1,831
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Human health risk–benefit assessment of fish and other seafood: a scoping review

, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , , , , , , , , & show all

References

  • Afonso, C., C. Cardoso, H. M. Lourenço, P. Anacleto, N. M. Bandarra, M. L. Carvalho, M. Castro, and M. L. Nunes. 2013. Evaluation of hazards and benefits associated with the consumption of six fish species from the Portuguese coast. Journal of Food Composition and Analysis 32 (1):59–67. doi: 10.1016/j.jfca.2013.06.008.
  • Afonso, C., H. M. Lourenço, C. Cardoso, N. M. Bandarra, M. L. Carvalho, M. Castro, and M. L. Nunes. 2013. From fish chemical characterisation to the benefit-risk assessment-part A. Food Chemistry 137 (1–4):99–107. doi: 10.1016/j.foodchem.2012.10.014.
  • Afonso, C., S. Costa, C. Cardoso, N. M. Bandarra, I. Batista, I. Coelho, I. Castanheira, and M. L. Nunes. 2015. Evaluation of the risk/benefit associated to the consumption of raw and cooked farmed meagre based on the bioaccessibility of selenium, eicosapentaenoic acid and docosahexaenoic acid, total mercury, and methylmercury determined by an in vitro digestion mo. Food Chemistry 170:249–56.
  • Afonso, C., S. Costa, C. Cardoso, I. Coelho, I. Castanheira, H. Lourenço, S. Gonçalves, R. Oliveira, M. L. Carvalho, M. F. Martins, et al. 2018. Bioaccessibility in risk–benefit analysis of raw and cooked seabream consumption. Journal of Food Composition and Analysis 68:118–27. doi: 10.1016/j.jfca.2016.10.003.
  • Afonso, C., I. Bernardo, N. M. Bandarra, L. L. Martins, and C. Cardoso. 2019. The implications of following dietary advice regarding fish consumption frequency and meal size for the benefit (EPA + DHA and Se) versus risk (MeHg) assessment. International Journal of Food Sciences and Nutrition 70 (5):623–37. doi: 10.1080/09637486.2018.1551334.
  • Afonso, C., S. Costa, C. Cardoso, R. Oliveira, H. M. Lourenço, A. Viula, I. Batista, I. Coelho, and, and M. L. Nunes. 2015. Benefits and risks associated with consumption of raw, cooked, and canned tuna (Thunnus spp.) based on the bioaccessibility of selenium and methylmercury. Environmental Research 143:130–7. doi: 10.1016/j.envres.2015.04.019.
  • Agence Française de Sécurité Sanitaire des Aliments (AFSSA). 2010. Opinion of the French Food Safety Agency regarding the benefits/risks of fish consumption. Maisons-Alfort, France.
  • Agence nationale de sécurité sanitaire de l’alimentation de l’environnement et du travail. 2013. AVIS de l’Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail relatif aux recommandations sur les bénéfices et les risques liés à la consommation de produits de la pêche dans le cadre de l’actualisation des repères n. Maisons-Alfort.
  • Agency for Toxic Substances and Disease Registry. 2017. Toxicological profile for polybrominated diphenyl ethers (PBDEs). Agency for Toxic Substances and Disease Registry, Atlanta, GA
  • Anishchenko, O. V., N. N. Sushchik, O. N. Makhutova, G. S. Kalachova, I. V. Gribovskaya, V. N. Morgun, and M. I. Gladyshev. 2017. Benefit–risk ratio of canned pacific saury (Cololabis saira) intake: Essential fatty acids vs. heavy metals. Food and Chemical Toxicology 101:8–14.
  • Assunção, R., P. Alvito, R. Brazão, P. Carmona, P. Fernandes, L. S. Jakobsen, C. Lopes, C. Martins, J. M. Membré, S. Monteiro, et al. 2019. Building capacity in risk–benefit assessment of foods: Lessons learned from the RB4EU project. Trends in Food Science and Technology 91 (July):541–8.
  • Becker, W., P. O. Darnerud, and K. Petersson-Grawé. 2007. Risks and benefits of fish consumption – A risk-benefit analysis based on the occurrence of dioxin/PCB, methyl mercury, n-3 fatty acids and vitamin D in fish. National Food Administration Report Series 12:143 pp.
  • Berjia, F. L., J. Hoekstra, R. Andersen, M. Poulsen, and M. Nauta. 2012. Risk–benefit assessment of cold-smoked salmon: Microbial risk versus nutritional benefit. European Journal of Food Research & Review 2 (2):49–68.
  • Binnington, M. J., M. S. Curren, H. M. Chan, and F. Wania. 2016. Balancing the benefits and costs of traditional food substitution by indigenous Arctic women of childbearing age: Impacts on persistent organic pollutant, mercury, and nutrient intakes. Environment International 94:554–66.
  • Boobis, A., A. Chiodini, J. Hoekstra, P. Lagiou, H. Przyrembel, J. Schlatter, K. Schütte, H. Verhagen, and B. Watzl. 2013. Critical appraisal of the assessment of benefits and risks for foods, ‘BRAFO Consensus Working Group. Food and Chemical Toxicology 55:659–75.
  • Boué, G. 2017. Public health risk–benefit assessment in foods: Methodological development with application to infant milk-based diet. ONIRIS, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering.
  • Boué, G., E. Cummins, S. Guillou, J.-P. Antignac, B. Le Bizec, and J.-M. Membré. 2017. Development and application of a probabilistic risk–benefit assessment model for infant feeding integrating microbiological, nutritional, and chemical components. Risk Analysis 37 (12):2360–88.
  • Boué, G., S. Guillou, J.-P. Antignac, B. Bizec, and J.-M. Membré. 2015. Public health risk–benefit assessment associated with food consumption – A review. European Journal of Nutrition & Food Safety 5 (1):32–58. doi: 10.9734/EJNFS/2015/12285.
  • Brandon, E. F. A., A. G. Oomen, C. J. M. Rompelberg, C. H. M. Versantvoort, J. G. M. van Engelen, and A. J. A. M. Sips. 2006. Consumer product in vitro digestion model: Bioaccessibility of contaminants and its application in risk assessment. Regulatory Toxicology and Pharmacology 44 (2):161–71. doi: 10.1016/j.yrtph.2005.10.002.
  • Cantoral, A., C. Batis, and N. Basu. 2017. National estimation of seafood consumption in Mexico: Implications for exposure to methylmercury and polyunsaturated fatty acids. Chemosphere 174:289–96. doi: 10.1016/j.chemosphere.2017.01.109.
  • Cardoso, C., C. Afonso, H. Lourenço, and M. L. Nunes. 2013. Seafood consumption health concerns: The assessment of methylmercury, selenium, and eicosapentaenoic + docosahexaenoic fatty acids intake. Food Control 34 (2):581–88. doi: 10.1016/j.foodcont.2013.06.001.
  • Cardoso, C., C. Afonso, H. M. Lourenço, and M. L. Nunes. 2015. Assessing risks and benefits of consuming fish muscle and liver: Novel statistical tools. Journal of Food Composition and Analysis 38:112–20. doi: 10.1016/j.jfca.2014.10.005.
  • Cardoso, C., N. Bandarra, H. Lourenço, C. Afonso, and M. Nunes. 2010. Methylmercury risks and EPA + DHA benefits associated with seafood consumption in Europe. Risk Analysis 30 (5):827–40. doi: 10.1111/j.1539-6924.2010.01409.x.
  • Cardoso, C., I. Bernardo, N. M. Bandarra, L. Louro Martins, and C. Afonso. 2018. Portuguese preschool children: Benefit (EPA + DHA and Se) and risk (MeHg) assessment through the consumption of selected fish species. Food and Chemical Toxicology 115 (March):306–14. doi: 10.1016/j.fct.2018.03.022.
  • Chen, M. Y. Y., W. W. K. Wong, S. W. C. Chung, C. H. Tran, B. T. P. Chan, Y. Y. Ho, and Y. Xiao. 2014. Quantitative risk–benefit analysis of fish consumption for women of child-bearing age in Hong Kong. Food Additives and Contaminants – Part A: Chemistry, Analysis, Control, Exposure and Risk Assessment 31 (1):48–53.
  • Cohen, J. T., D. C. Bellinger, W. E. Connor, P. M. Kris-Etherton, R. S. Lawrence, D. A. Savitz, B. A. Shaywitz, S. M. Teutsch, and G. M. Gray. 2005. A quantitative risk–benefit analysis of changes in population fish consumption. American Journal of Preventive Medicine 29 (4):325–34.
  • Costa, S., C. Afonso, N. M. Bandarra, S. Gueifão, I. Castanheira, M. L. Carvalho, C. Cardoso, and M. L. Nunes. 2013. The emerging farmed fish species meagre (Argyrosomus regius): How culinary treatment affects nutrients and contaminants concentration and associated benefit-risk balance. Food and Chemical Toxicology 60:277–85.
  • Cui, L., S. Wang, X. Yang, L. Gao, M. Zheng, R. Wang, L. Qiao, and C. Xu. 2018. Fatty acids, polychlorinated dibenzo-p-dioxins and dibenzofurans, and dioxin-like polychlorinated biphenyls in paired muscle and skin from fish from the Bohai coast, China: Benefits and risks associated with fish consumption. Science of the Total Environment 639:952–60. doi: 10.1016/j.scitotenv.2018.05.195.
  • Del Gobbo, L. C., J. A. Archbold, L. D. Vanderlinden, C. S. Eckley, M. L. Diamond, and M. Robson. 2010. Risks and benefits of fish consumption for childbearing women. Canadian Journal of Dietetic Practice and Research 71 (1):41–45. doi: 10.3148/71.1.2010.41.
  • Dellinger, M. J., J. T. Olson, B. J. Holub, and M. P. Ripley. 2018. Mercury, polychlorinated biphenyls, selenium, and fatty acids in tribal fish harvests of the Upper Great Lakes. Risk Analysis 38 (10):2029–2040. doi: 10.1111/risa.13112. PMID: 29750842
  • Dellinger, M. J., and M. P. Ripley. 2016. Mercury risks versus nutritional benefits of tribal commercial fish harvests in the Upper Laurentian Great Lakes. Human and Ecological Risk Assessment 22 (4):1036–49.
  • Devleesschauwer, B., A. H. Havelaar, C. Maertens De Noordhout, J. A. Haagsma, N. Praet, P. Dorny, L. Duchateau, P. R. Torgerson, H. Van Oyen, and N. Speybroeck. 2014. Calculating disability-adjusted life years to quantify burden of disease. International Journal of Public Health 59 (3):565–9.
  • Dewailly, É., P. Ayotte, M. Lucas, and C. Blanchet. 2007. Risk and benefits from consuming salmon and trout: A Canadian perspective. Food and Chemical Toxicology 45 (8):1343–48. doi: 10.1016/j.fct.2007.01.010.
  • Di Bella, G., A. G. Potortì, V. Lo Turco, D. Bua, P. Licata, N. Cicero, and G. Dugo. 2015. Trace elements in Thunnus thynnus from Mediterranean Sea and benefit–risk assessment for consumers. Food Additives and Contaminants: Part B Surveillance 8 (3):175–81.
  • Domingo, J. L., A. Bocio, G. Falcó, and J. M. Llobet. 2007. Benefits and risks of fish consumption. I. A quantitative analysis of the intake of omega-3 fatty acids and chemical contaminants. Toxicology 230 (2–3):219–26.
  • Dorne, J. L. C. M., B. Bottex, C. Merten, A. Germini, N. Georgiadis, E. Aiassa, L. Martino, L. Rhomberg, H. J. Clewell, M. Greiner, et al. 2016. Weighing evidence and assessing uncertainties. EFSA Journal 14:s0511.
  • Du, Z. Y., J. Zhang, C. Wang, L. Li, Q. Man, A. K. Lundebye, and L. Frøyland. 2012. Risk-benefit evaluation of fish from Chinese markets: Nutrients and contaminants in 24 fish species from five big cities and related assessment for human health. Science of the Total Environment 416:187–99. doi: 10.1016/j.scitotenv.2011.12.020.
  • EFSA. 2010. Application of systematic review methodology to food and feed safety assessments to support decision making. EFSA Journal 8 (6):1637.
  • EFSA. 2015. Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA Journal 13 (1):3982.
  • EFSA, Buist, H., Craig, P. Dewhurst, I. Hougaard Bennekou, S. Kneuer, C. Machera, K. Pieper, C. Court Marques, D. Guillot, G. Ruffo, F, et al. 2017. Guidance on dermal absorption. EFSA Journal 15 (6):4873.
  • EFSA CONTAM Panel. 2012. EFSA Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA Journal 10 (12):2985 [241 pp].
  • EFSA CONTAM Panel, H. K. Knutsen, J. Alexander, L. Barregård, M. Bignami, B. Brüschweiler, S. Ceccatelli, B. Cottrill, M. Dinovi, L. Edler, et al. 2018. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA Journal 16 (12):5194.
  • EFSA and ECDC. 2018. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2017. EFSA Journal 16 (12):5500.
  • EFSA NDA Panel. 2010a. Scientific opinion on principles for deriving and applying dietary reference values. EFSA Journal 8 (3):1458.
  • EFSA NDA Panel. 2010b. Guidance on human health risk–benefit assessment of foods. EFSA Journal 8 (7):1673.
  • EFSA NDA Panel. 2014a. Scientific Opinion on health benefits of seafood (fish and shellfish) consumption in relation to health risks associated with exposure to methylmercury. EFSA Journal 12 (7):3761.
  • EFSA NDA Panel. 2014b. Scientific opinion on dietary reference values for iodine. EFSA Journal 12(5):3660.
  • EFSA Panel on Contaminants in the Food Chain (CONTAM). 2009. Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on cadmium in food. EFSA Journal 980:1–139.
  • EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), M. Younes, P. Aggett, F. Aguilar, R. Crebelli, B. Dusemund, M. Filipicč, M. J. Frutos, P. Galtier, U. Gundert‐Remy, G. G. Kuhnle, et al. 2018. Guidance on safety evaluation of sources of nutrients and bioavailability of nutrient from the sources. EFSA Journal 16 (6):5294.
  • EFSA Panel on Plant Protection Products and their Residues (PPR). 2012. Guidance on the use of probabilistic methodology for modelling dietary exposure to pesticide residues. EFSA Journal 10 (10):2839.
  • EFSA Scientific Committee. 2015. Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA Journal 13 (1):3982 [36 pp.].
  • EFSA Scientific Committee. 2017. Update: Use of the benchmark dose approach in risk assessment. EFSA Journal 15 (1):1–41.
  • EFSA Scientific Committee, A. Hardy, D. Benford, T. Halldorsson, M. J. Jeger, H. K. Knutsen, S. More, H. Naegeli, H. Noteborn, C. Ockleford, A. Ricci, et al. 2017. Guidance on the use of the weight of evidence approach in scientific assessments. EFSA Journal 15 (8):69.
  • Eneroth, H., L. Zetterberg, C. Andersson, W. Becker, P. Darnerud, A. Glynn, R. Lindqvist, S. Sand, and N. Ilbäck. 2016. Risk–benefit assessment of foods in Sweden – Developing a working procedure. European Journal of Nutrition & Food Safety 6 (2):75–8.
  • FAO/WHO. 2011. Report of the Joint FAO/WHO expert consultation on the risks and benefits of fish consumption. World Health Organization, Geneva, 50 pp.
  • FAOSTAT [online]. n.d. FAOSTAT New Food Balances. Accessed on June 10, 2021. http://www.fao.org/faostat/en/#data/FBS.
  • Foran, J. A., D. H. Good, D. O. Carpenter, M. C. Hamilton, B. A. Knuth, and S. J. Schwager. 2005. Quantitative Analysis of the Benefits and Risks of Consuming Farmed and Wild Salmon. The Journal of Nutrition 135 (11):2639–43.
  • Gao, Y. X., H. Zhang, X. Yu, J. L. He, X. Shang, X. Li, Y. Zhao, and Y. Wu. 2014. Risk and benefit assessment of potential neurodevelopmental effect resulting from consumption of marine fish from a coastal archipelago in china. Journal of Agricultural and Food Chemistry 62 (22):5207–13.
  • Gao, Y. X., H. X. Zhang, J. G. Li, L. Zhang, X. W. Yu, J. L. He, X. H. Shang, Y. F. Zhao, and, and Y. N. Wu. 2015. The benefit risk assessment of consumption of marine species based on benefit-risk analysis for foods (BRAFO)-tiered approach. Biomedical and Environmental Sciences 28 (4):243–52.
  • GBD 2017 DALYs and HALE Collaborators. 2018. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet 392:1859–922.
  • Geng, J. J., H. Li, J. P. Liu, Y. Yang, Z. L. Jin, Y. N. Zhang, M. L. Zhang, L. Q. Chen, and Z. Y. Du. 2015. Nutrients and contaminants in tissues of five fish species obtained from Shanghai markets: Risk-benefit evaluation from human health perspectives. Science of the Total Environment 536:933–45. doi: 10.1016/j.scitotenv.2015.06.057.
  • Ginsberg, G. L., and B. F. Toal. 2009. Quantitative approach for incorporating methylmercury risks and omega-3 fatty acid benefits in developing species-specific fish consumption advice. Environmental Health Perspectives 117 (2):267–75.
  • Ginsberg, G. L., B. F. Toal, and P. J. McCann. 2015. Updated risk/benefit analysis of fish consumption effects on neurodevelopment: Implications for setting advisories. Human and Ecological Risk Assessment 21 (7):1810–39.
  • Gladyshev, M. I., N. N. Sushchik, O. V. Anishchenko, O. N. Makhutova, G. S. Kalachova, and I. V. Gribovskaya. 2009. Benefit-risk ratio of food fish intake as the source of essential fatty acids vs. heavy metals: A case study of Siberian grayling from the Yenisei River. Food Chemistry 115 (2):545–50.
  • Glencross, B. D., J. Baily, M. H. G. Berntssen, R. Hardy, S. MacKenzie, and D. R. Tocher. 2020. Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Reviews in Aquaculture 12 (2):703–58.
  • Glynn, A., S. Sand, and W. Becker. 2013. Risk and benefit assessment of herring and salmonid fish from the baltic sea area [online]. Livsmedelsverket. Accessed on June 10, 2021. http://www.slv.se/upload/dokument/rapporter/kemiska/2013_livsmedelsverket_21_risk_benefit_herring_salmonid_fish.pdf.
  • Gochfeld, M., and J. Burger. 2005. Good fish/bad fish: A composite benefit-risk by dose curve. NeuroToxicology 26 (4 SPEC. ISS.):511–20. doi: 10.1016/j.neuro.2004.12.010.
  • Gold, M. R., D. Stevenson, and D. G. Fryback. 2002. HALYs and QALYs and DALYs, Oh My: Similarities and differences in summary measures of population health. Annual Review of Public Health 23 (1):115–34.
  • Gradowska, P. L., and R. M. Cooke. 2014. Estimating expected value of information using Bayesian belief networks: A case study in fish consumption advisory. Environment Systems and Decisions 34 (1):88–97. doi: 10.1007/s10669-013-9471-4.
  • Guevel, M. R., V. Sirot, J. L. Volatier, and J. C. Leblanc. 2008. A risk– benefit analysis of French high fish consumption: A QALY approach. Risk Analysis 28 (1):37–48. doi: 10.1111/j.1539-6924.2008.01001.x.
  • Hardy, A., D. Benford, T. Halldorsson, M. J. Jeger, K. H. Knutsen, S. More, A. Mortensen, H. Naegeli, H. Noteborn, C. Ockleford, et al. 2017. Update: Use of the benchmark dose approach in risk assessment. EFSA Journal 15 (1):4658. doi: 10.2903/j.efsa.2017.4658.
  • Hart, A., J. Hoekstra, H. Owen, M. Kennedy, M. J. Zeilmaker, N. de Jong, and H. Gunnlaugsdottir. 2013. Qalibra: A general model for food risk–benefit assessment that quantifies variability and uncertainty. Food and Chemical Toxicology 54:4–17. doi: 10.1016/j.fct.2012.11.056.
  • Hellberg, R. S., C. A. M. DeWitt, and M. T. Morrissey. 2012. Risk–benefit analysis of seafood consumption: A review. Comprehensive Reviews in Food Science and Food Safety 11 (5):490–517.
  • Hoekstra, J., A. Hart, A. Boobis, E. Claupein, A. Cockburn, A. Hunt, I. Knudsen, D. Richardson, B. Schilter, K. Schütte, et al. 2012. BRAFO tiered approach for benefit–risk assessment of foods. Food and Chemical Toxicology 50:S684–S698.
  • Hoekstra, J., A. Hart, H. Owen, M. Zeilmaker, B. Bokkers, B. Thorgilsson, and H. Gunnlaugsdottir. 2013. Fish, contaminants and human health: Quantifying and weighing benefits and risks. Food and Chemical Toxicology 54:18–29.
  • Hollander, A., R. De Jonge, S. Biesbroek, J. Hoekstra, and M. C. Zijp. 2019. Exploring solutions for healthy, safe, and sustainable fatty acids (EPA and DHA) consumption in The Netherlands. Sustainability Science 14 (2):303–13.
  • Hsi, H. C., Y. W. Hsu, T. C. Chang, and L. C. Chien. 2016. Methylmercury concentration in fish and risk-benefit assessment of fish intake among pregnant versus infertile women in Taiwan. PLoS One 11 (5):e0155704–14. doi: 10.1371/journal.pone.0155704.
  • Husain, A., K. Kannan, H. M. Chan, B. Laird, H. Al-Amiri, B. Dashti, A. Sultan, A. Al-Othman, and B. Mandekar. 2017. A comparative assessment of arsenic risks and the nutritional benefits of fish consumption in Kuwait: Arsenic versus omega 3-fatty acids. Archives of Environmental Contamination and Toxicology 72 (1):108–18.
  • Jacobs, R., H. van der Voet, and C. J. F. ter Braak. 2015. Integrated probabilistic risk assessment for nanoparticles: The case of nanosilica in food. Journal of Nanoparticle Research 17 (6):251.
  • Leblanc, J.-C., V. Sirot, and J.-L. Volatier. 2009. Analyse risque – bénéfice de la consommation de poissons. Cahlers de Nutrition et de Diététique 44:182–8.
  • Leino, O., A. K. Karjalainen, and J. T. Tuomisto. 2013. Effects of docosahexaenoic acid and methylmercury on child’s brain development due to consumption of fish by Finnish mother during pregnancy: A probabilistic modeling approach. Food and Chemical Toxicology 54:50–8.
  • Leino, O., M. Tainio, and J. T. Tuomisto. 2008. Comparative risk analysis of dioxins in fish and fine particles from heavy-duty vehicles. Risk Analysis 28 (1):127–40.
  • Loring, P. A., L. K. Duffy, and M. S. Murray. 2010. A risk–benefit analysis of wild fish consumption for various species in Alaska reveals shortcomings in data and monitoring needs. Science of the Total Environment 408 (20):4532–41.
  • Matos, J., H. M. Lourenço, P. Brito, A. L. Maulvault, L. L. Martins, and C. Afonso. 2015. Influence of bioaccessibility of total mercury, methyl-mercury and selenium on the risk/benefit associated to the consumption of raw and cooked blue shark (Prionace glauca). Environmental Research 143:123–9.
  • Maulvault, A. L., C. Cardoso, M. L. Nunes, and A. Marques. 2013. Risk–benefit assessment of cooked seafood: Black scabbard fish (Aphanopus carbo) and edible crab (Cancer pagurus) as case studies. Food Control 32 (2):518–24. doi: 10.1016/j.foodcont.2013.01.026.
  • Moher, D., A. Liberati, J. Tetzlaff, and D. G. Altman. 2009. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Journal of Clinical Epidemiology 62 (10):1006–12.
  • Moses, S. K., A. V. Whiting, G. R. Bratton, R. J. Taylor, and T. M. O’Hara. 2009. Inorganic nutrients and contaminants in subsistence species of Alaska: Linking wildlife and human health. International Journal of Circumpolar Health 68 (1):53–74.
  • Moses, S. K., A. V. Whiting, D. C. G. Muir, X. Wang, and T. M. O’Hara. 2009. Organic nutrients and contaminants in subsistence species of Alaska: Concentrations and relationship to food preparation method. International Journal of Circumpolar Health 68 (4):354–71.
  • Murray, C., and A. Lopez. 1996. The global burden of disease: A comprehensive assessment of mortality and disability from diseases, injuries and risk factors in 1990 and projected to 2020. Cambridge: Harvard University Press.
  • Murray, C. J. L. 1994. Quantifying the burden of disease: The technical basis for disability-adjusted life years. Bulletin of the World Health Organization 72 (3):429–45.
  • Nauta, M. J., R. Andersen, K. Pilegaard, S. M. Pires, G. Ravn-Haren, I. Tetens, and M. Poulsen. 2018. Meeting the challenges in the development of risk–benefit assessment of foods. Trends in Food Science & Technology 76:906–100.
  • Neff, M. R., S. P. Bhavsar, F. J. Ni, D. O. Carpenter, K. Drouillard, A. T. Fisk, and M. T. Arts. 2014. Risk–benefit of consuming Lake Erie fish. Environmental Research 134:57–65.
  • Nunes, E., A. Cavaco, and C. Carvalho. 2014. Children's health risk and benefits of fish consumption: Risk indices based on a diet diary follow-up of two weeks . Journal of Toxicology and Environmental Health – Part A: Current Issues 77 (1–3):103–14. doi: 10.1080/15287394.2014.866926.
  • Olmedo, P., A. F. Hernández, A. Pla, P. Femia, A. Navas-Acien, and F. Gil. 2013. Determination of essential elements (copper, manganese, selenium and zinc) in fish and shellfish samples. Risk and nutritional assessment and mercury-selenium balance. Food and Chemical Toxicology 62:299–307. doi: 10.1016/j.fct.2013.08.076.
  • Özden, Ö., N. Erkan, M. Kaplan, and F. S. Karakulak. 2020. Toxic metals and omega-3 fatty acids of bluefin tuna from aquaculture: Health risk and benefits. Exposure and Health (0123456789) 12:9–18.
  • Panel, E. C. 2012. EFSA Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA Journal 10 (12):2985–241.
  • Paiva, R. B., A. Neves, V. Sequeira, C. Cardoso, N. Bandarra, L. S. Gordo, and M. L. Nunes. 2012. Risks and benefits’ consumption of birdbeak dogfish Deania calcea. British Food Journal 114 (6):826–39.
  • Persson, M., S. Fagt, and M. J. Nauta. 2018. Personalised fish intake recommendations: The effect of background exposure on optimisation. British Journal of Nutrition 120 (8):946–57.
  • Persson, M., S. Fagt, and M. J. Nauta. 2019. Optimising healthy and safe fish intake recommendations: A trade-off between personal preference and cost. British Journal of Nutrition 122 (2):206–19.
  • Persson, M., S. Fagt, S. M. Pires, M. Poulsen, F. Vieux, and M. J. Nauta. 2018. Use of mathematical optimization models to derive healthy and safe fish intake. The Journal of Nutrition 148 (2):275–84.
  • Pires, S. M., G. Boué, A. Boobis, H. Eneroth, J. Hoekstra, J.-M. Membré, I. M. Persson, M. Poulsen, J. Ruzante, J. van Klaveren, et al. 2019. Risk benefit assessment of foods: Key findings from an international workshop. Food Research International116:859–869.
  • Pitter, J. G., Á. Józwiak, É. Martos, Z. Kaló, and Z. Vokó. 2015. Next steps to evidence-based food safety risk analysis: Opportunities for health technology assessment methodology implementation. Studies in Agricultural Economics 117 (3):155–61.
  • Ponce, R. A., E. M. Faustman, R. C. Lee, E. Y. Wong, S. M. Bartell, M. Bolger, D. LaFlamme, and C. Carrington. 2000. Use of quality-adjusted life year weights with dose-response models for public health decisions: A case study of the risks and benefits of fish consumption. Risk Analysis 20 (4):529–42.
  • Ponce, R. A., E. Y. Wong, and E. M. Faustman. 2001. Quality adjusted life years (QALYs) and dose-response models in environmental health policy analysis – Methodological considerations. Science of the Total Environment 274 (1–3):79–91.
  • Pouzaud, F., A. Ibbou, S. Blanchemanche, P. Grandjean, M. Krempf, H. J. Philippe, and P. Verger. 2010. Use of advanced cluster analysis to characterize fish consumption patterns and methylmercury dietary exposures from fish and other sea foods among pregnant women. Journal of Exposure Science and Environmental Epidemiology 20 (1):54–68. doi: 10.1038/jes.2009.2.
  • Prato, E., F. Biandolino, I. Parlapiano, S. Giandomenico, G. Denti, M. Calò, L. Spada, and A. Di Leo. 2019. Proximate, fatty acids and metals in edible marine bivalves from Italian market: Beneficial and risk for consumers health. Science of the Total Environment 648:153–63. doi: 10.1016/j.scitotenv.2018.07.382.
  • Quignot, N., C. Béchaux, and B. Amzal. 2015. Data collection on toxicokinetic and toxicodynamic interactions of chemical mixtures for human risk assessment. EFSA Supporting Publications 12 (3).doi:10.2903/sp.efsa.2015.EN-711
  • Razavi, N. R., M. T. Arts, M. Qu, B. Jin, W. Ren, Y. Wang, and L. M. Campbell. 2014. Effect of eutrophication on mercury, selenium, and essential fatty acids in Bighead Carp (Hypophthalmichthys nobilis) from reservoirs of eastern China. Science of the Total Environment 499:36–46.
  • Reyes, E. S., J. J. Aristizabal Henao, K. M. Kornobis, R. M. Hanning, S. E. Majowicz, K. Liber, K. D. Stark, G. Low, H. K. Swanson, and B. D. Laird. 2017. Associations between omega-3 fatty acids, selenium content, and mercury levels in wild-harvested fish from the Dehcho Region, Northwest Territories, Canada. Journal of Toxicology and Environmental Health – Part A: Current Issues 80 (1):18–31. doi: 10.1080/15287394.2016.1230916.
  • Rjeibi, M., M. Metian, T. Hajji, T. Guyot, R. Ben Chaouacha-Chekir, and P. Bustamante. 2015. Seasonal survey of contaminants (Cd and Hg) and micronutrients (Cu and Zn) in edible tissues of cephalopods from Tunisia: Assessment of risk and nutritional benefits. Journal of Food Science 80 (1):T199–T206. doi: 10.1111/1750-3841.12711.
  • Rheinberger, C. M., and J. K. Hammitt. 2012. Risk trade-offs in fish consumption: A public health perspective. Environmental Science and Technology 46 (22):12337–46. doi: 10.1021/es302652m.
  • Rumbold, D. G., M. Engel, and D. M. Axelrad. 2011. Risk of III-informed decision-making when choosing your favorite fish. Human and Ecological Risk Assessment: An International Journal 17 (5):1156–69. doi: 10.1080/10807039.2011.605729.
  • Ruzante, J. M., K. Grieger, K. Woodward, E. Lambertini, and B. Kowalcyk. 2017. The use of multi-criteria decision analysis in food safety risk–benefit assessment. Food Protection Trends 37 (2):132–9.
  • Salomon, J. A., J. A. Haagsma, A. Davis, C. M. de Noordhout, S. Polinder, A. H. Havelaar, A. Cassini, B. Devleesschauwer, M. Kretzschmar, N. Speybroeck, et al. 2015. Disability weights for the Global Burden of Disease 2013 study. The Lancet Global Health 3 (11):e712–e723.
  • Scholz, R., G. van Donkersgoed, M. Herrmann, A. Kittelmann, M. von Schledorn, C. Graven, K. Mahieu, T. van der Velde‐Koerts, C. Anagnostopoulos, E. Bempelou, et al. 2018. Database of processing techniques and processing factors compatible with the EFSA food classification and description system FoodEx 2 Objective 3: European database of processing factors for pesticides in food. EFSA Supporting Publications (11):15.
  • Scholz, R., M. Herrmann, A. Kittelmann, M. von Schledorn, G. van Donkersgoed, C. Graven, T. van der Velde‐Koerts, C. Anagnostopoulos, E. Bempelou, and B.Michalski. 2018. Database of processing techniques and processing factors compatible with the EFSA food classification and description system FoodEx 2 Objective 3: European database of processing factors for pesticides in food. EFSA Supporting Publications (11):15.doi:10.2903/sp.efsa.2018.EN-1508
  • Scientific Advisory Committee on Nutrition/Committee on Toxicity (SACN/COT). 2004. Advice on fish consumption: benefits & risks. Scientific committee on Nutrition and Toxicity.
  • Shim, S. M., L. E. Dorworth, J. A. Lasrado, and C. R. Santerre. 2006. Mercury and fatty acids in Canned Tuna, Salmon, and Mackerel. Journal of Food Science 69 (9):C681–C84. doi: 10.1111/j.1365-2621.2004.tb09915.x.
  • Shim, S. M., J. A. Lasrado, L. E. Dorworth, and C. R. Santerre. 2005. Mercury and omega-3 fatty acids in retail fish sandwiches. Journal of Food Protection 68 (3):633–35. doi: 10.4315/0362-028X-68.3.633.
  • Sidhu, K. S. 2003. Health benefits and potential risks related to consumption of fish or fish oil. Regulatory Toxicology and Pharmacology 38 (3):336–44.
  • Sioen, I., J. Van Camp, F. Verdonck, W. Verbeke, F. Vanhonacker, J. Willems, and S. De Henauw. 2008. Probabilistic intake assessment of multiple compounds as a tool to quantify the nutritional-toxicological conflict related to seafood consumption. Chemosphere 71 (6):1056–66. doi: 10.1016/j.chemosphere.2007.11.025.
  • Sioen, I., S. De Henauw, J. Van Camp, J. L. Volatier, and J. C. Leblanc. 2009. Comparison of the nutritional-toxicological conflict related to seafood consumption in different regions worldwide. Regulatory Toxicology and Pharmacology 55 (2):219–28.
  • Sioen, I., S. De Henauw, and J. Van Camp. 2007. Evaluation of benefits and risks related to seafood consumption. Verhandelingen LXIX Nr 5/6. Kninklijke Academie Voor Geneeskunde Van Belgie 249–89.
  • Sioen, I., S. De Henauw, W. Verbeke, F. Verdonck, J. L. Willems, and J. Van Camp. 2008. Fish consumption is a safe solution to increase the intake of long-chain n-3 fatty acids. Public Health Nutrition 11 (11):1107–16. doi: 10.1017/S1368980007001450.
  • Sioen, I., Leblanc, J. C. Volatier, J. L. Henauw, S. De, and Camp, and J. Van. 2008. Evaluation of the exposure methodology for risk–benefit assessment of seafood consumption. Chemosphere 73 (10):1582–8. doi: 10.1016/j.chemosphere.2008.08.036.
  • Sirot, V., J.-C. Leblanc, and I. Margaritis. 2012. A risk–benefit analysis approach to seafood intake to determine optimal consumption. The British Journal of Nutrition 107 (12):1812–22.
  • Smith, K. L., and J. L. Guentzel. 2010. Mercury concentrations and omega-3 fatty acids in fish and shrimp: Preferential consumption for maximum health benefits. Marine Pollution Bulletin 60 (9):1615–8. doi: 10.1016/j.marpolbul.2010.06.045.
  • Smith, K. M., and N. R. Sahyoun. 2005. Fish consumption: Recommendations versus advisories, can they be reconciled? Nutrition Reviews 63 (2):39–46. doi: 10.1111/j.1753-4887.2005.tb00120.x.
  • Sofoulaki, K., I. Kalantzi, A. Machias, S. A. Pergantis, and M. Tsapakis. 2019. Metals in sardine and anchovy from Greek coastal areas: Public health risk and nutritional benefits assessment. Food and Chemical Toxicology 123:113–24. doi: 10.1016/j.fct.2018.10.053.
  • Stevens, D. K., K. McDonald, and N. Bishop. 2009. Are Lake Trout (Salvelinus namaycush) From Flathead Lake, Montana, USA ‘Safe’ To Eat? An Integrated Mercury Risk Evaluation Study. Environmental Bioindicators 4:303–17.
  • Strandberg, U., S. P. Bhavsar, T. P. Parmar, and M. T. Arts. 2018. Spatial and length-dependent variation of the risks and benefits of consuming Walleye (Sander vitreus). Environment International 112 (December 2017):251–60.
  • Strandberg, U., M. Palviainen, A. Eronen, S. Piirainen, A. Laurén, J. Akkanen, and P. Kankaala. 2016. Spatial variability of mercury and polyunsaturated fatty acids in the European perch (Perca fluviatilis) – Implications for risk–benefit analyses of fish consumption. Environmental Pollution 219:305–14.
  • Ström, S., I. Helmfrid, A. Glynn, and M. Berglund. 2011. Nutritional and toxicological aspects of seafood consumption – An integrated exposure and risk assessment of methylmercury and polyunsaturated fatty acids. Environmental Research 111 (2):274–80. doi: 10.1016/j.envres.2010.12.003.
  • Thomsen, S. T., S. M. Pires, B. Devleesschauwer, M. Poulsen, S. Fagt, K. H. Ygil, and R. Andersen. 2018. Investigating the risk–benefit balance of substituting red and processed meat with fish in a Danish diet. Food and Chemical Toxicology 120:50–63
  • Thomsen, S. T., W. de Boer, S. M. Pires, B. Devleesschauwer, S. Fagt, R. Andersen, M. Poulsen, and H. van der Voet. 2019. A probabilistic approach for risk–benefit assessment of food substitutions: A case study on substituting meat by fish. Food and Chemical Toxicology 126 (February):79–96.
  • Tijhuis, M. J., M. V. Pohjola, H. Gunnlaugsdóttir, N. Kalogeras, O. Leino, J. M. Luteijn, S. H. Magnússon, G. Odekerken-Schröder, M. Poto, J. T. Tuomisto, et al. 2012. Looking beyond borders: Integrating best practices in benefit–risk analysis into the field of Food and Nutrition. Food and Chemical Toxicology 50 (1):77–93.
  • Tijhuis, M. J., N. De Jong, M. V. Pohjola, H. Gunnlaugsdóttir, M. Hendriksen, J. Hoekstra, F. Holm, N. Kalogeras, O. Leino, F. X. R. Van Leeuwen, et al. 2012. State of the art in benefit risk analysis: Food and nutrition. Food and Chemical Toxicology 50:5–25.
  • Torrinha, A., F. Gomes, M. Oliveira, R. Cruz, E. Mendes, C. Delerue-Matos, S. Casal, and S. Morais. 2014. Commercial squids: Characterization, assessment of potential health benefits/risks and discrimination based on mineral, lipid and vitamin E concentrations. Food and Chemical Toxicology 67:44–56.
  • Tuomisto, J. T., J. Tuomisto, M. Tainio, and M. Niittynen. 2004. The health benefits of eating Salmon. Science 305 (5683):475b.
  • US FDA. 2009. Draft report of quantitative risk and benefit assessment of consumption of commercial fish, focusing on fetal neurodevelopmental effects (measured by verbal development in children) and on coronary heart disease and stroke in the general population: Secti. New Hampshire, US: US FDA.
  • US FDA. 2014. A quantitative assessment of the net effects on fetal (as measured by IQ and also by early age verbal development in children). New Hampshire, US: US FDA
  • Usydus, Z., J. Szlinder-Richert, L. Polak-Juszczak, J. Kanderska, M. Adamczyk, M. Malesa-Ciecwierz, and W. Ruczynska. 2008. Food of marine origin: Between benefits and potential risks. Part I. Canned fish on the Polish market. Food Chemistry 111 (3):556–63. doi: 10.1016/j.foodchem.2008.04.018.
  • Usydus, Z., J. Szlinder-Richert, L. Polak-Juszczak, K. Komar, M. Adamczyk, M. Malesa-Ciecwierz, and W. Ruczynska. 2009. Fish products available in Polish market-assessment of the nutritive value and human exposure to dioxins and other contaminants. Chemosphere 74 (11):1420–28. doi: 10.1016/j.chemosphere.2008.12.023.
  • van der Voet, H., G. W. A. M. Van Der Heijden, J. W. Kruisselbrink, S. O. Tromp, H. Rijgersberg, L. G. J. Van Bussel, E. D. Van Asselt, and H. J. Van Der Fels-Klerx. 2014. A decision support tool for assessing scenario acceptability using a hierarchy of indicators with compensabilities and importance weights. Ecological Indicators 43:306–14.
  • van der Voet, H., A. de Mul, and J. D. van Klaveren. 2007. A probabilistic model for simultaneous exposure to multiple compounds from food and its use for risk-benefit assessment. Food and Chemical Toxicology 45 (8):1496–1506. doi: 10.1016/j.fct.2007.02.009
  • van der Voet, H., and W. Slob. 2007. Integration of probabilistic exposure assessment and probabilistic hazard characterization. Risk Analysis 27 (2):351–71. doi: 10.1111/j.1539-6924.2007.00887.x.
  • van Donkersgoed, G., van den Boogaard, C. Graven, C. Koopman, N. Mahieu, K. van der Velde-Koerts, T. Herrmann, M. Kittelmann, A. von Schledorn, M. Scholz, R, et al. 2018. Database of processing techniques and processing factors compatible with the EFSA food classification and description system FoodEx2 related to pesticide residues Objective 2: Linking the processing techniques investigated in regulatory studies with the E. EFSA Supporting Publications (11):15.doi:10.2903/sp.efsa.2018.EN-1509
  • Verger, P., N. Khalfi, C. Roy, S. Blanchemanche, S. Marette, and J. Roosen. 2008. Balancing the risk of dioxins and polychlorinated biphenyls (PCBs) and the benefit of long-chain polyunsaturated fatty acids of the n-3 variety for French fish consumers in western coastal areas. Food Additives and Contaminants – Part A Chemistry. Analysis, Control, Exposure and Risk Assessment 25 (6):765–71. doi: 10.1080/02652030701816542.
  • Verhagen, H., C. Alonso-Andicoberry, R. Assunção, F. Cavaliere, H. Eneroth, J. Hoekstra, S. Koulouris, A. Kouroumalis, S. Lorenzetti, A. Mantovani, et al. n.d. Risk–benefit in food safety and nutrition – outcome of the 2019 Parma Summer School. Food Research International 141:110073.
  • Vidry, S., J. Hoekstra, A. Hart, B. Watzl, H. Verhagen, K. Schütte, A. Boobis, and A. Chiodini. 2013. Benefit-Risk Analysis for Foods (BRAFO) – Executive Project Summary. European Journal of Nutrition & Food Safety 3 (4):146–53.
  • VKM. 2006. A comprehensive assessment of fish and other seafood in the Norwegian diet.
  • VKM. 2014. Benefit-risk assessment of fish and fish products in the Norwegian diet – An update.. VKM Report. Scientific Opinion of the Scientific Steering Committee, Oslo, Norway.
  • Wang, D., Y. Yu, X. Zhang, D. Zhang, S. Zhang, and M. Wu. 2013. Organochlorine pesticides in fish from Taihu Lake, China, and associated human health risk assessment. Ecotoxicology and Environmental Safety 98:383–9.
  • Wang, P., S.-W. Chen, Z.-H. Chen, W.-L. Huo, R. Huang, W.-X. Huang, J.-W. Peng, and X.-F. Yang. 2019. Benefit–risk assessment of commonly consumed fish species from South China Sea based on methyl mercury and DHA. Environmental Geochemistry and Health 41 (5):2055–66.
  • Watzl, B., E. Gelencsér, J. Hoekstra, S. Kulling, E. Lydeking-Olsen, I. Rowland, B. Schilter, J. van Klaveren, and A. Chiodini. 2012. Application of the BRAFO-tiered approach for benefit-risk assessment to case studies on natural foods. Food and Chemical Toxicology 50 (Suppl 4):S699–S709.
  • WHO. 2018. Guidance document on evaluating and expressing uncertainty in hazard characterization. 2nd ed. Geneva: WHO.
  • World Health Organization. 2009. Principles and methods for the risk assessment of chemicals in food. Food and Agriculture Organization of the United Nations; World Health Organization, Geneva, Switzerland.
  • Zeilmaker, M. J., J. Hoekstra, J. C. H. van Eijkeren, N. de Jong, A. Hart, M. Kennedy, H. Owen, and H. Gunnlaugsdottir. 2013. Fish consumption during child bearing age: A quantitative risk–benefit analysis on neurodevelopment. Food and Chemical Toxicology 54:30–4.
  • Zhang, D. P., X. Y. Zhang, Y. X. Yu, J. L. Li, Z. Q. Yu, D. Q. Wang, M. H. Wu, G. Y. Sheng, and J. M. Fu. 2012. Intakes of omega-3 polyunsaturated fatty acids, polybrominated diphenyl ethers and polychlorinated biphenyls via consumption of fish from Taihu Lake, China: A risk–benefit assessment. Food Chemistry 132 (2):975–81.
  • Zhang, D. P., X. Y. Zhang, Y. X. Yu, J. L. Li, Z. Q. Yu, M. H. Wu, and, and J. M. Fu. 2012. Tissue-specific distribution of fatty acids, polychlorinated biphenyls and polybrominated diphenyl ethers in fish from Taihu Lake, China, and the benefit-risk assessment of their co-ingestion. Food and Chemical Toxicology 50 (8):2837–44.
  • Zhang, Z., M. Zhang, J. Xu, and D. Li. 2015. Balanced fatty acid intake benefits and mercury exposure risks: An integrated analysis of Chinese commercial freshwater fish and potential guidelines for consumption. Human and Ecological Risk Assessment: An International Journal 21 (4):882–99. doi: 10.1080/10807039.2014.920226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.