716
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Recent progress of personal glucose meters integrated methods in food safety hazards detection

, , , , , , & ORCID Icon show all

References

  • Adegoke, O., M. A. Pereira-Barros, S. Zolotovskaya, A. Abdolvand, and N. N. Daeid. 2020. Aptamer-based cocaine assay using a nanohybrid composed of ZnS/Ag2Se quantum dots, graphene oxide and gold nanoparticles as a fluorescent probe. Microchimica Acta 187:104–25.
  • Aigner, T., and R. Balster. 1978. Choice behavior in rhesus monkeys: Cocaine versus food. Science (New York, N.Y.) 201 (4355):534–5. doi: 10.1126/science.96531.
  • Alamer, S., S. Eissa, R. Chinnappan, and M. Zourob. 2018. A rapid colorimetric immunoassay for the detection of pathogenic bacteria on poultry processing plants using cotton swabs and nanobeads. Microchimica Acta 164:185–173.
  • Bellver Soto, J., M. Fernandez-Franzon, M. J. Ruiz, and A. Juan-Garcia. 2014. Presence of ochratoxin A (OTA) mycotoxin in alcoholic drinks from southern European countries: Wine and beer. Journal of Agricultural and Food Chemistry 62 (31):7643–51. doi: 10.1021/jf501737h.
  • Bernard, A., F. Broeckaert, G. D. Poorter, A. D. Cock, C. Hermans, C. Saegerman, and G. J. Houins. 2002. The Belgian PCB/dioxin incident: Analysis of the food chain contamination and health risk evaluation. Environmental Research 88 (1):1–18. doi: 10.1006/enrs.2001.4274.
  • Bolarinwa, I. F., C. Orfila, and M. R. Morgan. 2014. Development and application of an enzyme-linked immunosorbent assay (ELISA) for the quantification of amygdalin, a cyanogenic glycoside, in food. Journal of Agricultural and Food Chemistry 62 (27):6299–305. doi: 10.1021/jf501978d.
  • Bracker, J., and J. Brockmeyer. 2018. Characterization and detection of food allergens using high-resolution mass spectrometry: Current status and future perspective. Journal of Agricultural and Food Chemistry 66 (34):8935–40. doi: 10.1021/acs.jafc.8b02265.
  • Brambilla, G., A. Loizzo, L. Fontana, M. Strozzi, A. Guarino, and V. Soprano. 1997. Food poisoning following consumption of clenbuterol-treated veal in Italy. Journal of the American Medical Association 278 (8):635. doi: 10.1001/jama.1997.03550080045031.
  • Burritt, M. F. 1990. Current analytical approaches to measuring blood analytes. Clinical Chemistry 36 (8):1562–6. doi: 10.1093/clinchem/36.8.1562.
  • Chaibun, T., O. V. C. La, A. P. O'Mullane, B. Lertanantawong, and W. Surareungchai. 2018. Fingerprinting green curry: An electrochemical approach to food quality control. ACS Sensors 3 (6):1149–55. doi: 10.1021/acssensors.8b00176.
  • Chan, Z. C. Y., and W. F. Lai. 2009. Revisiting the melamine contamination event in China: Implications for ethics in food technology. Trends in Food Science & Technology 20 (8):366–73. doi: 10.1016/j.tifs.2009.04.005.
  • Chavali, R., N. S. Kumar Gunda, S. Naicker, and S. K. Mitra. 2014. Detection of Escherichia coli in potable water using personal glucose meters. Analytical Methods 6 (16):6223–7. doi: 10.1039/C4AY01249F.
  • Chen, W., F. Cai, Q. Wu, Y. Wu, B. B. Yao, and J. Xu. 2020. Prediction, evaluation, confirmation, and elimination of matrix effects for lateral flow test strip based rapid and on-site detection of aflatoxin B1 in tea soups. Food Chemistry 328:127081. doi: 10.1016/j.foodchem.2020.127081.
  • Chen, S., N. Gan, H. Zhang, F. Hu, T. Li, H. Cui, Y. Cao, and Q. Jiang. 2015. A portable and antibody-free sandwich assay for determination of chloramphenicol in food based on a personal glucose meter. Analytical and Bioanalytical Chemistry 407 (9):2499–507. doi: 10.1007/s00216-015-8478-8.
  • Chen, G., and M. J. Schneider. 2003. A rapid spectrofluorometric screening method for enrofloxacin in chicken muscle. Journal of Agricultural and Food Chemistry 51 (11):3249–53. doi: 10.1021/jf0211332.
  • Chen, W., J. Teng, L. Yao, J. Xu, and G. D. Liu. 2020. Selection of specific DNA aptamers for hetero-sandwich-based colorimetric determination of Campylobacter jejuni in food. Journal of Agricultural and Food Chemistry 68 (31):8455–61. doi: 10.1021/acs.jafc.0c02865.
  • Chen, J. L., F. Q. Xue, Z. H. Yu, L. T. Huang, and D. P. Tang. 2020. A polypyrrole-polydimethylsiloxane sponge-based compressible capacitance sensor with molecular recognition for point-of-care immunoassay. The Analyst 145 (22):7186–90. doi: 10.1039/d0an01653e.
  • Chen, Y., W. Yang, Z. Wang, Y. Peng, B. Li, L. Zhang, and L. Gong. 2010. Deposition of melamine in eggs from laying hens exposed to melamine contaminated feed. Journal of Agricultural and Food Chemistry 58 (6):3512–6. doi: 10.1021/jf904205y.
  • Chen, S., J. Zhang, N. Gan, F. Hu, T. Li, Y. Cao, and D. Pan. 2015. An on-site immunosensor for ractopamine based on a personal glucose meter and using magnetic β-cyclodextrin-coated nanoparticles for enrichment, and an invertase-labeled nanogold probe for signal amplification. Microchimica Acta 182 (3-4):815–22. doi: 10.1007/s00604-014-1392-5.
  • Clark, L. C., and C. Lyons. 1962. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 102:29–45. doi: 10.1111/j.1749-6632.1962.tb13623.x.
  • Clarke, S. F., and J. R. Foster. 2012. A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. British Journal of Biomedical Science 69 (2):83–93. doi: 10.1080/09674845.2012.12002443.
  • Cohen, M. L. 2000. Changing patterns of infectious disease. Nature 406 (6797):762–7. doi: 10.1038/35021206.
  • Das, A., X. Cui, V. Chivukula, and S. S. Iyer. 2018. Detection of enzymes, viruses, and bacteria using glucose meters. Analytical Chemistry 90 (19):11589–98. doi: 10.1021/acs.analchem.8b02960.
  • Deng, H., S. Y. Png, and Z. Gao. 2016. Highly sensitive detection of M.SssI DNA methyltransferase activity using a personal glucose meter. Analytical and Bioanalytical Chemistry 408 (21):5867–72. doi: 10.1007/s00216-016-9701-y.
  • Fang, R., G. H. Chen, L. X. Yi, Y. X. Shao, L. Zhang, Q. H. Cai, and J. Xiao. 2014. Determination of eight triazine herbicide residues in cereal and vegetable by micellar electrokinetic capillary chromatography with on-line sweeping. Food Chemistry 145:4–48.
  • Fang, J., Y. Guo, Y. Yang, W. Yu, Y. Tao, T. Dai, C. Yuan, and G. Xie. 2018. Portable and sensitive detection of DNA based on personal glucose meters and nanogold-functionalized PAMAM dendrimer. Sensors and Actuators B: Chemical 272:118–26. doi: 10.1016/j.snb.2018.05.086.
  • Feng, J., X. She, X. He, J. Zhu, Y. Li, and C. Deng. 2018. Synthesis of magnetic graphene/mesoporous silica composites with boronic acid-functionalized pore-walls for selective and efficient residue analysis of aminoglycosides in milk. Food Chemistry 239:612–21. doi: 10.1016/j.foodchem.2017.06.052.
  • Fritsche, J. 2018. Recent developments and digital perspectives in food safety and authenticity. Journal of Agricultural and Food Chemistry 66 (29):7562–7. doi: 10.1021/acs.jafc.8b00843.
  • Fu, X., K. Xu, J. Ye, J. Chen, and X. Feng. 2015. Glucoamylase-labeled nanogold flowers for in situ enhanced sensitivity of a glucometer-based enzyme immunoassay. Analytical Methods 7 (2):507–12. doi: 10.1039/C4AY02527J.
  • Fu, L. B., J. Y. Zhuang, W. Q. Lai, X. H. Que, M. H. Lu, and D. P. Tang. 2013. Portable and quantitative monitoring of heavy metal ions using DNAzyme-capped mesoporous silica nanoparticles with a glucometer readout. Journal of Materials Chemistry. B 1 (44):6123–8. doi: 10.1039/c3tb21155j.
  • Gao, Z. Q., D. P. Tang, M. D. Xu, G. N. Chen, and H. H. Yang. 2014. Nanoparticle-based pseudo hapten for target-responsive cargo release from a magnetic mesoporous silica nanocontainer. Chemical Communications (Cambridge, England) 50 (47):6256–8. doi: 10.1039/c4cc01511h.
  • Golge, O., and B. Kabak. 2018. Pesticide residues in table grapes and exposure assessment. Journal of Agricultural and Food Chemistry 66 (7):1701–3. doi: 10.1021/acs.jafc.7b05707.
  • Gu, C., T. Lan, H. Shi, and Y. Lu. 2015. Portable detection of melamine in milk using a personal glucose meter based on an in vitro selected structure-switching aptamer. Analytical Chemistry 87 (15):7676–82. doi: 10.1021/acs.analchem.5b01085.
  • Gu, C., F. Long, X. Zhou, and H. Shi. 2016. Portable detection of ochratoxin A in red wine based on a structure-switching aptamer using a personal glucometer. RSC Advances 6 (35):29563–9. doi: 10.1039/C5RA27880E.
  • Guo, Y., J. Tian, C. Liang, G. Zhu, and W. Gui. 2013. Multiplex bead-array competitive immunoassay for simultaneous detection of three pesticides in vegetables. Microchimica Acta 180 (5-6):387–95. doi: 10.1007/s00604-013-0944-4.
  • Hage, D. S. 1999. Immunoassays. Analytical Chemistry 71 (12):294R–304R. doi: 10.1021/a1999901+.
  • Hou, L., C. Zhu, X. Wu, G. Chen, and D. Tang. 2014. Bioresponsive controlled release from mesoporous silica nanocontainers with glucometer readout. Chemical Communications (Cambridge, England) 50 (12):1441–3. doi: 10.1039/c3cc48453j.
  • Hu, S., Y. Yu, and X. J. Xiao. 2017. Stress resistance, detection and disinfection of Cronobacter spp. in dairy products: A review. Food Control 283:32–8.
  • Huang, Z., Z. Xiong, Y. Chen, S. Hu, and W. J. Lai. 2019. Sensitive and matrix-tolerant lateral flow immunoassay based on fluorescent magnetic nanobeads for the detection of clenbuterol in swine urine. Journal of Agricultural and Food Chemistry 67 (10):3028–36. doi: 10.1021/acs.jafc.8b06449.
  • Huang, H., G. Zhao, and W. Dou. 2018. Portable and quantitative point-of-care monitoring of Escherichia coli O157:H7 using a personal glucose meter based on immunochromatographic assay. Biosensors & Bioelectronics 107:266–71. doi: 10.1016/j.bios.2018.02.027.
  • Hun, X., Y. Xu, and X. Luo. 2015. Peptide-based biosensor for the prostate-specific antigen using magnetic particle-bound invertase and a personal glucose meter for readout. Microchimica Acta 182 (9-10):1669–75. doi: 10.1007/s00604-015-1483-y.
  • Hun, X., Y. Xu, G. Xie, and X. Luo. 2015. Aptamer biosensor for highly sensitive and selective detection of dopamine using ubiquitous personal glucose meters. Sensors and Actuators B: Chemical 209:596–601. doi: 10.1016/j.snb.2014.11.135.
  • Jackson, L. S. 2009. Chemical food safety issues in the United States: Past, present, and future. Journal of Agricultural and Food Chemistry 57 (18):8161–70. doi: 10.1021/jf900628u.
  • John, B. M. J. 2018. Salmonella epidemiology: A whirlwind of change. Food Microbiology 71:55–9.
  • Joo, J., D. Kwon, H. H. Shin, K. H. Park, H. J. Cha, and S. Jeon. 2013. A facile and sensitive method for detecting pathogenic bacteria using personal glucose meters. Sensors and Actuators B: Chemical 188:1250–4. doi: 10.1016/j.snb.2013.08.027.
  • Junping, W., P. Mingfei, F. Guozhen, and W. Shuo. 2009. Preparation of a novel molecularly imprinted polymer by a sol-gel process for on-line solid-phase extraction coupled with high performance liquid chromatography to detect trace enrofloxacin in fish and chicken samples. Microchimica Acta 166 (3-4):295–302. doi: 10.1007/s00604-009-0205-8.
  • Knowles, N. J., and A. R. Samuel. 2003. Molecular epidemiology of foot-and-mouth disease virus. Infection, Genetics and Evolution 91:0–80.
  • Kwon, D., H. Lee, H. Yoo, J. Hwang, D. Lee, and S. Jeon. 2018. Facile method for enrofloxacin detection in milk using a personal glucose meter. Sensors and Actuators B: Chemical 254:935–9. doi: 10.1016/j.snb.2017.07.118.
  • Lai, W. Q., Q. H. Wei, M. D. Xu, J. Y. Zhuang, and D. P. Tang. 2017. Enzyme-controlled dissolution of MnO2 nanoflakes with enzyme cascade amplification for colorimetric immunoassay. Biosensors & Bioelectronics 89 (Pt 1):645–51. doi: 10.1016/j.bios.2015.12.035.
  • Lai, W. Q., Q. H. Wei, J. Y. Zhuang, M. H. Lu, and D. P. Tang. 2016. Fenton reaction-based colorimetric immunoassay for sensitive detection of brevetoxin B. Biosensors & Bioelectronics 80:249–56. doi: 10.1016/j.bios.2016.01.088.
  • Lai, W. Q., J. Y. Zhuang, and D. P. Tang. 2015. A novel colorimetric immunoassay for ultrasensitive monitoring of Brevetoxin B based on enzyme-controlled chemical conversion of sulfite to sulfate. Journal of Agricultural and Food Chemistry 63 (7):1982–9. doi: 10.1021/acs.jafc.5b00425.
  • Lee, K. M., T. J. Herrman, Y. Bisrat, and S. C. Murray. 2014. Feasibility of surface-enhanced Raman spectroscopy for rapid detection of aflatoxins in maize. Journal of Agricultural and Food Chemistry 62 (19):4466–74. doi: 10.1021/jf500854u.
  • Lee, H. J., and D. Ryu. 2017. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. Journal of Agricultural and Food Chemistry 65 (33):7034–51. doi: 10.1021/acs.jafc.6b04847.
  • Lin, B., D. Liu, J. Yan, Z. Qiao, Y. Zhong, J. Yan, Z. Zhu, T. Ji, and C. J. Yang. 2016. Enzyme-encapsulated liposome-linked immunosorbent assay enabling sensitive personal glucose meter readout for portable detection of disease biomarkers. ACS Applied Materials & Interfaces 8 (11):6890–7. doi: 10.1021/acsami.6b00777.
  • Lin, Y. X., Q. Zhou, Y. P. Lin, D. P. Tang, G. N. Chen, and D. P. Tang. 2015. Simple and sensitive detection of aflatoxin B1 within five minute using a non-conventional competitive immunosensing mode. Biosensors & Bioelectronics 74:680–6. doi: 10.1016/j.bios.2015.07.029.
  • Lin, Y. X., Q. Zhou, Y. P. Lin, D. P. Tang, R. Niessner, and D. Knopp. 2015. Enzymatic hydrolysate-induced displacement reaction with multifunctional silica beads doped with horseradish peroxidase-thionine conjugate for ultrasensitive electrochemical immunoassay. Analytical Chemistry 87 (16):8531–40. doi: 10.1021/acs.analchem.5b02253.
  • Lin, Y. X., Q. Zhou, and D. P. Tang. 2017. Dopamine-loaded liposomes for in-situ amplified photoelectrochemical immunoassay of AFB1 to enhance photocurrent of Mn2+-Doped Zn3(OH)2V2O7 nanobelts. Analytical Chemistry 89 (21):11803–10. doi: 10.1021/acs.analchem.7b03451.
  • Lin, Y. X., Q. Zhou, D. P. Tang, R. Niessner, and D. Knopp. 2017. Signal-on photoelectrochemical immunoassay for aflatoxin B1 based on enzymatic product-etching MnO2 nanosheets for dissociation of carbon dots. Analytical Chemistry 89 (10):5637–45. doi: 10.1021/acs.analchem.7b00942.
  • Lin, Y. X., Q. Zhou, D. P. Tang, R. Niessner, H. H. Yang, and D. Knopp. 2016. Silver nanolabels-assisted ion-exchange reaction with CdTe quantum dots mediated exciton trapping for signal-on photoelectrochemical immunoassay of mycotoxins. Analytical Chemistry 88 (15):7858–66. doi: 10.1021/acs.analchem.6b02124.
  • Lin, Y. X., Q. Zhou, Y. Y. Zeng, and D. P. Tang. 2018. Liposome-coated mesoporous silica nanoparticles loaded with L-cysteine for photoelectrochemical immunoassay of aflatoxin B1. Microchimica Acta 185:311.
  • Li, G. Z., and D. Tang. 2017. Bioresponsive controlled glucose release from TiO2 nanotube arrays: A simple and portable biosensing system for cocaine with a glucometer readout. Journal of Materials Chemistry B 5 (28):5573–9. doi: 10.1039/C7TB00670E.
  • Liu, X., F. He, F. Zhang, Z. Zhang, Z. Huang, and J. Liu. 2020. Dopamine and melamine binding to gold nanoparticles dominates their aptamer-based label-free colorimetric sensing. Analytical Chemistry 92 (13):9370–8. doi: 10.1021/acs.analchem.0c01773.
  • Liu, R., Y. Huang, Y. Ma, S. Jia, M. Gao, J. Li, H. Zhang, D. Xu, M. Wu, Y. Chen, et al. 2015. Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A. ACS Applied Materials & Interfaces 7 (12):6982–90. doi: 10.1021/acsami.5b01120.
  • Liu, Y., and Y. Li. 2001. An antibody-immobilized capillary column as a bioseparator/bioreactor for detection of Escherichia coli O157:H7 with absorbance measurement. Analytical Chemistry 73 (21):5180–3. doi: 10.1021/ac0104936.
  • Li, F., R. Zhang, H. Kang, Y. Hu, Y. Liu, and J. Zhu. 2017. Facile and sensitive detection of clenbuterol in pork using a personal glucose meter. Analytical Methods 9 (46):6507–12. doi: 10.1039/C7AY01826F.
  • Li, J., X. Zhao, L. J. Chen, H. L. Qian, W. L. Wang, C. Yang, and X. P. Yan. 2019. p-Bromophenol-enhanced bienzymatic chemiluminescence competitive immunoassay for ultrasensitive determination of aflatoxin B1. Analytical Chemistry 91 (20):13191–7. doi: 10.1021/acs.analchem.9b03579.
  • Mercader, J. V., and A. Abad-Fuentes. 2009. Monoclonal antibody generation and direct competitive enzyme-linked immunosorbent assay evaluation for the analysis of the fungicide fenhexamid in must and wine. Journal of Agricultural and Food Chemistry 57 (12):5129–35. doi: 10.1021/jf900867u.
  • Moore, J. C., J. Spink, and M. Lipp. 2012. Development and application of a database of food ingredient fraud and economically motivated adulteration from 1980 to 2010. Journal of Food Science 77 (4):R118–R126. doi: 10.1111/j.1750-3841.2012.02657.x.
  • Ogihara, H., Y. Horimoto, Z. H. Wang, B. J. Skura, and S. Nakai. 2000. Solid phase microextraction/gas chromatography of Salmonella-infected beef. Journal of Agricultural and Food Chemistry 48 (6):2253–9. doi: 10.1021/jf991201t.
  • Paudel, S., C. Cerbu, C. E. Astete, S. M. Louie, C. Sabliov, and D. F. Rodrigues. 2019. Enrofloxacin-impregnated PLGA nanocarriers for efficient therapeutics and diminished generation of reactive oxygen species. ACS Applied Nano Materials 2 (8):5035–43. doi: 10.1021/acsanm.9b00970.
  • Pennings, J. M. E., B. Wansink, and M. T. G. Meulenberg. 2002. A note on modeling consumer reactions to a crisis: The case of the Mad cow disease. International Journal of Research in Marketing 19 (1):91–100. doi: 10.1016/S0167-8116(02)00050-2.
  • Pundir, C. S., Malik, and A. Preety. 2019. Bio-sensing of organophosphorus pesticides: A review. Biosensors & Bioelectronics 140:111348. doi: 10.1016/j.bios.2019.111348.
  • Puoci, F., C. Garreffa, F. Iemma, R. Muzzalupo, U. G. Spizzirri, and N. Picci. 2005. Molecularly imprinted solid phase extraction for detection of Sudan I in food matrices. Food Chemistry 93 (2):349–53. doi: 10.1016/j.foodchem.2004.11.014.
  • Qiu, Z. L., J. Shu, G. X. Jin, M. D. Xu, Q. H. Wei, G. N. Chen, and D. P. Tang. 2016. Invertase-labeling gold-dendrimer for in situ amplified detection mercury(II) with glucometer readout and thymine-Hg(2+)-thymine coordination chemistry. Biosensors & Bioelectronics 77:681–6. doi: 10.1016/j.bios.2015.10.044.
  • Que-Gewirth, N. S., and B. A. Sullenger. 2007. Gene therapy progress and prospects: RNA aptamers. Gene Therapy 14 (4):283–91. doi: 10.1038/sj.gt.3302900.
  • Ripollés, D., S. Harouna, J. A. Parrón, I. Arenales, M. Calvo, M. D. Pérez, and L. J. Sánchez. 2017. Inhibition of Cronobacter sakazakii adhesion to caco-2 cells by commercial dairy powders and raw buttermilk. Journal of Agricultural and Food Chemistry 65 (5):1043–50. doi: 10.1021/acs.jafc.6b04971.
  • Ritieni, A. 2003. Patulin in Italian commercial apple products. Journal of Agricultural and Food Chemistry 51 (20):6086–90. doi: 10.1021/jf034523c.
  • Robbins, K. S., R. Shah, S. MacMahon, and L. S. Jager. 2015. Development of a liquid chromatography-tandem mass spectrometry method for the determination of sulfite in food. Journal of Agricultural and Food Chemistry 63 (21):5126–32. doi: 10.1021/jf505525z.
  • Sachan, A., M. Ilgu, A. Kempema, G. A. Kraus, and M. Nilsen-Hamilton. 2016. Specificity and ligand affinities of the cocaine aptamer: Impact of structural features and physiological NaCl. Analytical Chemistry 88 (15):7715–23. doi: 10.1021/acs.analchem.6b01633.
  • Scallan, E., R. M. Hoekstra, F. J. Angulo, R. V. Tauxe, M. A. Widdowson, S. L. Roy, J. L. Jones, and P. M. Griffin. 2011. CDC estimates of foodborne illness in the United States. Emerging Infectious Diseases 17 (1):7–15. doi: 10.3201/eid1701.P11101.
  • Shen, B., J. Li, W. Cheng, Y. Yan, R. Tang, Y. Li, H. Ju, and S. Ding. 2015. Electrochemical aptasensor for highly sensitive determination of cocaine using a supramolecular aptamer and rolling circle amplification. Microchimica Acta 182 (1-2):361–7. doi: 10.1007/s00604-014-1333-3.
  • Singh, B. 2009. Organophosphorus-degrading bacteria: Ecology and industrial applications. Nature Reviews. Microbiology 7 (2):156–64. doi: 10.1038/nrmicro2050.
  • Song, C., Q. Liu, A. Zhi, J. Yang, Y. Zhi, Q. Li, X. Hu, R. Deng, J. Casas, L. Tang, et al. 2011. Development of a lateral flow colloidal gold immunoassay strip for the rapid detection of olaquindox residues. Journal of Agricultural and Food Chemistry 59 (17):9319–26. doi: 10.1021/jf202213m.
  • Stolker, A. A. M., and U. A. T. Brinkman. 2005. Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals-A review. Journal of Chromatography A 1067 (1-2):15–53. doi: 10.1016/j.chroma.2005.02.037.
  • Sun, C.-Y., M.-W. Zhang, H.-K. Li, Y.-S. Li, H. Ping, J.-J. Guo, and T.-H. Zhang. 2012. Gold nanoparticles-based colorimetric sensing of melamine in milk and eggs. Chinese Journal of Analytical Chemistry (Chinese Version) 40 (3):386–90. doi: 10.3724/SP.J.1096.2012.10857.
  • Su, L., Y. Song, C. Fu, and D. Tang. 2019. Etching reaction-based photoelectrochemical immunoassay of aflatoxin B1 in foodstuff using cobalt oxyhydroxide nanosheets-coating cadmium sulfide nanoparticles as the signal tags. Analytica Chimica Acta 1052:49–56. doi: 10.1016/j.aca.2018.11.059.
  • Su, L. S., P. Tong, L. J. Zhang, Z. B. Luo, C. L. Fu, D. P. Tang, and Y. Y. Zhang. 2019. Photoelectrochemical immunoassay of aflatoxin B1 in foodstuff based on amorphous TiO2 and CsPbBr3 perovskite nanocrystals. The Analyst 144 (16):4880–6. doi: 10.1039/c9an00994a.
  • Taebi, S., M. Keyhanfar, and A. Noorbakhsh. 2018. A novel method for sensitive, low-cost and portable detection of hepatitis B surface antigen using a personal glucose meter. Journal of Immunological Methods 458:26–32. doi: 10.1016/j.jim.2018.04.001.
  • Tang, J., Y. Huang, H. Liu, C. Zhang, and D. Tang. 2016. Novel glucometer-based immunosensing strategy suitable for complex systems with signal amplification using surfactant-responsive cargo release from glucose-encapsulated liposome nanocarriers. Biosensors & Bioelectronics 79:508–14. doi: 10.1016/j.bios.2015.12.097.
  • Tang, Y., J. Lan, X. Gao, X. Liu, D. Zhang, L. Wei, Z. Gao, and J. Li. 2016. Determination of clenbuterol in pork and potable water samples by molecularly imprinted polymer through the use of covalent imprinting method. Food Chemistry 190:952–9. doi: 10.1016/j.foodchem.2015.06.067.
  • Tang, D., Y. Lin, Q. Zhou, Y. Lin, P. Li, R. Niessner, and D. Knopp. 2014. Low-cost and highly sensitive immunosensing platform for aflatoxins using one-step competitive displacement reaction mode and portable glucometer-based detection. Analytical Chemistry 86 (22):11451–8. doi: 10.1021/ac503616d.
  • Tang, W., J. Yang, F. Wang, J. Wang, and Z. Li. 2019. Thiocholine-triggered reaction in personal glucose meters for portable quantitative detection of organophosphorus pesticide. Analytica Chimica Acta 1060:97–102. doi: 10.1016/j.aca.2019.01.051.
  • Teng, J., Y. Ye, L. Yao, C. Yan, K. Cheng, F. Xue, D. Pan, B. Li, and W. Chen. 2017. Rolling circle amplification based amperometric aptamer/immunohybrid biosensor for ultrasensitive detection of Vibrio parahaemolyticus. Microchimica Acta 184 (9):3477–85. doi: 10.1007/s00604-017-2383-0.
  • Tittlemier, S. A., B. P. Lau, C. Menard, C. Corrigan, M. Sparling, D. Gaertner, K. Pepper, and M. Feeley. 2009. Melamine in infant formula sold in Canada: Occurrence and risk assessment. Journal of Agricultural and Food Chemistry 57 (12):5340–4. doi: 10.1021/jf9005609.
  • Velusamy, V., K. Arshak, O. Korostynska, K. Oliwa, and C. Adley. 2010. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnology Advances 28 (2):232–54. doi: 10.1016/j.biotechadv.2009.12.004.
  • Wan, Y., P. Qi, Y. Zeng, Y. Sun, and D. Zhang. 2016. Invertase-mediated system for simple and rapid detection of pathogen. Sensors and Actuators B: Chemical 233:454–8. doi: 10.1016/j.snb.2016.04.098.
  • Wang, Z., Z. Chen, N. Gao, J. Ren, and X. Qu. 2015. Transmutation of personal glucose meters into portable and highly sensitive microbial pathogen detection platform. Small (Weinheim an Der Bergstrasse, Germany) 11 (37):4970–5. doi: 10.1002/smll.201500944.
  • Wang, J., X. Xie, J. Feng, J. C. Chen, X. J. Du, J. Luo, X. Lu, and S. Wang. 2015. Rapid detection of Listeria monocytogenes in milk using confocal micro-Raman spectroscopy and chemometric analysis. International Journal of Food Microbiology 204:66–74. doi: 10.1016/j.ijfoodmicro.2015.03.021.
  • Wang, Y. K., Y. X. Yan, W. H. Ji, H. A. Wang, S. Q. Li, Q. Zou, and J. H. Sun. 2013. Rapid simultaneous quantification of zearalenone and fumonisin B1 in corn and wheat by lateral flow dual immunoassay. Journal of Agricultural and Food Chemistry 61 (21):5031–6. doi: 10.1021/jf400803q.
  • Wang, L., F. Zhu, M. Chen, Y. Xiong, Y. Zhu, S. Xie, Q. Liu, H. Yang, and X. Chen. 2019. Development of a “Dual Gates” locked, target-triggered nanodevice for point-of-care testing with a glucometer readout. ACS Sensors 4 (4):968–76. doi: 10.1021/acssensors.9b00072.
  • Winter, C. K. 2012. Pesticide residues in imported, organic, and “suspect” fruits and vegetables. Journal of Agricultural and Food Chemistry 60 (18):4425–9. doi: 10.1021/jf205131q.
  • Xia, X., H. Wang, H. Yang, S. Deng, R. Deng, Y. Dong, and Q. He. 2018. Dual-terminal stemmed aptamer beacon for label-free detection of aflatoxin B1 in broad bean paste and peanut oil via aggregation-induced emission. Journal of Agricultural and Food Chemistry 66 (46):12431–8. doi: 10.1021/acs.jafc.8b05217.
  • Xia, X., Y. Wang, H. Yang, Y. Dong, K. Zhang, Y. Lu, R. Deng, and Q. He. 2019. Enzyme-free amplified and ultrafast detection of aflatoxin B1 using dual-terminal proximity aptamer probes. Food Chemistry 283:32–8. doi: 10.1016/j.foodchem.2018.12.117.
  • Xiang, Y., T. Lan, and Y. Lu. 2014. Using the widely available blood glucose meter to monitor insulin and HbA1c. Journal of Diabetes Science and Technology 8 (4):855–8. doi: 10.1177/1932296814532875.
  • Xiang, Y., and Y. Lu. 2011. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nature Chemistry 3 (9):697–703. doi: 10.1038/nchem.1092.
  • Xiang, Y., and Y. Lu. 2012a. Portable and quantitative detection of protein biomarkers and small molecular toxins using antibodies and ubiquitous personal glucose meters. Analytical Chemistry 84 (9):4174–8. doi: 10.1021/ac300517n.
  • Xiang, Y., and Y. Lu. 2012b. Using commercially available personal glucose meters for portable quantification of DNA. Analytical Chemistry 84 (4):1975–80. doi: 10.1021/ac203014s.
  • Xiang, Y., and Y. Lu. 2013. An invasive DNA approach toward a general method for portable quantification of metal ions using a personal glucose meter. Chemical Communications (Cambridge, England) 49 (6):585–7. doi: 10.1039/c2cc37156a.
  • Xiao, D., Y. Jiang, and Y. Bi. 2018. Molecularly imprinted polymers for the detection of illegal drugs and additives: A review. Microchimica Acta. 185: 247–66.
  • Xiong, K., H. J. Liu, and L. T. Li. 2012. Product identification and safety evaluation of aflatoxin B1 decontaminated by electrolyzed oxidizing water. Journal of Agricultural and Food Chemistry 60 (38):9770–8. doi: 10.1021/jf303478y.
  • Xu, J., B. Jiang, J. Xie, Y. Xiang, R. Yuan, and Y. Chai. 2012. Sensitive point-of-care monitoring of HIV related DNA sequences with a personal glucometer. Chemical Communications (Cambridge, England) 48 (87):10733–5. doi: 10.1039/c2cc35941c.
  • Xu, X. T., K. Y. Liang, and J. Y. Zeng. 2015a. Highly sensitive and portable mercury(ii) ion sensor using personal glucose meter. Analytical Methods 7:81–5.
  • Xu, X. T., K. Y. Liang, and J. Y. Zeng. 2015b. Portable and sensitive quantitative detection of DNA based on personal glucose meters and isothermal circular strand-displacement polymerization reaction. Biosensors & Bioelectronics 64:671–5. doi: 10.1016/j.bios.2014.09.094.
  • Xu, G., J. Zhao, N. Liu, M. Yang, Q. Zhao, C. Li, and M. Liu. 2019. Structure-guided post-SELEX optimization of an ochratoxin A aptamer. Nucleic Acids Research 47 (11):5963–72. doi: 10.1093/nar/gkz336.
  • Yan, H., D. Xu, H. Meng, L. Shi, and L. Li. 2015. Food poisoning by clenbuterol in China. Quality Assurance and Safety of Crops & Foods 7 (1):27–35. doi: 10.3920/QAS2014.x006.
  • Yan, L., Z. Zhu, Y. Zou, Y. Huang, D. Liu, S. Jia, D. Xu, M. Wu, Y. Zhou, S. Zhou, et al. 2013. Target-responsive “sweet” hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets. Journal of the American Chemical Society 135 (10):3748–51. doi: 10.1021/ja3114714.
  • Yao, L., Y. Ye, J. Teng, F. Xue, D. Pan, B. Li, and W. Chen. 2017. In vitro isothermal nucleic acid amplification assisted surface-enhanced Raman spectroscopic for ultrasensitive detection of Vibrio parahaemolyticus. Analytical Chemistry 89 (18):9775–80. doi: 10.1021/acs.analchem.7b01717.
  • Ye, L., G. Zhao, and W. Dou. 2017. An ultrasensitive sandwich immunoassay with a glucometer readout for portable and quantitative detection of Cronobacter sakazakii. Analytical Methods 9 (44):6286–92. doi: 10.1039/C7AY02222K.
  • Ye, R., C. Zhu, Y. Song, J. Song, S. Fu, Q. Lu, X. Yang, M. J. Zhu, D. Du, H. Li, et al. 2016. One-pot bioinspired synthesis of all-inclusive protein-protein nanoflowers for point-of-care bioassay: Detection of E. coli O157:H7 from milk. Nanoscale 8 (45):18980–6. doi: 10.1039/c6nr06870g.
  • Yin, W., J. Liu, T. Zhang, W. Li, W. Liu, M. Meng, F. He, Y. Wan, C. Feng, S. Wang, et al. 2010. Preparation of monoclonal antibody for melamine and development of an indirect competitive ELISA for melamine detection in raw milk, milk powder, and animal feeds. Journal of Agricultural and Food Chemistry 58 (14):8152–7. doi: 10.1021/jf1006209.
  • Yu, Z. Z., G. N. Cai, P. Tong, and D. P. Tang. 2019. Saw-toothed microstructure-based flexible pressure sensor as the signal readout for point-of-care immunoassay. ACS Sensors 4 (9):2272–6. doi: 10.1021/acssensors.9b01168.
  • Yu, Z. Z., Y. Tang, G. N. Cai, R. R. Ren, and D. P. Tang. 2019. Paper electrode-based flexible pressure sensor for point-of-care immunoassay with digital multimeter. Analytical Chemistry 91 (2):1222–6. doi: 10.1021/acs.analchem.8b04635.
  • Yu, F. Y., M. M. Vdovenko, J. J. Wang, and I. Y. Sakharov. 2011. Comparison of enzyme-linked immunosorbent assays with chemiluminescent and colorimetric detection for the determination of ochratoxin A in food. Journal of Agricultural and Food Chemistry 59 (3):809–13. doi: 10.1021/jf103261u.
  • Yu, F., S. Yu, L. Yu, Y. Li, Y. Wu, H. Zhang, L. Qu, and P. d. B. Harrington. 2014. Determination of residual enrofloxacin in food samples by a sensitive method of chemiluminescence enzyme immunoassay. Food Chemistry 149:71–5. doi: 10.1016/j.foodchem.2013.10.024.
  • Zachariasova, M., M. Vaclavikova, O. Lacina, L. Vaclavik, and J. Hajslova. 2012. Deoxynivalenol oligoglycosides: New "masked" fusarium toxins occurring in malt, beer, and breadstuff. Journal of Agricultural and Food Chemistry 60 (36):9280–91. doi: 10.1021/jf302069z.
  • Zhang, Y., Y. Hu, S. Deng, Z. Yuan, C. Li, Y. Lu, Q. He, M. Zhou, and R. Deng. 2020. Engineering Multivalence Aptamer Probes for Amplified and Label-Free Detection of Antibiotics in Aquatic Products. Journal of Agricultural and Food Chemistry 68 (8):2554–61. doi:10.1021/acs.jafc.0c00141.
  • Zhang, J., Z. Shen, Y. Xiang, and Y. Lu. 2016. Integration of solution-based assays onto lateral flow device for one-step quantitative point-of-care diagnostics using personal glucose meter. ACS Sensors 1 (9):1091–6. doi: 10.1021/acssensors.6b00270.
  • Zhang, D., P. Zuo, and B. C. Ye. 2008. Bead-based mesofluidic system for residue analysis of chloramphenicol. Journal of Agricultural and Food Chemistry 56 (21):9862–7. doi: 10.1021/jf802093a.
  • Zhou, Y., X. L. Tian, Y. S. Li, F. G. Pan, Y. Y. Zhang, J. H. Zhang, L. Yang, X. R. Wang, H. L. Ren, S. Y. Lu, et al. 2011. An enhanced ELISA based on modified colloidal gold nanoparticles for the detection of Pb(II). Biosensors & Bioelectronics 26 (8):3700–4. doi: 10.1016/j.bios.2011.02.008.
  • Zhou, J. W., X. M. Zou, S. H. Song, and G. H. Chen. 2018. Quantum dots applied to methodology on detection of pesticide and veterinary drug residues. Journal of Agricultural and Food Chemistry 66 (6):1307–19. doi: 10.1021/acs.jafc.7b05119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.