Technology 108:40–8.
  • Fafaungwithayakul, N., P. Hongsprabhas, and P. Hongsprabhas. 2011. Effect of soy soluble polysaccharide on the stability of soy-stabilised emulsions during in vitro protein digestion. Food Biophysics 6 (3):407–15. doi: 10.1007/s11483-011-9216-1.
  • Feltre, G., F. S. Almeida, A. C. K. Sato, G. C. Dacanal, and M. D. Hubinger. 2020. Alginate and corn starch mixed gels: Effect of gelatinization and amylose content on the properties and in vitro digestibility. Food Research International (Ottawa, Ont.) 132:109069. doi: 10.1016/j.foodres.2020.109069.
  • Ferrua, M. J., and R. P. Singh. 2015. Human gastric simulator (Riddet model). In The impact of food bio-actives on gut health: In vivo and ex vivo models, ed. P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, T. Requena, D. Swiatecka, and H. Wichers, 47–59. Switzerland: Springer International Publishing.
  • Fontijn-Tekamp, F. A., A. P. Slagter, A. Van Der Bilt, M. A. V. T. Hof, D. J. Witter, W. Kalk, and J. A. Jansen. 2000. Biting and chewing in overdentures, full dentures, and natural dentitions. Journal of Dental Research 79 (7):1519–24. doi: 10.1177/00220345000790071501.
  • Gan, C.-Y., L.-H. Cheng, and A. M. Easa. 2008. Evaluation of microbial transglutaminase and ribose cross-linked soy protein isolate-based microcapsules containing fish oil. Innovative Food Science & Emerging Technologies 9 (4):563–9. doi: 10.1016/j.ifset.2008.04.004.
  • Gasa-Falcon, A., I. Odriozola-Serrano, G. Oms-Oliu, and O. Martín-Belloso. 2020. Nanostructured lipid-based delivery systems as a strategy to increase functionality of bioactive compounds. Foods 9 (3):325. doi: 10.3390/foods9030325.
  • Gavahian, M., A. M. Khaneghah, J. M. Lorenzo, P. E. S. Munekata, I. Garcia-Mantrana, M. C. Collado, A. J. Meléndez-Martínez, and F. J. Barba. 2019. Health benefits of olive and its components; Impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases. Trends in Food Science & Technology 88:220–7. doi: 10.1016/j.tifs.2019.03.008.
  • Gharsallaoui, A., G. Roudaut, L. Beney, O. Chambin, A. Voilley, and R. Saurel. 2012. Properties of spray-dried food flavours microencapsulated with two-layered membranes: Roles of interfacial interactions and water. Food Chemistry 132 (4):1713–20. doi: 10.1016/j.foodchem.2011.03.028.
  • Gharsallaoui, A., R. Saurel, O. Chambin, E. Cases, A. Voilley, and P. Cayot. 2010. Utilisation of pectin coating to enhance spray-dry stability of pea protein-stabilised oil-in-water emulsions. Food Chemistry 122 (2):447–54. doi: 10.1016/j.foodchem.2009.04.017.
  • Ghibaudo, F., E. Gerbino, A. A. Hugo, M. G. Simões, P. Alves, B. F. O. Costa, V. Campo Dallˊ Orto, A. Gómez-Zavaglia, and P. N. Simões. 2018. Development and characterization of iron-pectin beads as a novel system for iron delivery to intestinal cells. Colloids and Surfaces. B, Biointerfaces 170:538–43. doi: 10.1016/j.colsurfb.2018.06.052.
  • Gidley, M. J. 2013. Hydrocolloids in the digestive tract and related health implications. Current Opinion in Colloid & Interface Science 18 (4):371–8. doi: 10.1016/j.cocis.2013.04.003.
  • Glusac, J., S. Isaschar-Ovdat, and A. Fishman. 2020. Transglutaminase modifies the physical stability and digestibility of chickpea protein-stabilized oil-in-water emulsions. Food Chemistry 315 (126301):126301. doi: 10.1016/j.foodchem.2020.126301.
  • Gómez-Mascaraque, L. G., M. Martínez-Sanz, S. A. Hogan, A. López-Rubio, and A. Brodkorb. 2019. Nano- and microstructural evolution of alginate beads in simulated gastrointestinal fluids. Impact of M/G ratio, molecular weight and pH. Carbohydrate Polymers 223:115121. doi: 10.1016/j.carbpol.2019.115121.
  • González, C., R. Simpson, O. Vega, V. del Campo, M. Pinto, L. Fuentes, H. Nuñez, A. K. Young, and C. Ramírez. 2020. Effect of particle size on in vitro intestinal digestion of emulsion-filled gels: Mathematical analysis based on the Gallagher–Corrigan model. Food and Bioproducts Processing 120:33–40. doi: 10.1016/j.fbp.2019.12.009.
  • Guo, Q., J. Su, W. Xie, X. Tu, F. Yuan, L. Mao, and Y. Gao. 2020. Curcumin-loaded pea protein isolate-high methoxyl pectin complexes induced by calcium ions: Characterization, stability and in vitro digestibility. Food Hydrocolloids 98:105284. doi: 10.1016/j.foodhyd.2019.105284.
  • Hasanvand, E., and A. Rafe. 2018. Rheological and structural properties of rice bran protein-flaxseed (Linum usitatissimum L.) gum complex coacervates. Food Hydrocolloids 83:296–307. doi: 10.1016/j.foodhyd.2018.05.019.
  • Hong, Y., J. Yang, W. Liu, Z. Gu, Z. Li, L. Cheng, C. Li, and X. Duan. 2019. Sustained release of tea polyphenols from a debranched corn starch–xanthan gum complex carrier. LWT – Food Science and Technology 103:325–32. doi: 10.1016/j.lwt.2019.01.014.
  • Huang, Y., and W. Zhou. 2019. Microencapsulation of anthocyanins through two-step emulsification and release characteristics during in vitro digestion. Food Chemistry 278:357–63. doi: 10.1016/j.foodchem.2018.11.073.
  • Hur, S. J., B. O. Lim, E. A. Decker, and D. J. McClements. 2011. In vitro human digestion models for food applications. Food Chemistry 125 (1):1–12. doi: 10.1016/j.foodchem.2010.08.036.
  • Infantes-Garcia, M. R., S. H. E. Verkempinck, J. M. Guevara-Zambrano, C. Andreoletti, M. E. Hendrickx, and T. Grauwet. 2020. Enzymatic and chemical conversions taking place during in vitro gastric lipid digestion: The effect of emulsion droplet size behavior. Food Chemistry 326:126895. doi: 10.1016/j.foodchem.2020.126895.
  • Isaschar-Ovdat, S., and A. Fishman. 2018. Crosslinking of food proteins mediated by oxidative enzymes – A review. Trends in Food Science & Technology 72:134–43. doi: 10.1016/j.tifs.2017.12.011.
  • Ju, M., G. Zhu, G. Huang, X. Shen, Y. Zhang, L. Jiang, and X. Sui. 2020. A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles. Food Hydrocolloids 99 (105329):105329. doi: 10.1016/j.foodhyd.2019.105329.
  • Jun-Xia, X., Y. Hai-Yan, and Y. Jian. 2011. Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chemistry 125 (4):1267–72. doi: 10.1016/j.foodchem.2010.10.063.
  • Kobayashi, I., H. Kozu, Z. Wang, H. Isoda, and S. Ichikawa. 2017. Development and fundamental characteristics of a human gastric digestion simulator for analysis of food disintegration. Japan Agricultural Research Quarterly: JARQ 51 (1):17–25. doi: 10.6090/jarq.51.17.
  • Kong, F., and R. P. Singh. 2010. A human gastric simulator (HGS) to study food digestion in human stomach. Journal of Food Science 75 (9):E627–E635. doi: 10.1111/j.1750-3841.2010.01856.x.
  • Koutina, G., C. A. Ray, R. Lametsch, and R. Ipsen. 2018. The effect of protein-to-alginate ratio on in vitro gastric digestion of nanoparticulated whey protein. International Dairy Journal 77:10–8. doi: 10.1016/j.idairyj.2017.09.001.
  • Kozu, H., I. Kobayashi, M. Nakajima, M. A. Neves, K. Uemura, H. Isoda, and S. Ichikawa. 2017. Mixing characterization of liquid contents in human gastric digestion simulator equipped with gastric secretion and emptying. Biochemical Engineering Journal 122:85–90. doi: 10.1016/j.bej.2016.10.013.
  • Kozu, H., Y. Nakata, M. Nakajima, M. A. Neves, K. Uemura, S. Sato, I. Kobayashi, and S. Ichikawa. 2014. Development of a human gastric digestion simulator equipped with peristalsis function for the direct observation and analysis of the food digestion process. Food Science and Technology Research 20 (2):225–33. doi: 10.3136/fstr.20.225.
  • Lan, Y., J.-B. Ohm, B. Chen, and J. Rao. 2020a. Phase behavior, thermodynamic and microstructure of concentrated pea protein isolate–pectin mixture: Effect of pH, biopolymer ratio and pectin charge density. Food Hydrocolloids 101:105556. doi: 10.1016/j.foodhyd.2019.105556.
  • Lan, Y., J.-B. Ohm, B. Chen, and J. Rao. 2020b. Phase behavior and complex coacervation of concentrated pea protein isolate-beet pectin solution. Food Chemistry 307:125536. doi: 10.1016/j.foodchem.2019.125536.
  • Li, Y., M. Hu, Y. Du, H. Xiao, and D. J. McClements. 2011. Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads. Food Hydrocolloids 25 (1):122–30. doi: 10.1016/j.foodhyd.2010.06.003.
  • Lin, D., A. L. Kelly, V. Maidannyk, and S. Miao. 2021. Effect of structuring emulsion gels by whey or soy protein isolate on the structure, mechanical properties, and in vitro digestion of alginate-based emulsion gels beads. Food Hydrocolloids 110:106165. doi: 10.1016/j.foodhyd.2020.106165.
  • Liu, S., C. Elmer, N. H. Low, and M. T. Nickerson. 2010. Effect of pH on the functional behaviour of pea protein isolate–gum Arabic complexes. Food Research International 43 (2):489–95. doi: 10.1016/j.foodres.2009.07.022.
  • Liu, L., M. L. Fishman, J. Kost, and K. B. Hicks. 2003. Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials 24 (19):3333–43. doi: 10.1016/S0142-9612(03)00213-8.
  • Liu, Q., F. Li, N. Ji, L. Dai, L. Xiong, and Q. Sun. 2021. Acetylated debranced starch micelles as a promising nanocarrier for curcumin. Food Hydrocolloids 111:106253. doi: 10.1016/j.foodhyd.2020.106253.
  • Liu, F., and C.-H. Tang. 2016. Soy glycinin as food-grade Pickering stabilizers: Part. III. Fabrication of gel-like emulsions and their potential as sustained-release delivery systems for β-carotene. Food Hydrocolloids 56:434–44. doi: 10.1016/j.foodhyd.2016.01.002.
  • Liu, J., S. Willför, and C. Xu. 2015. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydrates and Dietary Fibre 5 (1):31–61. doi: 10.1016/j.bcdf.2014.12.001.
  • Li, C., W. Yu, P. Wu, and X. D. Chen. 2020. Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract. Trends in Food Science & Technology 96:114–26. doi: 10.1016/j.tifs.2019.12.015.
  • López, D. N., M. Galante, M. Robson, V. Boeris, and D. Spelzini. 2018. Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties. International Journal of Biological Macromolecules 109:152–9. doi: 10.1016/j.ijbiomac.2017.12.080.
  • Lucas-González, R., M. Viuda-Martos, J. A. Pérez-Alvarez, and J. Fernández-López. 2018. In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges. Food Research International (Ottawa, Ont.) 107:423–36. doi: 10.1016/j.foodres.2018.02.055.
  • Lv, S., Y. Zhang, H. Tan, R. Zhang, and D. J. McClements. 2019. Vitamin E encapsulation within oil-in-water emulsions: Impact of emulsifier type on physicochemical stability and bioaccessibility. Journal of Agricultural and Food Chemistry 67 (5):1521–9. doi: 10.1021/acs.jafc.8b06347.
  • Ma, X., W. Chen, T. Yan, D. Wang, F. Hou, S. Miao, and D. Liu. 2020. Comparison of citrus pectin and apple pectin in conjugation with soy protein isolate (SPI) under controlled dry-heating conditions. Food Chemistry 309:125501. doi: 10.1016/j.foodchem.2019.125501.
  • Maldonado-Valderrama, J., P. Wilde, A. Macierzanka, and A. Mackie. 2011. The role of bile salts in digestion. Advances in Colloid and Interface Science 165 (1):36–46. doi: 10.1016/j.cis.2010.12.002.
  • Mansour, M., M. Salah, and X. Xu. 2020. Effect of microencapsulation using soy protein isolate and gum Arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions. Ultrasonics Sonochemistry 63:104927. doi: 10.1016/j.ultsonch.2019.104927.
  • Mao, L., Q. Pan, F. Yuan, and Y. Gao. 2019. Formation of soy protein isolate-carrageenan complex coacervates for improved viability of Bifidobacterium longum during pasteurization and in vitro digestion. Food Chemistry 276:307–14. doi: 10.1016/j.foodchem.2018.10.026.
  • Marcano, J., I. Hernando, and S. Fiszman. 2015. In vitro measurements of intragastric rheological properties and their relationships with the potential satiating capacity of cheese pies with konjac glucomannan. Food Hydrocolloids 51:16–22. doi: 10.1016/j.foodhyd.2015.04.028.
  • Martins, J. T., A. I. Bourbon, A. C. Pinheiro, L. H. Fasolin, and A. A. Vicente. 2018. Protein-based structures for food applications: From macro to nanoscale. Frontiers in Sustainable Food Systems 2 (77):1–18. doi: 10.3389/fsufs.2018.00077.
  • Mason, L. M., S. Chessa, H. Huatan, D. E. Storey, P. Gupta, J. Burley, and C. D. Melia. 2016. Use of the Dynamic Gastric Model as a tool for investigating fed and fasted sensitivities of low polymer content hydrophilic matrix formulations. International Journal of Pharmaceutics 510 (1):210–20. doi: 10.1016/j.ijpharm.2016.06.034.
  • McAllister, M. 2010. Dynamic dissolution: A step closer to predictive dissolution testing? Molecular Pharmaceutics 7 (5):1374–87. doi: 10.1021/mp1001203.
  • McClements, D. J. 2015. Nanoparticle- and microparticle-based delivery systems. Boca Raton, FL: CRC Press, Taylor & Francis Group.
  • McClements, D. J. 2021. Lipids digestion as a colloid and interface phenomena. In Bioaccessibility and digestibility of lipids from food, ed. M. M. L. Grundy and P. J. Wilde. Cham: Springer.
  • McClements, D. J., and E. A. Decker. 2008. Chapter 4: Lipids. In Fennema’s food chemistry, ed. S. Damodaran, K. Parkin, and R. Owen, 155–216. Boca Raton/USA: Taylor & Francis Group, LLC, CRC Press.
  • McClements, D. J., E. A. Decker, and J. Weiss. 2007. Emulsion-based delivery systems for lipophilic bioactive components. Journal of Food Science 72 (8):R109–24. doi: 10.1111/j.1750-3841.2007.00507.x.
  • McClements, D. J., and S. M. Jafari. 2018. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science 251:55–79. doi: 10.1016/j.cis.2017.12.001.
  • McGhie, T. K., and M. C. Walton. 2007. The bioavailability and absorption of anthocyanins: Towards a better understanding. Molecular Nutrition & Food Research 51 (6):702–13. doi: 10.1002/mnfr.200700092.
  • Mehrabian, H., J. H. Snoeijer, and J. Harting. 2020. Desorption energy of soft particles from fluid interface. Soft Matter 16 (37):8655–66. doi: 10.1039/D0SM01122C.
  • Mendanha, D. V., S. E. M. Ortiz, C. S. Favaro-Trindade, A. Mauri, E. S. Monterrey-Quintero, and M. Thomazini. 2009. Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin. Food Research International 42 (8):1099–104. doi: 10.1016/j.foodres.2009.05.007.
  • Minekus, M. 2015. The TNO gastro-intestinal model (TIM). In The impact of food bioactives on health: In vitro and ex vivo models, ed. K. Verhoeckx, P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, T. Requena, D. Swiatecka, and H. Wichers, 37–46. Cham: Springer International Publishing.
  • Minekus, M., M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, C., et al. 2014. A standardised static in vitro digestion method suitable for food – A international consensus. Food & Function 5 (6):1113–24. doi: 10.1039/c3fo60702j.
  • Molly, K., M. Vande Woestyne, and W. Verstraete. 1993. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Applied Microbiology and Biotechnology 39 (2):254–8. doi: 10.1007/BF00228615.
  • Mulet-Cabero, A.-I., L. Egger, R. Portmann, O. Ménard, S. Marze, M. Minekus, S. Le Feunteun, A. Sarkar, M. M.-L. Grundy, F. Carrière, et al. 2020. A standardised semi-dynamic in vitro digestion method suitable for food – an international consensus. Food & Function 11 (2):1702–20. doi: 10.1039/C9FO01293A.
  • Mulet-Cabero, A.-I., A. Torcello-Gómez, S. Saha, A. R. Mackie, P. J. Wilde, and A. Brodkorb. 2020. Impact of caseins and whey proteins ratio and lipid content on in vitro digestion and ex vivo absorption. Food Chemistry 319:126514.  doi: 10.1016/j.foodchem.2020.126514.
  • Narang, A. S., D. Delmarre, and D. Gao. 2007. Stable drug encapsulation in micelles and microemulsions. International Journal of Pharmaceutics 345 (1–2):9–25. doi: 10.1016/j.ijpharm.2007.08.057.
  • Nasir, M. A., I. Pasha, M. S. Butt, and H. Nawaz. 2015. Biochemical characterization of quinoa with special reference to its protein quality. Pakistan Journal of Agricultural Sciences 52 (3):731–7.
  • Nasrabadi, M. N., A. S. Doost, S. A. H. Goli, and P. V. Meeren. 2020. Effect of thymol and Pickering stabilization on in-vitro digestion fate and oxidation stability of plant-derived flaxseed oil emulsions. Food Chemistry 311 (125872).
  • Nguyen, T. T. P., B. Bhandari, J. Cichero, and S. Prakash. 2015. A comprehensive review on in vitro digestion of infant formula. Food Research International (Ottawa, Ont.) 76 (Pt 3):373–86. doi: 10.1016/j.foodres.2015.07.016.
  • Nicolai, T., and C. Chassenieux. 2019. Heat-induced gelation of plant globulins. Current Opinion in Food Science 27:18–22. doi: 10.1016/j.cofs.2019.04.005.
  • Ning, F., X. Wang, H. Zheng, K. Zhang, C. Bai, H. Peng, Q. Huang, and H. Xiong. 2019. Improving the bioaccessibility and in vitro absorption of 5-demethylnobiletin from chenpi by se-enriched peanut protein nanoparticles-stabilized Pickering emulsion. Journal of Functional Foods 55:76–85. doi: 10.1016/j.jff.2019.02.019.
  • Nori, M. P., C. S. Favaro-Trindade, S. M. de Alencar, M. Thomazini, J. C. C. Balieiro, and C. J. C. Castillo. 2011. Microencapsulation of propolis extract by complex coacervation. LWTFood Science and Technology 44 (2):429–35. doi: 10.1016/j.lwt.2010.09.010.
  • Ogawa, K. 2015. Effects of salt on intermolecular polyelectrolyte complexes formation between cationic microgel and polyanion. Advances in Colloid and Interface Science 226 (Pt A):115–21. doi: 10.1016/j.cis.2015.09.005.
  • Ogawa, Y., N. Donlao, S. Thuengtung, J. Tian, Y. Cai, F. C. Reginio, Jr., S. Ketnawa, N. Yamamoto, and M. Tamura. 2018. Impact of food structure and cell matrix on digestibility of plant-based food. Current Opinion in Food Science 19:36–41. doi: 10.1016/j.cofs.2018.01.003.
  • Oh, J. K., D. I. Lee, and J. M. Park. 2009. Biopolymer-based microgels/nanogels for drug delivery applications. Progress in Polymer Science 34 (12):1261–82. doi: 10.1016/j.progpolymsci.2009.08.001.
  • Oliveira, W. Q., N. J. Wurlitzer, A. W. O. Araújo, T. A. Comunian, M. S. R. Bastos, A. L. Oliveira, H. C. R. Magalhães, H. L. Ribeiro, R. W. Figueiredo, and P. H. M. Sousa. 2020. Complex coacervation of cashew gum and gelatin as carriers of green coffe oil: The effect of microcapsule application on the rheological and sensorial quality of a fruit juice. Food Research International 131:109047. doi: 10.1016/j.foodres.2020.109047.
  • Pascoviche, D. M., and U. Lesmes. 2021. Lipid digestion: In vitro and in vivo models and insights. In Bioaccessibility and digestibility of lipids from food, ed. M. M. L. Grundy and P. J. Wilde. Cham: Springer.
  • Paz-Yépez, C., I. Peinado, A. Heredia, and A. Andrés. 2019. Lipids digestibility and polyphenols release under in vitro digestion of dark, milk and white chocolate. Journal of Functional Foods 52:196–203. doi: 10.1016/j.jff.2018.10.028.
  • Pérez-Vicente, A., A. Gil-Izquierdo, and C. García-Viguera. 2002. In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. Journal of Agricultural and Food Chemistry 50 (8):2308–12. doi: 10.1021/jf0113833.
  • Poletto, G., G. C. Raddatz, A. J. Cichoski, L. Q. Zepka, E. J. Lopes, J. S. Barin, R. Wagner, and C. R. de Menezes. 2019. Study of viability and storage stability of Lactobacillus acidophillus when encapsulated with the prebiotics rice bran, inulin and Hi-maize. Food Hydrocolloids 95:238–44. doi: 10.1016/j.foodhyd.2019.04.049.
  • Qiu, C., M. Zhao, E. A. Decker, and D. J. McClements. 2015. Influence of anionic dietary fibers (xanthan gum and pectin) on oxidative stability and lipid digestibility of wheat protein–stabilized fish oil-in-water emulsion. Food Research International (Ottawa, Ont.) 74:131–9. doi: 10.1016/j.foodres.2015.04.022.
  • Rascón, M. P., C. I. Beristain, H. S. García, and M. A. Salgado. 2011. Carotenoid retention and storage stability of spray-dried encapsulated paprika oleoresin using gum Arabic and soy protein isolate as wall materials. LWTFood Science and Technology 44 (2):549–57. doi: 10.1016/j.lwt.2010.08.021.
  • Rather, S. A., R. Akhter, F. A. Masoodi, A. Gani, and S. M. Wani. 2017. Effect of double alginate microencapsulation on in vitro digestibility and thermal tolerance of Lactobacillus plantarum NCDC201 and L. casei NCDC297. LWT – Food Science and Technology 83:50–8. doi: 10.1016/j.lwt.2017.04.036.
  • Rémond, D., M. Machebeuf, C. Yven, C. Buffière, L. Mioche, L. Mosoni, and P. P. Mirand. 2007. Postprandial whole-body protein metabolism after a meat meal is influenced by chewing efficiency in elderly subjects. The American Journal of Clinical Nutrition 85 (5):1286–92. doi: 10.1093/ajcn/85.5.1286.
  • Reynaud, Y., A. Couvent, A. Manach, D. Forest, M. Lopez, D. Picque, I. Souchon, D. Rémond, and D. Dupont. 2021. Food-dependent set-up of the DiDGI® dynamic in vitro system: Correlation with the porcine model for protein digestion of soya-based food. Food Chemistry 341 (Pt 2):128276. doi: 10.1016/j.foodchem.2020.128276.
  • Roux, L. L., R. Chacon, D. Dupont, R. Jeantet, A. Deglaire, and F. Nau. 2020. In vitro static digestion reveals how plant proteins modulate model infant formula digestibility. Food Research International (Ottawa, Ont.) 130:108917. doi: 10.1016/j.foodres.2019.108917.
  • Sá, A. G. A., Y. M. F. Moreno, and B. A. M. Carciofi. 2020. Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology 97:170–84. doi: 10.1016/j.tifs.2020.01.011.
  • Salhi, A., F. Carriere, M. M. L. Grundy, and A. Aloulou. 2021. Enzymes involved in lipid digestion. In Bioaccessibility and digestibility of lipids from food, ed. M. M. L. Grundy and P. J. Wilde. Cham: Springer.
  • Salvia-Trujillo, L., C. Qian, O. Martín-Belloso, and D. J. McClements. 2013. Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry 141 (2):1472–80. doi: 10.1016/j.foodchem.2013.03.050.
  • Sandoval-Oliveros, M. R., and O. Paredes-López. 2013. Isolation and characterization of proteins from chia seeds (Salvia hispanica L.). Journal of Agricultural and Food Chemistry 61 (1):193–201. doi: 10.1021/jf3034978.
  • Santos, T. P., and R. L. Cunha. 2019. In vitro digestibility of gellan gels loaded with jabuticaba extract: Effect of matrix-bioactive interaction. Food Research International 125 (108638):108638. doi: 10.1016/j.foodres.2019.108638.
  • Sarkar, A., B. Murray, M. Holmes, R. Ettelaie, A. Abdalla, and X. Yang. 2016. In vitro digestion of Pickering emulsions stabilized by soft whey protein microgel particles: Influence of thermal treatments. Soft Matter 12 (15):3558–69. doi: 10.1039/c5sm02998h.
  • Sarkar, A., A. Ye, and H. Singh. 2016. On the role of bile salts in the digestion of emulsified lipids. Food Hydrocolloids 60:77–84. doi: 10.1016/j.foodhyd.2016.03.018.
  • Sasaki, T. 2020. Influence of anionic, neutral, and cationic polysaccharides on the in vitro digestibility of raw and gelatinized potato starch. Journal of the Science of Food and Agriculture 100 (6):2435–42. doi: 10.102/jsfa.10259.
  • Schmitt, C., C. Moitzi, C. Bovay, M. Rouvet, L. Bovetto, L. Donato, M. E. Leser, P. Schurtenberger, and A. Stradner. 2010. Internal structure and colloidal behaviour of covalent whey protein microgels obtained by heat treatment. Soft Matter 6 (19):4876–84. doi: 10.1039/c0sm00220h.
  • Shani Levi, C., N. Goldstein, R. Portmann, and U. Lesmes. 2017. Emulsion and protein degradation in the elderly: Qualitative insights from a study coupling a dynamic in vitro digestion model with proteomic analyses. Food Hydrocolloids 69:393–401. doi: 10.1016/j.foodhyd.2017.02.017.
  • Shao, Y., and C.-H. Tang. 2016. Gel-like pea protein Pickering emulsions at pH 3.0 as a potential intestine-targeted and sustained-release delivery system for β-carotene. Food Research International 79:64–72. doi: 10.1016/j.foodres.2015.11.025.
  • Shi, A., X. Feng, Q. Wang, and B. Adhikari. 2020. Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: A review of synthesis, application and prospective. Food Hydrocolloids 109:106117. doi: 10.1016/j.foodhyd.2020.106117.
  • Silva, J. G. S., A. P. Rebellato, E. T. S. Carames, R. Greiner, and J. A. L. Pallone. 2020. In vitro digestion effect on mineral bioaccessibility and antioxidant bioactive compounds of plant-based beverages. Food Research International (Ottawa, Ont.) 130:108993. doi: 10.1016/j.foodres.2020.108993.
  • Singh, J., A. Dartois, and L. Kaur. 2010. Starch digestibility in food matrix: A review. Trends in Food Science & Technology 21 (4):168–80. doi: 10.1016/j.tifs.2009.12.001.
  • Singh, N., J. Singh, L. Kaur, N. S. Sodhi, and B. S. Gill. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry 81 (2):219–31. doi: 10.1016/S0308-8146(02)00416-8.
  • Singh, H., and A. Ye. 2013. Structural and biochemical factors affecting the digestion of protein-stabilized emulsions. Current Opinion in Colloid & Interface Science 18 (4):360–70. doi: 10.1016/j.cocis.2013.04.006.
  • Singh, H., A. Ye, and M. J. Ferrua. 2015. Aspects of food structures in the digestive tract. Current Opinion in Food Science 3:85–93. doi: 10.1016/j.cofs.2015.06.007.
  • Soares, B. S., R. P. Siqueira, M. G. Carvalho, J. Vicente, and E. E. Garcia-Rojas. 2019. Microencapsulation of sacha inchi oil (Plukenetia volubilis L.) using complex coacervation: Formation and structural characterization. Food Chemistry 298:125045. doi: 10.1016/j.foodchem.2019.125045.
  • Sousa, R., R. Portman, S. Dubois, I. Recio, and L. Egger. 2020. Protein digestion of different protein sources using the INFOGEST static digestion model. Food Research International (Ottawa, Ont.) 130:108996. doi: 10.1016/j.foodres.2020.108996.
  • Souza, C. J. F., T. A. Comunian, M. G. C. Kasemodel, and C. S. Favaro-Trindade. 2019. Microencapsulation of lactase by W/O/W emulsion followed by complex coacervation: Effects of enzyme source, addition of potassium and core to shell ratio on encapsulation efficiency, stability and kinetics of release. Food Research International (Ottawa, Ont.) 121:754–64. doi: 10.1016/j.foodres.2018.12.053.
  • Sun, X., C. Acquah, R. E. Aluko, and C. C. Udenigwe. 2020. Considering food matrix and gastrointestinal effects in enhancing bioactive peptide absorption and bioavailability. Journal of Functional Foods 64:103680. doi: 10.1016/j.jff.2019.103680.
  • Sun, C., S. Yang, L. Dai, S. Chen, and Y. Gao. 2017. Quercetagetin-loaded zein–propylene glycol alginate composite particles induced by calcium ions: Structural comparison between colloidal dispersions and lyophilized powders after in vitro simulated gastrointestinal digestion. Journal of Functional Foods 37:25–48. doi: 10.1016/j.jff.2017.07.025.
  • Svennerholm, L. 1977. The nomenclature of lipids. IUPAC-IUB Commission on Biochemical Nomenclature (CBN).  European Journal of Biochemistry 79:11–21.
  • Tai, K., M. Rappolt, L. Mao, Y. Gao, and F. Yuan. 2020. Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chemistry 326:126973. doi: 10.1016/j.foodchem.2020.126973.
  • Talbot-Walsh, G., D. Kannar, and C. Selomulya. 2018. A review on technological parameters and recent advances in the fortification of processed cheese. Trends in Food Science & Technology 81:193–202. doi: 10.1016/j.tifs.2018.09.023.
  • Tan, Y., Z. Zhang, J. M. Mundo, and D. J. McClements. 2020. Factors impacting lipid digestion and nutraceutical bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): Emulsifier type. Food Research International 137:109739. doi: 10.1016/j.foodres.2020.109739.
  • Thuenemann, E. C., G. Mandalari, G. T. Rich, and R. M. Faulks. 2015. Dynamic Gastric Model (DGM). In The impact of food bio-actives on gut health: In vivo and ex vivo models, ed. P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, T. Requena, D. Swiatecka, and H. Wichers, 47–59. Switzerland: Springer International Publishing.
  • Timilsena, Y. P., T. O. Akanbi, N. Khalid, B. Adhikari, and C. J. Barrow. 2019. Complex coacervation: Principles, mechanisms and application in microencapsulation. International Journal of Biological Macromolecules 121:1276–86. doi: 10.1016/j.ijbiomac.2018.10.144.
  • Tokle, T., U. Lesmes, E. A. Decker, and D. J. McClements. 2012. Impact of dietary fiber coatings on behavior of protein-stabilized lipid droplets under simulated gastrointestinal conditions. Food & Function 3 (1):58–66. doi: 10.1039/c1fo10129c.
  • Torres, O., B. S. Murray, and A. Sarkar. 2019. Overcoming in vitro gastric destabilization of emulsion droplets using emulsion microgel particles for targeted intestinal release of fatty acids. Food Hydrocolloids 89:523–33. doi: 10.1016/j.foodhyd.2018.11.010.
  • Tran, T., and D. Rousseau. 2013. Stabilization of acidic soy protein-based dispersions and emulsions by soy soluble polysaccharides. Food Hydrocolloids 30 (1):382–92. doi: 10.1016/j.foodhyd.2012.06.001.
  • Udomrati, S., T. Pantoa, S. Gohtani, M. Nakajima, K. Uemura, and I. Kobayashi. 2020. Oil-in-water emulsions containing tamarind seed gum during in vitro gastrointestinal digestion: Rheological properties, stability, and lipid digestibility. Journal of the Science of Food and Agriculture 100 (6):2473–81. doi: 10.1002/jsfa.10268.
  • Vergara, D., O. López, M. Bustamante, and C. Shene. 2020. An in vitro digestion study of encapsulated lactoferrin in rapeseed phospholipid-based liposomes. Food Chemistry 321:126717. doi: 10.1016/j.foodchem.2020.126717.
  • Verrijssen, T. A. J., L. G. Balduyck, S. Christiaens, A. M. Van Loey, S. Van Buggenhout, and M. E. Hendrickx. 2014. The effect of pectin concentration and degree of methyl-esterification on the in vitro bioaccessibility of beta-carotene-enriched emulsions. Food Research International 57:71–8. doi: 10.1016/j.foodres.2014.01.031.
  • Vilela, J. A. P., A. L. F. Cavallieri, and R. L. Cunha. 2011. The in uence of gelation rate on the physical properties/structure of salt-induced gels of soy protein isolate-gellan gum. Food Hydrocolloids 25 (7):1710–8. doi: 10.1016/j.foodhyd.2011.03.012.
  • Wang, Y., D. Li, L.-J. Wang, and B. Adhikari. 2011. The effect of addition of flaxseed gum on the emulsion properties of soybean protein isolate (SPI). Journal of Food Engineering 104 (1):56–62. doi: 10.1016/j.jfoodeng.2010.11.027.
  • Wang, L., M. Song, Z. Zhao, X. Chen, J. Cai, Y. Cao, and J. Xiao. 2020. Lactobacillus acidophilus loaded pickering double emulsion with enhanced viability and colon-adhesion efficiency. LWT – Food Science and Technology 121:108928. doi: 10.1016/j.lwt.2019.108928.
  • Wei, Y., C. Li, L. Zhang, L. Dai, S. Yang, J. Liu, L. Mao, F. Yuan, and Y. Gao. 2020. Influence of calcium ions on the stability, microstructure and in vitro digestion fate of zein–propylene glycol alginate–tea saponin ternary complex particles for the delivery of resveratrol. Food Hydrocolloids 106:105886. doi: 10.1016/j.foodhyd.2020.105886.
  • Wu, G., C. Chang, C. Hong, H. Zhang, J. Huang, Q. Jin, and X. Wang. 2019. Phenolic compounds as stabilizers of oils and antioxidative mechanisms under frying conditions: A comprehensive review. Trends in Food Science & Technology 92:33–45. doi: 10.1016/j.tifs.2019.07.043.
  • Wu, Z., R. Gao, G. Zhou, Y. Huang, X. Zhao, F. Ye, and G. Zhao. 2021. Effect of temperature and pH on the encapsulation and release of β-carotene from octenylsuccinated oat β-glucan micelles. Carbohydrate Polymers 255:117368. doi: 10.1016/j.carbpol.2020.117368.
  • Xiao, J., X. Lu, and Q. Huang. 2017. Double emulsion derived from kafirin nanoparticles stabilized Pickering emulsion: Fabrication, microstructure, stability and in vitro digestion profile. Food Hydrocolloids 62:230–8. doi: 10.1016/j.foodhyd.2016.08.014.
  • Xu, X., Q. Sun, and D. J. McClements. 2020. Effects of anionic polysaccharides on the digestion of fish oil-in-water emulsions stabilized by hydrolyzed rice glutelin. Food Research International (Ottawa, Ont.) 127:108768. doi: 10.1016/j.foodres.2019.108768.
  • Yang, Y., S. W. Cui, J. Gong, Q. Guo, Q. Wang, and Y. Hua. 2015. A soy protein–polysaccharides Maillard reaction product enhanced the physical stability of oil-in-water emulsions containing citral. Food Hydrocolloids 48:155–64. doi: 10.1016/j.foodhyd.2015.02.004.
  • Yang, C., F. Zhong, H. D. Goff, and Y. Li. 2019. Study on starch–protein interactions and their effects on physicochemical and digestible properties of the blends. Food Chemistry 280:51–8. doi: 10.1016/j.foodchem.2018.12.028.
  • Ye, A., X. Wang, Q. Lin, J. Han, and H. Singh. 2020. Dynamic gastric stability and in vitro lipid digestion of whey–protein-stabilised emulsions: Effect of heat treatment. Food Chemistry 318:126463. doi: 10.1016/j.foodchem.2020.126463.
  • Yin, B., W. Deng, K. Xu, L. Huang, and P. Yao. 2012. Stable nano-sized emulsions produced from soy protein and soy polysaccharide complexes. Journal of Colloid and Interface Science 380 (1):51–9. doi: 10.1016/j.jcis.2012.04.075.
  • Zhang, R., L. Zhou, J. Li, H. Oliveira, N. Yang, W. Jin, Z. Zhu, S. Li, and J. He. 2020. Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility. LWT – Food Science and Technology 123:109097. doi: 10.1016/j.lwt.2020.109097.
  • Zheng, M., Q. You, Y. Lin, F. Lan, M. Luo, H. Zeng, B. Zheng, and Y. Zhang. 2019. Effect of guar gum on the physicochemical properties and in vitro digestibility of lotus seed starch. Food Chemistry 272:286–91. doi: 10.1016/j.foodchem.2018.08.029.
  • Zhou, Q., L. Yang, J. Xu, X. Qiao, Z. Li, Y. Wang, and C. Xue. 2018. Evaluation of the physicochemical stability and digestibility of microencapsulated esterified astaxanthins using in vitro and in vivo models. Food Chemistry 260:73–81. doi: 10.1016/j.foodchem.2018.03.046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.