360
Views
4
CrossRef citations to date
0
Altmetric
Reviews

In vivo assessments for predicting the bioavailability of nanoencapsulated food bioactives and the safety of nanomaterials

, &

References

  • Akbari-Alavijeh, S., R. Shaddel, and S. M. Jafari. 2020. Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food Hydrocolloids. 105:105774. doi: 10.1016/j.foodhyd.2020.105774.
  • Akhtar, F., M. M. Alam, and S. Kumar. 2012. Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnology Advances 30 (1):310–20. doi: 10.1016/j.biotechadv.2011.05.009.
  • Alaraby, M., B. Annangi, A. Hernández, A. Creus, and R. Marcos. 2015. A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model. Journal of Hazardous Materials 296:166–74. doi: 10.1016/j.jhazmat.2015.04.053.
  • Anwar, M., M. H. Warsi, N. Mallick, S. Akhter, S. Gahoi, G. K. Jain, S. Talegaonkar, F. J. Ahmad, and R. K. Khar. 2011. Enhanced bioavailability of nano-sized chitosan – atorvastatin conjugate after oral administration to rats. European Journal of Pharmaceutical Sciences 44 (3):241–9. doi: 10.1016/j.ejps.2011.08.001.
  • Arpagaus, C., A. Collenberg, D. Rütti, E. Assadpour, and S. M. Jafari. 2018. Nano spray drying for encapsulation of pharmaceuticals. International Journal of Pharmaceutics 546 (1-2):194–214. doi: 10.1016/j.ijpharm.2018.05.037.
  • Bettini, S., E. Boutet-Robinet, C. Cartier, C. Coméra, E. Gaultier, J. Dupuy, N. Naud, S. Taché, P. Grysan, S. Reguer, et al. 2017. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Scientific Reports 7:40373. doi: 10.1038/srep40373.
  • Bhattacharya, S., Q. Zhang, P. L. Carmichael, K. Boekelheide, and M. E. Andersen. 2011. Toxicity testing in the 21 st century: Defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. PLoS One 6 (6):e20887. doi: 10.1371/journal.pone.0020887.
  • Bhattacharyya, S. S., S. Paul, A. De, D. Das, A. Samadder, N. Boujedaini, and A. R. Khuda-bukhsh. 2011. Poly (lactide-co-glycolide) acid nanoencapsulation of a synthetic coumarin: Cytotoxicity and bio-distribution in mice, in cancer cell line and interaction with calf thymus DNA as target. Toxicology and Applied Pharmacology 253 (3):270–81. doi: 10.1016/j.taap.2011.04.010.
  • Bhushani, A., U. Harish, and C. Anandharamakrishnan. 2017. Nanodelivery of nutrients for improved bioavailability. In Nutrient delivery, ed. A. M. Grumezescu, 369–411. London, UK: Elsevier Inc. doi: 10.1016/B978-0-12-804304-2/00010-X.
  • Bilia, A., C. Guccione, B. Isacchi, C. Righeschi, F. Firenzuoli, and M. Bergonzi. 2014. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evidence-Based Complementary and Alternative Medicine 2014:1–14. doi: 10.1155/2014/651593.
  • Bouwmeester, H., P. Brandhoff, H. J. P. Marvin, S. Weigel, and R. J. B. Peters. 2014. State of the safety assessment and current use of nanomaterials in food and food production. Trends in Food Science & Technology 40 (2):200–10. doi: 10.1016/j.tifs.2014.08.009.
  • Brandelli, A. 2020. The interaction of nanostructured antimicrobials with biological systems: Cellular uptake, trafficking and potential toxicity. Food Science and Human Wellness 9 (1):8–20. doi: 10.1016/j.fshw.2019.12.003.
  • Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77 (1):71–94. doi: 10.1002/cbic.200300625.
  • Briviba, K., K. Schnäbele, E. Schwertle, M. Blockhaus, and G. Rechkemmer. 2001. β-Carotene inhibits growth of human colon carcinoma cells in vitro by induction of apoptosis. Biological Chemistry 382 (12):1663–8. doi: 10.1515/BC.2001.201.
  • Calvo, D. R., P. Martorell, S. Genoves, and L. Gosalbez. 2016. Development of novel functional ingredients: Need for testing systems and solutions with Caenorhabditis elegans. Trends in Food Science & Technology 54:197–203. doi: 10.1016/j.tifs.2016.05.006.
  • Card, J. W., T. S. Jonaitis, S. Tafazoli, and B. A. Magnuson. 2011. An appraisal of the published literature on the safety and toxicity of food-related nanomaterials. Critical Reviews in Toxicology 41 (1):20–49. doi: 10.3109/10408444.2010.524636.
  • Chalew, T. E. A., and K. J. Schwab. 2013. Toxicity of commercially available engineered nanoparticles to Caco-2 and SW480 human intestinal epithelial cells. Cell Biology and Toxicology 29 (2):101–16. doi: 10.1007/s10565-013-9241-6.
  • Chau, C. F., S. H. Wu, and G. C. Yen. 2007. The development of regulations for food nanotechnology. Trends in Food Science & Technology 18 (5):269–80. doi: 10.1016/j.tifs.2007.01.007.
  • Chen, Z., J. Sun, H. Chen, Y. Xiao, D. Liu, and J. Chen. 2010. Comparative pharmacokinetics and bioavailability studies of quercetin, kaempferol and isorhamnetin after oral administration of Ginkgo biloba extracts, Ginkgo biloba extract phospholipid complexes and Ginkgo biloba extract solid dispersions in rats. Fitoterapia 81 (8):1045–52. doi: 10.1016/j.fitote.2010.06.028.
  • Chen, Z., Y. Wang, L. Zhuo, S. Chen, L. Zhao, T. Chen, Y. Li, W. Zhang, X. Gao, P. Li, et al. 2015. Interaction of titanium dioxide nanoparticles with glucose on young rats after oral administration. Nanomedicine: Nanotechnology, Biology and Medicine 11 (7):1633–42. doi: 10.1016/j.nano.2015.06.002.
  • Chiou, Y., S. Sang, K. Cheng, C. Ho, Y. Wang, and M. Pan. 2013. Peracetylated (−) -epigallocatechin-3-gallate (AcEGCG) potently prevents skin carcinogenesis by suppressing the PKD1-dependent signaling pathway in CD34 + skin stem cells and skin tumors. Carcinogenesis 34:1315–22. doi: 10.1093/carcin/bgt042.
  • Choi, J., H. Kim, P. Kim, J. Eunhye, K. Hyun-Mi, L. Moo-Yeol, J. Seon-Mi, and P. Kwangsik. 2015. Toxicity of zinc oxide nanoparticles in rats treated by two different routes: Single intravenous injection and single oral administration. Journal of Toxicology and Environmental Health, Part A 78 (4):226–43. doi: 10.1080/15287394.2014.949949.
  • Chopraa, S., K. Kohlia, S. Aroraa, and R. K. Khara. 2011. In-situ nano-emulsification technique for enhancing oral bioavailability of curcumin and thereby evaluating its anticancer efficacy on human lung adeno-carcinoma epithelial cell line. Journal of Pharmacy Research 4:4087–93.
  • Chung, H. E., J. Yu, M. Baek, J. A. Lee, M. S. Kim, S. H. Kim, E. H. Maeng, J. K. Lee, J. Jeong, and S. J. Choi. 2013. Toxicokinetics of zinc oxide nanoparticles in rats. Journal of Physics: Conference Series 429:012037. doi: 10.1088/1742-6596/429/1/012037.
  • Chupani, L., H. Niksirat, J. Velíšek, A. Stará, Š. Hradilová, J. Kolařík, A. Panáček, and E. Zusková. 2018. Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): Tissue accumulation and physiological responses. Ecotoxicology and Environmental Safety 147:110–6. doi: 10.1016/j.ecoenv.2017.08.024.
  • Chusuei, C. C., C. H. Wu, S. Mallavarapu, F. Y. S. Hou, C. M. Hsu, J. G. Winiarz, R. S. Aronstam, and Y. W. Huang. 2013. Cytotoxicity in the age of nano: The role of fourth period transition metal oxide nanoparticle physicochemical properties. Chemico-Biological Interactions 206 (2):319–26. doi: 10.1016/j.cbi.2013.09.020.
  • Dasgupta, N., and S. Ranjan. 2018. Nano-food toxicity and regulations. In An introduction to food grade nanoemulsions, ed. N. Dasgupta and Sh. Ranjan, 151–79. Cham, Switzerland: Springer.
  • Date, A. A., M. S. Nagarsenker, S. Patere, V. Dhawan, R. P. Gude, P. A. Hassan, V. Aswal, F. Steiniger, J. Thamm, and A. Fahr. 2011. Lecithin-based novel cationic nanocarriers (Leciplex) II: Improving therapeutic efficacy of quercetin on oral administration. Molecular Pharmaceutics 8 (3):716–26. doi: 10.1021/mp100305h.
  • Dima, C., E. Assadpour, S. Dima, and S. M. Jafari. 2020a. Bioactive-loaded nanocarriers for functional foods: From designing to bioavailability. Current Opinion in Food Science 33:21–9. doi: 10.1016/j.cofs.2019.11.006.
  • Dima, C., E. Assadpour, S. Dima, and S. M. Jafari. 2020b. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Comprehensive Reviews in Food Science and Food Safety 19 (3):954–94. doi: 10.1111/1541-4337.12547.
  • Dube, A., J. A. Nicolazzo, and I. Larson. 2011. Chitosan nanoparticles enhance the plasma exposure of (−)-epigallocatechin gallate in mice through an enhancement in intestinal stability. European Journal of Pharmaceutical Sciences 44 (3):422–6. doi: 10.1016/j.ejps.2011.09.004.
  • Falsafi, S. R., H. Rostamabadi, E. Assadpour, and S. M. Jafari. 2020. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Advances in Colloid and Interface Science 280:102166. doi: 10.1016/j.cis.2020.102166.
  • Fröhlich, E. E., and E. Fröhlich. 2016. Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. International Journal of Molecular Sciences 17:509. doi: 10.3390/ijms17040509.
  • Fujihara, J., M. Tongu, H. Hashimoto, T. Yamada, K. Kimura-Kataoka, T. Yasuda, Y. Fujita, and H. Takeshita. 2015. Distribution and toxicity evaluation of ZnO dispersion nanoparticles in single intravenously exposed mice. The Journal of Medical Investigation 62 (1.2):45–50. doi: 10.2152/jmi.62.45.
  • Gaillet, S., and J.-M. Rouanet. 2015. Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms–A review. Food and Chemical Toxicology 77:58–63. doi: 10.1016/j.fct.2014.12.019.
  • Gaonkar, A. G., N. Vasisht, A. R. Khare, and R. Sobel. 2014. Microencapsulation in the food industry: A practical implementation guide. London, UK: Elsevier.
  • Ghosh, D., S. T. Choudhury, S. Ghosh, A. K. Mandal, S. Sarkar, A. Ghosh, K. D. Saha, and N. Das. 2012. Chemico-biological interactions nanocapsulated curcumin: Oral chemopreventive formulation against diethylnitrosamine induced hepatocellular carcinoma in rat. Chemico-Biological Interactions 195:206–14. doi: 10.1016/j.cbi.2011.12.004.
  • Gonzalez-Moragas, L., P. Berto, C. Vilches, R. Quidant, A. Kolovou, R. Santarella-Mellwig, Y. Schwab, S. Stürzenbaum, A. Roig, and A. Laromaine. 2017. In vivo testing of gold nanoparticles using the Caenorhabditis elegans model organism. Acta Biomaterialia 53:598–609. doi: 10.1016/j.actbio.2017.01.080.
  • Gopi, S., A. Amalraj, J. T. Haponiuk, and S. Thomas. 2016. Biotherapeutic discovery introduction of nanotechnology in herbal drugs and nutraceutical: A review. Journal of Nanomedicine & Biotherapeutic Discovery 6 (2):1–8. doi: 10.4172/2155-983X.1000143.
  • Greish, K., G. Thiagarajan, and H. Ghandehari. 2012. In vivo methods of nanotoxicology. In Nanotoxicity, ed. J. Reineke, 235–53.  Mumbai, India: Humana Press.
  • Guan, Y., H. Chen, and Q. Zhong. 2019. Nanoencapsulation of caffeic acid phenethyl ester in sucrose fatty acid esters to improve activities against cancer cells. Journal of Food Engineering 246:125–33. doi: 10.1016/j.jfoodeng.2018.11.008.
  • Guazelli, C. F., V. Fattori, B. B. Colombo, S. R. Georgetti, F. T. Vicentini, R. Casagrande, M. M. Baracat, and W. A. Verri. Jr. 2013. Quercetin-loaded microcapsules ameliorate experimental colitis in mice by anti-in fl ammatory and antioxidant mechanisms. Journal of Natural Products 76:200–8. doi: 10.1021/np300670w.
  • Gupta, A., S. Kumar, and V. Kumar. 2019. Challenges for assessing toxicity of nanomaterials. In Biochemical toxicology-heavy metals and nanomaterials, ed. M. Ince, O. K. Inc and G. Ondrasek. London, UK: IntechOpen.
  • Hatanaka, J., H. Chikamori, H. Sato, S. Uchida, and K. Debari. 2010. Physicochemical and pharmacological characterization of alpha-tocopherol-loaded nano-emulsion system. International Journal of Pharmaceutics 396:188–93. doi: 10.1016/j.ijpharm.2010.06.017.
  • He, X., and H. M. Hwang. 2016. Nanotechnology in food science: Functionality, applicability, and safety assessment. Journal of Food and Drug Analysis 24 (4):671–81. doi: 10.1016/j.jfda.2016.06.001.
  • Hofmann-Amtenbrink, M., D. W. Grainger, and H. Hofmann. 2015. Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomedicine: Nanotechnology, Biology, and Medicine 11:1689–94. doi: 10.1016/j.nano.2015.05.005.
  • Hong, F., N. Wu, Y. Zhou, L. Ji, T. Chen, and L. Wang. 2017. Gastric toxicity involving alterations of gastritis-related protein expression in mice following long-term exposure to nano TiO2. Food Res Int 95:38–45. doi: 10.1016/j.foodres.2017.02.013
  • Huang, Y., M. Tsai, P. Wu, Y. Tsai, Y. Wu, and J. Fang. 2011. Elastic liposomes as carriers for oral delivery and the brain distribution of (+) -catechin. Journal of Drug Targeting 19 (8):709–18. doi: 10.3109/1061186X.2010.551402.
  • HüSch, J., K. Gerbeth, G. Fricker, C. Setzer, J. Zirkel, H. Rebmann, M. Schubert-Zsilavecz, and M. Abdel-Tawab. 2012. Effect of phospholipid-based formulations of boswellia serrata extract on the solubility, permeability, and absorption of the individual boswellic acid constituents present. Journal of Natural Products 75:1675–82. doi: 10.1021/np300009w.
  • Jafari, S. M. 2017. An overview of nanoencapsulation techniques and their classification. In Nanoencapsulation technologies for the food and nutraceutical industries, 1–34. London, UK: Elsevier.
  • Jafari, S. M., and A. F. Esfanjani. 2017. Instrumental analysis and characterization of nanocapsules. In Nanoencapsulation technologies for the food and nutraceutical industries, ed. S. M. Jafari, 524–44. London, UK: Elsevier.
  • Jafari, S. M., A. F. Esfanjani, and I. Katouzian. 2017. Release, characterization, and safety of nanoencapsulated food ingredients. In Nanoencapsulation of food bioactive ingredients, ed. S. M. Jafari, 401–53. London, UK: Elsevier Inc. doi: 10.1016/B978-0-12-809740-3.00010-6.
  • Jafari, S. M., I. Katouzian, and S. Akhavan. 2017. Safety and regulatory issues of nanocapsules. In Nanoencapsulation technologies for the food and nutraceutical industries, ed. S. M. Jafari, 545–90. London, UK: Elsevier.
  • Jafari, S. M., I. Katouzian, H. Rajabi, and M. Ganje. 2017. Bioavailability and release of bioactive components from nanocapsules. In Nanoencapsulation technologies for the food and nutraceutical industries, ed. S. M. Jafari, 494–523. London, UK: Elsevier Inc. doi: 10.1016/B978-0-12-809436-5/00013-6.
  • Jafari, S. M., and D. J. McClements. 2017. Nanotechnology approaches for increasing nutrient bioavailability. In Advances in food and nutrition research, ed. F. Toldrá, Vol. 81, 1–30. London, UK: Elsevier.
  • Jain, A., S. Ranjan, N. Dasgupta, and C. Ramalingam. 2018. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Critical Reviews in Food Science and Nutrition 58 (2):297–317. doi: 10.1080/10408398.2016.1160363.
  • Khanna, P., C. Ong, B. H. Bay, and G. H. Baeg. 2015. Nanotoxicity: An interplay of oxidative stress, inflammation and cell death. Nanomaterials 5 (3):1163–80. doi: 10.3390/nano5031163.
  • Kim, W.-Y., J. Kim, J. D. Park, H. Y. Ryu, and I. J. Yu. 2009. Histological study of gender differences in accumulation of silver nanoparticles in kidneys of Fischer 344 rats. Journal of Toxicology and Environmental Health, Part A 72 (21-22):1279–84. doi: 10.1080/15287390903212287.
  • Koeneman, B. A., Y. Zhang, P. Westerhoff, Y. Chen, J. C. Crittenden, and D. G. Capco. 2010. Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biology and Toxicology 26 (3):225–38. doi: 10.1007/s10565-009-9132-z.
  • Lau, Y. T., N. Chen, K. M. Ko, and K. M. Ng. 2012. Product design: A nanomized nutraceutical with enhanced bioactivity and bioavailability. Industrial & Engineering Chemistry Research 51 (21):7320–6. doi: 10.1021/ie201886p.
  • Li, M., S. Pokhrel, X. Jin, L. MäDler, R. Damoiseaux, and E. M. Hoek. 2011. Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. Environmental Science & Technology 45 (2):755–61. doi: 10.1021/es102266g.
  • Lin, S., Y. Zhao, A. E. Nel, and S. Lin. 2013. Zebrafish: An in vivo model for nano EHS studies. Small 9 (9-10):1608–18. doi: 10.1002/smll.201202115.Zebrafish.
  • Lin, W., J.-L. Hong, G. Shen, R. T. Wu, Y. Wang, M.-T. Huang, H. L. Newmark, Q. Huang, T. O. Khor, T. Heimbach, et al. 2011. Pharmacokinetics of dietary cancer chemopreventive compound dibenzoylmethane in rats and the impact of nanoemulsion and genetic knockout of Nrf2 on its disposition. Biopharmaceutics & Drug Disposition 32 (2):65–75. doi: 10.1002/bdd.
  • Liu, W., R. Tian, W. Hu, Y. Jia, H. Jiang, J. Zhang, and L. Zhang. 2012. Preparation and evaluation of self-microemulsifying drug delivery system of baicalein. Fitoterapia 83:1532–9. doi: 10.1016/j.fitote.2012.08.021.
  • Lomer, M. C. E., R. P. H. Thompson, and J. J. Powell. 2002. Fine and ultrafine particles of the diet: Influence on the mucosal immune response and association with Crohn’s disease. Proceedings of the Nutrition Society 61 (1):123–30. doi: 10.1079/pns2001134.
  • Long, Z., Y.-P. Wu, H.-Y. Gao, J. Zhang, X. Ou, R.-R. He, and M. Liu. 2018. In vitro and in vivo toxicity evaluation of halloysite nanotubes. Journal of Materials Chemistry B 6 (44):7204–16. doi: 10.1039/C8TB01382A.
  • Maksimović, M., E. Omanović-Mikličanin, and A. Badnjević. 2019. Is nanofood safe? In Nanofood and internet of nano things, 87–137. Cham, Switzerland: Springer.
  • Maisanaba, S., D. Gutierrez-Praena, M. Puerto, M. Llana-Ruiz-Cabello, S. Pichardo, R. Moyano, A. Blanco, and M. Jorda-Beneyto, A. Jos. 2014. In vivo toxicity evaluation of the migration extract of an organomodified clay–poly (lactic) acid nanocomposite. J Toxicol Environ Health A 77 (13):731–746. doi: 10.1080/15287394.2014.890987
  • Markovsky, E., H. Baabur-Cohen, A. Eldar-Boock, L. Omer, G. Tiram, S. Ferber, and R. Satchi-Fainaro. 2012. Administration, distribution, metabolism and elimination of polymer therapeutics. Journal of Controlled Release 161:446–60. doi: 10.1016/j.jconrel.2011.12.021.
  • Martirosyan, A., A. Bazes, and Y.-J. Schneider. 2014. In vitro toxicity assessment of silver nanoparticles in the presence of phenolic compounds–preventive agents against the harmful effect? Nanotoxicology 8 (5):573–82. doi: 10.3109/17435390.2013.812258.
  • Mc Clements, D. J., F. Li, and H. Xiao. 2015. The nutraceutical bioavailability classification scheme: Classifying nutraceuticals according to factors limiting their oral bioavailability. Annual Review of Food Science and Technology 6:299–327. doi: 10.1146/annurev-food-032814-014043.
  • McClements, D. J.. 2014. Encapsulation, protection and release of active compounds. In Nanoparticle-and microparticle-based delivery systems, 14–300. Boca Raton, USA: CRC Press.
  • Mcclements, D. J. 2015. Nanoscale nutrient delivery systems for food applications: Improving bioactive dispersibility, stability, and bioavailability. Journal of Food Science 80 (7):N1602–N1611. doi: 10.1111/1750-3841.12919.
  • McClements, D. J., and H. Xiao. 2017. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. NPJ Science of Food 1 (1):1–13. doi: 10.1038/s41538-017-0005-1.
  • Nair, L. S., and C. T. Laurencin. 2007. Biodegradable polymers as biomaterials. Progress in Polymer Science 32 (8-9):762–98. doi: 10.1016/j.progpolymsci.2007.05.017.
  • Nakayama, M. 2018. Macrophage recognition of crystals and nanoparticles. Frontiers in Immunology 9:103. doi: 10.3389/fimmu.2018.00103.
  • Navarro, M., and R. J. Wood. 2003. Plasma changes in micronutrients following a multivitamin and mineral supplement in healthy adults. Journal of the American College of Nutrition 22 (2):124–32. doi: 10.1080/07315724.2003.10719285.
  • Oberdörster, G., A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, et al. 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Particle and Fibre Toxicology 2 (1):8. doi: 10.1186/1743-8977-2-8.
  • Őrfi, E., and J. Szebeni. 2016. The immune systemof the gut and potential adverse effects of oral nanocarriers on its function. Advanced Drug Delivery Reviews Journal 106:402–9. doi: 10.1016/j.addr.2016.09.009.
  • Orts-Gil, G., K. Natte, and W. Österle. 2013. Multi-parametric reference nanomaterials for toxicology: State of the art, future challenges and potential candidates. RSC Advances 3 (40):18202–15. doi: 10.1039/c3ra42112k.
  • Pathan, R. A., U. Bhandari, S. Javed, and T. C. Nag. 2012. Anti-apoptotic potential of gymnemic acid phospholipid complex pretreatment in Wistar rats with experimental cardiomyopathy. Indian Journal of Experimental Biology 50:117–27.
  • Rao, P. J., and M. M. Naidu. 2016. Nanoencapsulation of bioactive compounds for nutraceutical food. In Nanoscience in food and agriculture, ed. S. Ranjan, et al., 129–56. Switzerland: Springer International Publishing. doi: 10.1007/978-3-319-39306-3.
  • Raval, A., J. Parikh, and C. Engineer. 2010. Mechanism of controlled release kinetics from medical devices. Brazilian Journal of Chemical Engineering 27 (2):211–25. doi: 10.1590/S0104-66322010000200001.
  • Rezaei, A., M. Fathi, and S. M. Jafari. 2019. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids. 88:146–62. doi: 10.1016/j.foodhyd.2018.10.003.
  • Ribeiro, A. R., P. E. Leite, P. Falagan-Lotsch, F. Benetti, C. Micheletti, H. C. Budtz, N. R. Jacobsen, P. N. Lisboa-Filho, L. A. Rocha, D. Kühnel, et al. 2017. Challenges on the toxicological predictions of engineered nanoparticles. NanoImpact 8:59–72. doi: 10.1016/j.impact.2017.07.006.
  • Ricci, J.-E., R. A. Gottlieb, and D. R. Green. 2003. Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. The Journal of Cell Biology 160 (1):65–75. doi: 10.1083/jcb.200208089.
  • Rubio, A. L., L. G. Gómez-Mascaraque, M. J. Fabra, and M. M. Sanz. 2019. Nanomaterials for food applications: General introduction and overview of the book. In Nanomaterials for food applications, ed. A. L. Rubio, M. J. F. Rovira, M. M. Sanz and L. G. Gómez-Mascaraque, 1–9.Matthew Deans, London, UK: Elsevier.
  • Rubió, L., M.-J. Motilva, and M.-P. Romero. 2013. Recent advances in biologically active compounds in herbs and spices: A review of the most effective antioxidant and anti-inflammatory active principles. Critical Reviews in Food Science and Nutrition 53 (9):943–53. doi: 10.1080/10408398.2011.574802.
  • Sambuy, Y., I. De Angelis, G. Ranaldi, M. L. Scarino, A. Stammati, and F. Zucco. 2005. The Caco-2 cell line as a model of the intestinal barrier: Influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biology Toxicology 21 (1):1–26. doi: 10.1007/s10565-005-0085-6.
  • Sayes, C. M., and D. B. Warheit. 2009. Characterization of nanomaterials for toxicity assessment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 1 (6):660–70. doi: 10.1002/wnan.58.
  • Sharma, V., P. Singh, A. K. Pandey, and A. Dhawan. 2012. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 745 (1-2):84–91. doi: 10.1016/j.mrgentox.2011.12.009.
  • Sherin, S., S. Sheeja, R. S. Devi, S. Balachandran, R. S. Soumya, and A. Abraham. 2017. In vitro and in vivo pharmacokinetics and toxicity evaluation of curcumin incorporated titanium dioxide nanoparticles for biomedical applications. Chemico-Biological Interactions 275:35–46. doi: 10.1016/j.cbi.2017.07.022.
  • Shumakova, A. A., N. R. Efimochkina, L. P. Minaeva, I. B. Bykova, S. Y. Batishchava, Y. M. Markova, E. N. Trushina, O. K. Mustafina, N. E. Sharanova, I. V. Gmoshinsky, et al. 2015. Toxicological assessment of nanostructured silica. III. Microecological, hematological indices, state of cellular immunity. Voprosy Pitaniia 84 (4):55–65. doi: 10.1007/s00204-016-1850-4.
  • So, S. J., I. S. Jang, and C. S. Han. 2008. Effect of micro/nano silica particle feeding for mice. Journal of Nanoscience and Nanotechnology 8 (10):5367–71. doi: 10.1166/jnn.2008.1347.
  • Starnes, D. L., J. M. Unrine, C. P. Starnes, B. E. Collin, E. K. Oostveen, R. Ma, G. V. Lowry, P. M. Bertsch, and O. V. Tsyusko. 2015. Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans. Environmental Pollution 196:239–46. doi: 10.1016/j.envpol.2014.10.009.
  • Sun, J., F. Wang, Y. Sui, Z. She, W. Zhai, C. Wang, and Y. Deng. 2012. Effect of particle size on solubility, dissolution rate, and oral bioavailability: Evaluation using coenzyme Q10 as naked nanocrystals. International Journal of Nanomedicine 7:5733–44. doi: 10.2147/IJN.S34365.
  • Szymusiak, M., X. Hu, P. A. Leon, P. Ciupinski, Z. Jim, and Y. Liu. 2016. Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin. International Journal of Pharmaceutics 511 (1):415–23. doi: 10.1016/j.ijpharm.2016.07.027.
  • Tan, Q., S. Liu, X. Chen, M. Wu, H. Wang, H. Yin, D. He, H. Xiong, and J. Zhang. 2012. Design and evaluation of a novel evodiamine-phospholipid complex for improved oral bioavailability. AAPS PharmSciTech 13 (2):534–47. doi: 10.1208/s12249-012-9772-9.
  • Ting, Y., Y. Jiang, C. Ho, and Q. Huang. 2014. Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. Journal of Functional Foods 7:112–28. doi: 10.1016/j.jff.2013.12.010.
  • Ting, Y., Y. Ting, H. Jing, Y. Hu, W. Chang, Q. Huang, and S. Chen. 2019. Nanoemulsified adlay bran oil reduces tyrosinase activity and melanin synthesis in B16F10 cells and zebrafish. Food Science and Nutrition 7:3216–23. doi: 10.1002/fsn3.1176.
  • Toda, T., and S. Yoshino. 2016. Amorphous nanosilica particles block induction of oral tolerance in mice. Journal of Immunotoxicology 13 (5):723–8. doi: 10.3109/1547691X.2016.1171266.
  • Tzankova, V., C. Gorinova, M. Kondeva-Burdina, R. Simeonova, S. Philipov, S. Konstantinov, P. Petrov, D. Galabov, and K. Yoncheva. 2016. In vitro and in vivo toxicity evaluation of cationic PDMAEMA-PCL-PDMAEMA micelles as a carrier of curcumin. Food and Chemical Toxicology 97:1–10. doi: 10.1016/j.fct.2016.08.026.
  • van der Zande, M., R. J. Vandebriel, E. Van Doren, E. Kramer, Z. Herrera Rivera, C. S. Serrano-Rojero, E. R. Gremmer, J. Mast, R. J. Peters, P. C. Hollman, et al. 2012. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6 (8):7427–42. doi: 10.1021/nn302649p.
  • van Vlerken, L. E., T. K. Vyas, and M. M. Amiji. 2007. Poly (ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharmaceutical Research 24 (8):1405–14. doi: 10.1007/s11095-007-9284-6.
  • Venema, K., R. Havenaar, and M. Minekus. 2009. Improving in vitro simulation of the stomach and intestines. In Designing functional foods, ed. D. J. McClements and E. A. Decker, 314–39. Boca Raton, USA: Woodhead Publishing.
  • Vila, L., A. García-Rodríguez, C. Cortés, R. Marcos, and A. Hernández. 2018. Assessing the effects of silver nanoparticles on monolayers of differentiated Caco-2 cells, as a model of intestinal barrier. Food and Chemical Toxicology 116:1–10. doi: 10.1016/j.fct.2018.04.008.
  • Vita, A. A., E. A. Royse, and N. A. Pullen. 2019. Nanoparticles and danger signals: Oral delivery vehicles as potential disruptors of intestinal barrier homeostasis. Journal of Leukocyte Biology 106 (1):95–103. doi: 10.1002/JLB.3MIR1118-414RR.
  • Wang, Y., Y. Ma, Y. Zheng, J. Song, X. Yang, and C. Bi. 2013. In vitro and in vivo anticancer activity of a novel puerarin nanosuspension against colon cancer, with high efficacy and low toxicity. International Journal of Pharmaceutics 441:728–35. doi: 10.1016/j.ijpharm.2012.10.021.
  • Wang, Y., L. Yuan, C. Yao, L. Ding, C. Li, J. Fang, K. Sui, Y. Liu, and M. Wu. 2014. A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives. Nanoscale 6 (24):15333–42. doi: 10.1039/c4nr05480f.
  • Wilson-Sanders, S. E. 2011. Invertebrate models for biomedical research, testing, and education. ILAR Journal 52 (2):126–52. doi: 10.1093/ilar.52.2.126.
  • Wu, H., J.-J. Yin, W. G. Wamer, M. Zeng, and Y. M. Lo. 2014. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. Journal of Food and Drug Analysis 22 (1):86–94. doi: 10.1016/j.jfda.2014.01.007.
  • Xie, X., Q. Tao, Y. Zou, F. Zhang, M. Guo, Y. Wang, H. Wang, Q. Zhou, and S. Yu. 2011. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: Characterizations and mechanisms. Journal of Agricultural and Food Chemistry 59:9280–9. doi: 10.1021/jf202135j.
  • Yang, K., H. Gong, X. Shi, J. Wan, Y. Zhang, and Z. Liu. 2013. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 34 (11):2787–95. doi: 10.1016/j.biomaterials.2013.01.001.
  • Yang, Y., Z. Qin, W. Zeng, T. Yang, Y. Cao, C. Mei, and Y. Kuang. 2017. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnology Reviews 6 (3):279–89. doi: 10.1515/ntrev-2016-0047.
  • Yu, A., H. Wang, J. Wang, F. Cao, Y. A. N. Gao, J. Cui, and G. Zhai. 2011. Formulation optimization and bioavailability after oral and nasal administration in rabbits of puerarin-loaded. Journal of Pharmaceutical Sciences 100 (3):933–41. doi: 10.1002/jps.
  • Yu, H., and Q. Huang. 2012. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. Journal of Agricultural and Food Chemistry 60:5373–9. doi: 10.1021/jf300609p.
  • Yu, X.-H., Y. Liu, X.-L. Wu, L.-Z. Liu, W. Fu, and D.-D. Song. 2017. Isolation, purification, characterization and immunostimulatory activity of polysaccharides derived from American ginseng. Carbohydrate Polymers 156:9–18. doi: 10.1016/j.carbpol.2016.08.092.
  • Zhao, X., Q. Wan, X. Fu, X. Meng, X. Ou, R. Zhong, Q. Zhou, and M. Liu. 2019. Toxicity evaluation of one-dimensional nanoparticles using Caenorhabditis elegans: A comparative study of halloysite nanotubes and chitin nanocrystals. ACS Sustainable Chemistry & Engineering 7 (23):18965–75. doi: 10.1021/acssuschemeng.9b04365.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.