474
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Ameliorating effects of metabolic syndrome with the consumption of rich-bioactive compounds fruits from Brazilian Cerrado: a narrative review

, , , &

References

  • Abbaspour, N., R. Hurrell, and R. Kelishadi. 2014. Review on iron and its importance for human health. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences 19 (2):164.
  • Ahrens, M., and D. Thompson. 2013. Effect of emulin on blood glucose in type 2 diabetics. Journal of Medicinal Food 16 (3):211–5. doi: 10.1089/jmf.2012.0069.
  • Alkhatib, A., C. Tsang, A. Tiss, T. Bahorun, H. Arefanian, R. Barake, A. Khadir, and J. Tuomilehto. 2017. Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients 9 (12):1310. doi: 10.3390/nu9121310.
  • Almeida, M. M. B., P. H. M. de Sousa, Â. M. C. Arriaga, G. M. do Prado, C. E. de Carvalho Magalhães, G. A. Maia, and T. L. G. de Lemos. 2011. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Research International 44 (7):2155–9. doi: 10.1016/j.foodres.2011.03.051.
  • Alves, A. M., A. L. de Mendonça, M. Caliari, and R. de Andrade Cardoso-Santiago. 2010. Chemical and physical evaluation of baru (Dipteryx alata Vog.) components for shelf life study. Agricultural Research in the Tropics 20 (3):266–73.
  • Alves, A. M., T. Dias, N. M. A. Hassimotto, and M. M. V. Naves. 2017. Ascorbic acid and phenolic contents, antioxidant capacity and flavonoids composition of Brazilian Savannah native fruits. Food Science and Technology 37 (4):564–9. doi: 10.1590/1678-457x.26716.
  • Araújo, A. C. F., J. C. Rocha, A. F. Paraiso, A. V. M. Ferreira, S. H. S. Santos, and L. d Pinho. 2017. Consumption of baru nuts (Dipteryx alata) in the treatment of obese mice. Ciência Rural 47 (2):20151337. doi: 10.1590/0103-8478cr20151337.
  • Assumpção, C., P. Bachiega, M. Morzelle, D. Nelson, E. Ndiaye, A. Rios, and E. Souza. 2014. Characterization, antioxidant potential and cytotoxic study of mangaba fruits. Ciência Rural 44 (7):1297–303. doi: 10.1590/0103-8478cr20130855.
  • Assunção, R. B., and A. Z. Mercadante. 2003. Carotenoids and ascorbic acid from cashew apple (Anacardium occidentale L.): variety and geographic effects. Food Chemistry 81 (4):495–502. doi: 10.1016/S0308-8146(02)00477-6.
  • Atala, A., E. Simões, and J. G. de Lima. 2003. POR UMA gastronomia Brasileira. São Paulo: BEĨ.
  • Azevedo-Meleiro, C., and D. Rodriguez-Amaya. 2004. Confirmation of the identity of the carotenoids of tropical fruits by HPLC-DAD and HPLC-MS. Journal of Food Composition and Analysis 17 (3–4):385–96. doi: 10.1016/j.jfca.2004.02.004.
  • Azzi, A.,. R. Gysin, P. Kempná, A. Munteanu, L. Villacorta, T. Visarius, and J.-M. Zingg. 2004. Regulation of gene expression by α-tocopherol. Biological Chemistry 385 (7):585–91. doi: 10.1515/BC.2004.072.
  • Bailão, E. F. L. C., I. A. Devilla, E. C. Da Conceição, and L. L. Borges. 2015. Bioactive compounds found in Brazilian Cerrado fruits. International Journal of Molecular Sciences 16 (10):23760–83. doi: 10.3390/ijms161023760.
  • Balisteiro, D., R. de Araujo, L. Giacaglia, and M. Genovese. 2017. Effect of clarified Brazilian native fruit juices on postprandial glycemia in healthy subjects. Food Research International 100:196–203. doi: 10.1016/j.foodres.2017.08.044.
  • Benedict, M., and X. Zhang. 2017. Non-alcoholic fatty liver disease: An expanded review. World Journal of Hepatology 9 (16):715. doi: 10.4254/wjh.v9.i16.715.
  • Bento, A., C. Cominetti, A. Simões Filho, and M. Naves. 2014. Baru almond improves lipid profile in mildly hypercholesterolemic subjects: A randomized, controlled, crossover study. Nutrition, Metabolism and Cardiovascular Diseases 24 (12):1330–6. doi: 10.1016/j.numecd.2014.07.002.
  • Berg, A., and P. Scherer. 2005. Adipose tissue, inflammation, and cardiovascular disease. Circulation Research 96 (9):939–49. doi: 10.1161/01.RES.0000163635.62927.34.
  • Bertolino, J. F., K. D. Ferreira, L. J. S. Mascarenhas, L. Oliveira, and V. A. S. Vulcani. 2019. Applicability of pequi oil in healing. Enciclopédia Biosfera 16 (29):229–43. doi: 10.18677/EnciBio_2019A16.
  • Birch, C. S., and G. A. Bonwick. 2019. Ensuring the future of functional foods. International Journal of Food Science & Technology 54 (5):1467–85. doi: 10.1111/ijfs.14060.
  • Bitencourt, M., M. Torres-Rêgo, M. de Souza Lima, A. Furtado, E. de Azevedo, E. do Egito, A. da Silva-Júnior, S. Zucolotto, and M. Fernandes-Pedrosa. 2019. Protective effect of aqueous extract, fractions and phenolic compounds of Hancornia speciosa fruits on the inflammatory damage in the lungs of mice induced by Tityus serrulatus envenomation. Toxicon 164:1–9. doi: 10.1016/j.toxicon.2019.03.018.
  • Bortolotto, I. M., P. A. Hiane, I. H. Ishii, P. R. de Souza, R. P. Campos, R. Juraci Bastos Gomes, C. da Silva Farias, F. M. Leme, R. do Carmo de Oliveira Arruda, L. B. de Lima Corrêa da Costa, et al. 2017. A knowledge network to promote the use and valorization of wild food plants in the Pantanal and Cerrado. Regional Environmental Change 17 (5):1329–41. doi: 10.1007/s10113-016-1088-y.
  • Botezelli, L., A. C. Davide, and M. M. Malavasi. 2015. Characteristics of fruits and seeds of four provenances of Dipteryx alata Vogel. Cerne 6 (1):9–18.
  • Carneiro, N., C. Alves, J. Alves, M. Egea, C. Martins, T. Silva, L. Bretanha, M. Balleste, G. Micke, and E. Silveira. 2017. Chemical composition, antioxidant and antibacterial activities of essential oils from leaves and flowers of Eugenia klotzschiana Berg (Myrtaceae). Anais da Academia Brasileira de Ciências 89 (3):1907–15.
  • Carneiro, N., C. Alves, C. Cagnin, C. Belisario, M. Silva, M. Miranda, J. Oliveira Filho, J. Alves, P. Pereira, F. Silva, et al. 2019. Eugenia klotzschiana O. Berg fruits as new sources of nutrients: Determination of their bioactive compounds, antioxidant activity and chemical composition. Brazilian Archives of Biology and Technology 62: e19170562. doi: 10.1590/1678-4324-2019170562.
  • Carr, A., and J. Lykkesfeldt. 2020. Discrepancies in global vitamin C recommendations: A review of RDA criteria and underlying health perspectives. Critical Reviews in Food Science and Nutrition 61:1–14.
  • Carvalho, D. V., L. M. A. Silva, E. G. Alves Filho, F. A. Santos, R. P. de Lima, A. F. S. C. Viana, P. I. G. Nunes, S. G. da Cruz Fonseca, T. S. de Melo, D. de Araújo Viana, et al. 2019. Cashew apple fiber prevents high fat diet-induced obesity in mice: An NMR metabolomic evaluation. Food & Function 10 (3):1671–83. doi: 10.1039/C8FO01575A.
  • Chen, X., R. Touyz, J. Park, and E. Schiffrin. 2001. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension 38 (3):606–11. doi: 10.1161/hy09t1.094005.
  • Cho, A.-S., S.-M. Jeon, M.-J. Kim, J. Yeo, K.-I. Seo, M.-S. Choi, and M.-K. Lee. 2010. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food and Chemical Toxicology 48 (3):937–43. doi: 10.1016/j.fct.2010.01.003.
  • Cho, Y., S.-G. Lee, S. H. Jee, and J.-H. Kim. 2015. Hypertriglyceridemia is a major factor associated with elevated levels of small dense LDL cholesterol in patients with metabolic syndrome. Annals of Laboratory Medicine 35 (6):586–94. doi: 10.3343/alm.2015.35.6.586.
  • Cohen, K. D. O., and S. Sano. 2010. Parâmetros físico-químicos dos frutos de mangabeira. Embrapa Cerrados-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E). Planaltina, DF: Embrapa Cerrados.
  • Costa, C., R. Collevatti, L. Chaves, J. de Souza Lima, T. Soares, and M. de Campos Telles. 2017. Genetic diversity and fine-scale genetic structure in Hancornia speciosa Gomes (Apocynaceae). Biochemical Systematics and Ecology 72:63–7. doi: 10.1016/j.bse.2017.03.001.
  • Cynober, L., E. Alix, F. Arnaud-Battandier, M. Bonnefoy, P. Brocker, M.-J. Cals, C. Cherbut, C. Coplo, M. Ferry, A. Ghisolfi-Marque, et al. 2000. Apports nutritionnels conseillés chez la personne âgée. Nutrition Clinique et Métabolisme 14:3–60. doi: 10.1016/S0985-0562(00)80002-3.
  • Czeder, L. P., D. C. Fernandes, J. B. Freitas, and M. M. V. Naves. 2012. Baru almonds from different regions of the Brazilian Savanna: Implications on physical and nutritional characteristics. Agricultural Sciences 03 (05):745–54. doi: 10.4236/as.2012.35090.
  • da Cunha P. L., R. C. M. de Paula, and J. P. A. Feitosa . 2009. Polissacarídeos da biodiversidade brasileira: Uma oportunidade de transformar conhecimento em valor econômico. Química Nova 32 (3):649–60. doi: 10.1590/S0100-40422009000300009.
  • da Rocha Neves, G., A. Machado, J. Santana, D. da Costa, N. Antoniosi Filho, L. Viana, F. Silva, W. Spinosa, M. S. Soares Junior, and M. Caliari. 2020. Vinegar from Anacardium othonianum Rizzini using submerged fermentation. Journal of the Science of Food and Agriculture 101:2855.
  • Damasco, G., C. Fontes, R. Françoso, and R. Haidar. 2018. The Cerrado biome: A forgotten biodiversity hotspot. Frontiers for Young Minds 6:22. doi: 10.3389/frym.2018.00022.
  • Das, U. 2019. Vitamin C for Type 2 diabetes mellitus and hypertension. Archives of Medical Research 50 (2):11–4.
  • Daza, L., A. Fujita, D. Granato, C. Fávaro-Trindade, and M. Genovese. 2017. Functional properties of encapsulated cagaita (Eugenia dysenterica DC.) fruit extract. Food Bioscience 18:15–21. doi: 10.1016/j.fbio.2017.03.003.
  • de Almeida, A. B., A. K. C. Silva, A. R. Lodete, M. B. Egea, M. C. P. M. Lima, and F. G. Silva. 2019. Assessment of chemical and bioactive properties of native fruits from the Brazilian Cerrado. Nutrition & Food Science 49(3):381.
  • De Ancos, B., M. Rodrigo, C. Sánchez-Moreno, M. Cano, and L. Zacarías. 2020. Effect of high-pressure processing applied as pretreatment on carotenoids, flavonoids and vitamin C in juice of the sweet oranges' Navel'and the red-fleshed'Cara Cara. Food Research International 132:109105. doi: 10.1016/j.foodres.2020.109105.
  • de Andrade Silva, C. A., and G. G. Fonseca. 2016. Brazilian savannah fruits: Characteristics, properties, and potential applications. Food Science and Biotechnology 25 (5):1225–32. doi: 10.1007/s10068-016-0195-3.
  • de Araújo, F. F., I. A. Neri-Numa, D. de Paulo Farias, G. R. M. C. da Cunha, and G. M. Pastore. 2019. Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Research International 121:57–72. doi: 10.1016/j.foodres.2019.03.018.
  • de Figueiredo, P. R. L., I. B. Oliveira, J. B. S. Neto, J. A. de Oliveira, L. B. Ribeiro, G. S. de Barros Viana, T. M. Rocha, L. K. A. M. Leal, M. R. Kerntopf, C. F. B. Felipe, et al. 2016. Caryocar coriaceum Wittm.(Pequi) fixed oil presents hypolipemic and anti-inflammatory effects in vivo and in vitro. Journal of Ethnopharmacology 191:87–94. doi: 10.1016/j.jep.2016.06.038.
  • de Lima, T. M., A. B. de Almeida, D. S. Peres, T. L. de Sousa, B. S. M. de Freitas, F. G. Silva, and M. B. Egea. 2021. Rhizopus oligosporus as a biotransforming microorganism of Anacardium othonianum Rizz. byproduct for production of high -protein, -antioxidant, and -fiber ingredient. LWT 135:110030. doi: 10.1016/j.lwt.2020.110030.
  • de Oliveira Sousa, A. G., D. C. Fernandes, A. M. Alves, J. B. de Freitas, and M. M. V. Naves. 2011. Nutritional quality and protein value of exotic almonds and nut from the Brazilian Savanna compared to peanut. Food Research International 44 (7):2319–25. doi: 10.1016/j.foodres.2011.02.013.
  • de Oliveira Yamashita, F., M. Torres-Rêgo, J. dos Santos Gomes, J. Félix-Silva, J. Passos, L. de Santis Ferreira, A. da Silva-Júnior, S. Zucolotto, and M. de Freitas Fernandes-Pedrosa. 2020. Mangaba (Hancornia speciosa Gomes) fruit juice decreases acute pulmonary edema induced by Tityus serrulatus venom: potential application for auxiliary treatment of scorpion stings. Toxicon 179:42.
  • de Santana Magalhães, F., V. Cardoso, and M. Reis. 2018. Sequential process with bioadsorbents and microfiltration for clarification of pequi (Caryocar brasiliense Camb.) fruit extract. Food and Bioproducts Processing 108:105–16. doi: 10.1016/j.fbp.2018.02.003.
  • de Santana Magalhães, F., M. Sá, V. Cardoso, and M. Reis. 2019. Recovery of phenolic compounds from pequi (Caryocar brasiliense Camb.) fruit extract by membrane filtrations: Comparison of direct and sequential processes. Journal of Food Engineering 257:26–33. doi: 10.1016/j.jfoodeng.2019.03.025.
  • de Sousa, E. R., Y. M. Camilo, and R. Vera. 2018. Cagaita—Eugenia dysenterica. In Exotic fruits, ed. S. Rodrigues, E. de Oliveira Silva and E. S. de Brito, 77–83. Cambridge, MA: Academic Press.
  • de Souza, R. G. M., A. C. Gomes, I. A. de Castro, and J. F. Mota. 2018. A baru almond–enriched diet reduces abdominal adiposity and improves high-density lipoprotein concentrations: A randomized, placebo-controlled trial. Nutrition 55:154–60.
  • Dedehou, E., J. Dossou, V. Anihouvi, and M. M. Soumanou. 2016. A review of cashew (Anacardium occidentale L.) apple: Effects of processing techniques, properties and quality of juice. African Journal of Biotechnology 15 (47):2637–48.
  • Dionísio, A. P., L. B. de Carvalho-Silva, N. M. Vieira, T. de Souza Goes, N. J. Wurlitzer, M. de Fatima Borges, E. S. de Brito, M. Ionta, and R. W. de Figueiredo. 2015. Cashew-apple (Anacardium occidentale L.) and yacon (Smallanthus sonchifolius) functional beverage improve the diabetic state in rats. Food Research International 77:171–6. doi: 10.1016/j.foodres.2015.07.020.
  • Donado-Pestana, C., T. Belchior, and M. Genovese. 2015. Phenolic compounds from cagaita (Eugenia dysenterica DC.) fruit prevent body weight and fat mass gain induced by a high-fat, high-sucrose diet. Food Research International 77:177–85. doi: 10.1016/j.foodres.2015.06.044.
  • Donado-Pestana, C. M., P. R. dos Santos-Donado, L. D. Daza, T. Belchior, W. T. Festuccia, and M. I. Genovese. 2018. Cagaita fruit (Eugenia dysenterica DC.) and obesity: Role of polyphenols on already established obesity. Food Research International 103:40–7. doi: 10.1016/j.foodres.2017.10.011.
  • Donado-Pestana, C., M. Moura, R. de Araujo, G. de Lima Santiago, H. de Moraes Barros, and M. Genovese. 2018. Polyphenols from Brazilian native Myrtaceae fruits and their potential health benefits against obesity and its associated complications. Current Opinion in Food Science 19:42–9. doi: 10.1016/j.cofs.2018.01.001.
  • Egea, M. B., G. Pierce, and N. Shay. 2020. Consumption of “Cerrado” Cashew Pulp Affects Physiological Parameters and Gene Expression in Obese C57BL/6J High Fat-Fed Mice. Current Developments in Nutrition 4 (Supplement_2):373. doi: 10.1093/cdn/nzaa045_006.
  • Egea, M. B., and K. P. Takeuchi. 2020. Bioactive compounds in baru almond (Dipteryx alata Vogel): nutritional composition and health effects. In Bioactive compounds in underutilized fruits and nuts, ed. H. Murthy and V. Bapat, 289–302. Cham: Springer.
  • Ellis, G., R. Anderson, D. Lang, D. Blackman, R. Morris, J. Morris-Thurgood, I. McDowell, S. Jackson, M. Lewis, and M. Frenneaux. 2000. Neutrophil superoxide anion–generating capacity, endothelial function and oxidative stress in chronic heart failure: Effects of short-and long-term vitamin C therapy. Journal of the American College of Cardiology 36 (5):1474–1482. doi: 10.1016/S0735-1097(00)00916-5.
  • Emanuela, F., M. Grazia, D. R. Marco, L. Maria Paola, F. Giorgio, and B. Marco. 2012. Inflammation as a link between obesity and metabolic syndrome. Journal of Nutrition and Metabolism 2012:1–7. doi: 10.1155/2012/476380.
  • Fåk, F., G. Jakobsdottir, E. Kulcinskaja, N. Marungruang, C. Matziouridou, U. Nilsson, H. Stålbrand, and M. Nyman. 2015. The physico-chemical properties of dietary fibre determine metabolic responses, short-chain fatty acid profiles and gut microbiota composition in rats fed low-and high-fat diets. PLoS ONE 10 (5):e0127252. doi: 10.1371/journal.pone.0127252.
  • Farag, H., M. Hosseinzadeh-Attar, B. Muhammad, A. Esmaillzadeh, and A. E. Bilbeisi. 2019. Effects of vitamin C supplementation with and without endurance physical activity on components of metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial. Clinical Nutrition Experimental 26:23–33. doi: 10.1016/j.yclnex.2019.05.003.
  • Fernandes, D. C., A. M. Alves, G. S. F. Castro, A. A. J. Junior, and M. M. V. Naves. 2015. Effects of baru almond and Brazil nut against hyperlipidemia and oxidative stress in vivo. Journal of Food Research 4 (4):38. doi: 10.5539/jfr.v4n4p38.
  • Fernandes, D., J. Freitas, L. Czeder, and M. Naves. 2010. Nutritional composition and protein value of the baru (Dipteryx alata Vog.) almond from the Brazilian Savanna. Journal of the Science of Food and Agriculture 90 (10):1650–1655. doi: 10.1002/jsfa.3997.
  • Fernandes, P., F. A. Lira, V. Borba, M. Costa, I. Trombeta, M. Santos, and A. Santos. 2011. Vitamin C restores blood pressure and vasodilator response during mental stress in obese children. Arquivos Brasileiros de Cardiologia 96 (6):490–497. doi: 10.1590/S0066-782X2011005000057.
  • Fiorini, A. M. R., É. L. Guiguer, S. M. Barbalho, M. Oshiiwa, R. L. Vieites, F. M. Farinazzi-Machado, E. P. Pinto, J. C. do Nascimento Rodrigues, and I. B. Ishida. 2017. Dypteryx alata Vogle seeds may improve anthropometric and behavioral profile of Wistar rats. World Journal of Pharmaceutical Research. 8:10.
  • Fonteles, T. V., A. K. F. Leite, A. R. A. da Silva, F. A. N. Fernandes, and S. Rodrigues. 2017. Sonication effect on bioactive compounds of cashew apple bagasse. Food and Bioprocess Technology 10 (10):1854–1864. doi: 10.1007/s11947-017-1960-x.
  • Forouhi, N. G., R. M. Krauss, G. Taubes, and W. Willett. 2018. Dietary fat and cardiometabolic health: Evidence, controversies, and consensus for guidance. BMJ 361:k2139.
  • Frei, B., R. Stocker, L. England, and B. Ames. 1990. Ascorbate: The most effective antioxidant in human blood plasma. In Antioxidants in therapy and preventive medicine, ed. I. Emerit, L. Packer and C. Auclair, 155–63. New York: Springer.
  • Galli, F., A. Azzi, M. Birringer, J. M. Cook-Mills, M. Eggersdorfer, J. Frank, G. Cruciani, S. Lorkowski, and N. K. Özer. 2017. Vitamin E: Emerging aspects and new directions. Free Radical Biology and Medicine 102:16–36. doi: 10.1016/j.freeradbiomed.2016.09.017.
  • Gharibzahedi, S., and S. Jafari. 2017. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends in Food Science & Technology 62:119–132. doi: 10.1016/j.tifs.2017.02.017.
  • Godoy-Matos, A., W. Júnior, and C. Valerio. 2020. NAFLD as a continuum: From obesity to metabolic syndrome and diabetes. Diabetology & Metabolic Syndrome 12 (1):1–20. doi: 10.1186/s13098-020-00570-y.
  • Gomes, J. G., N. C. C. de Oliveira, P. S. N. Lopes, and M. B. Pereira. 2011. Componentes principais no estudo da diversidade de cajuí na Sub-bacia do Rio dos Cochos. Cadernos de Agroecologia 6 (2):1–6.
  • Granger, M., and P. Eck. 2018. Dietary vitamin C in human health. Advances in Food and Nutrition Research 83:281–310.
  • Greenfield, D. M., and J. A. Snowden. 2019. Cardiovascular diseases and metabolic syndrome. In The EBMT Handbook, ed. E. Carreras, C. Dufour, M. Mohty and N. Kröger, 415–20. Cham: Springer.
  • Gullón, B., T. Lú-Chau, M. Moreira, J. Lema, and G. Eibes. 2017. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends in Food Science & Technology 67:220–235. doi: 10.1016/j.tifs.2017.07.008.
  • Han, H.-S., G. Kang, J. S. Kim, B. H. Choi, and S.-H. Koo. 2016. Regulation of glucose metabolism from a liver-centric perspective. Experimental & Molecular Medicine 48 (3):e218–e218. doi: 10.1038/emm.2015.122.
  • Hopps, E., D. Noto, G. Caimi, and M. Averna. 2010. A novel component of the metabolic syndrome: The oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases 20 (1):72–77. doi: 10.1016/j.numecd.2009.06.002.
  • Horenstein, A., C. M. Potter, and R. G. Heimberg. 2018. How does anxiety sensitivity increase risk of chronic medical conditions? Clinical Psychology: Science and Practice 25 (3):e12248.
  • Hosono, A., C. M. C. da Rocha, and Y. Hongo. 2016. Development for sustainable agriculture: The Brazilian Cerrado. London: Springer.
  • Jakobek, L. 2015. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry 175:556–567. doi: 10.1016/j.foodchem.2014.12.013.
  • Jesch, E. D., and T. P. Carr. 2017. Food ingredients that inhibit cholesterol absorption. Preventive Nutrition and Food Science 22 (2):67–80.
  • Johner, J., T. Hatami, and M. Meireles. 2018. Developing a supercritical fluid extraction method assisted by cold pressing for extraction of pequi (Caryocar brasiliense). The Journal of Supercritical Fluids 137:34–39. doi: 10.1016/j.supflu.2018.03.005.
  • Justino, A., F. de Moura, R. Franco, and F. Espindola. 2020. α-Glucosidase and non-enzymatic glycation inhibitory potential of Eugenia dysenterica fruit pulp extracts. Food Bioscience 35:100573. doi: 10.1016/j.fbio.2020.100573.
  • Kamalakkannan, N., and P. Prince. 2006. Rutin improves the antioxidant status in streptozotocin-induced diabetic rat tissues. Molecular and Cellular Biochemistry 293 (1–2):211–219. doi: 10.1007/s11010-006-9244-1.
  • Kanwar, P., and K. Kowdley. 2016. The Metabolic Syndrome and Its Influence on Nonalcoholic Steatohepatitis. Clinics in Liver Disease 20 (2):225–243. doi: 10.1016/j.cld.2015.10.002.
  • Kaprasob, R., D. Sarkar, O. Kerdchoechuen, N. Laohakunjit, C. Khanongnuch, and K. Shetty. 2019. Beneficial lactic acid bacteria based bioprocessing of cashew apple juice for targeting antioxidant nutraceutical inhibitors as relevant antidotes to type 2 diabetes. Process Biochemistry 82:40–50. doi: 10.1016/j.procbio.2019.05.005.
  • Karthikesan, K., L. Pari, and V. Menon. 2010. Combined treatment of tetrahydrocurcumin and chlorogenic acid exerts potential antihyperglycemic effect on streptozotocin-nicotinamide-induced diabetic rats. General Physiology and Biophysics 29 (1):23–30. doi: 10.4149/gpb_2010_01_23.
  • Kaul, D., and M. Baba. 2005. Genomic effect of vitamin ‘C’and statins within human mononuclear cells involved in atherogenic process. European Journal of Clinical Nutrition 59 (8):978–981. doi: 10.1038/sj.ejcn.1602203.
  • Kaur, C., and H. C. Kapoor. 2001. Antioxidants in fruits and vegetables – the millennium’s health. International Journal of Food Science and Technology 36 (7):703–725. doi: 10.1046/j.1365-2621.2001.00513.x.
  • Kelley, D. E., L. H. Kuller, T. M. McKolanis, P. Harper, J. Mancino, and S. Kalhan. 2004. Effects of moderate weight loss and orlistat on insulin resistance, regional adiposity, and fatty acids in type 2 diabetes. Diabetes Care 27 (1):33–40. doi: 10.2337/diacare.27.1.33.
  • Kieffer, D. A., B. D. Piccolo, M. L. Marco, E. B. Kim, M. L. Goodson, M. J. Keenan, T. N. Dunn, K. E. B. Knudsen, R. J. Martin, and S. H. Adams. 2016. Mice fed a high-fat diet supplemented with resistant starch display marked shifts in the liver metabolome concurrent with altered gut bacteria. The Journal of Nutrition 146 (12):2476–2490. doi: 10.3945/jn.116.238931.
  • Kumar, S., and V. Krishnan. 2017. Phytochemistry and functional food: The needs of healthy life. Jourrnal of Phytochemistry Biochemistry 1:1–3.
  • Lee, C. Y., L. M. Massey, and J. P. Buren. 1982. Effects of post‐harvest handling and processing on vitamin contents of peas. Journal of Food Science 47 (3):961–964. doi: 10.1111/j.1365-2621.1982.tb12755.x.
  • Lee, J., and C. Scagel. 2013. Chicoric acid: Chemistry, distribution, and production. Frontiers in Chemistry 1:40. doi: 10.3389/fchem.2013.00040.
  • Leite, J. F., A. C. Feitosa, A. D. G. Zuniga, L. M. Guida, and D. X. da Silva. 2020. Quality of pequi fruit (Caryocar brasiliense Camb.) stored under vacuum at different temperatures. Brazilian Journal of Development 6 (4):21951–21958. doi: 10.34117/bjdv6n4-385.
  • Lemes, A. C., L. Sala, C. Ores Jda, A. R. Braga, M. B. Egea, and K. F. Fernandes. 2016. A review of the latest advances in encrypted bioactive peptides from protein-rich waste. International Journal of Molecular Sciences 17 (6):1–24.
  • Lemos, M. R. B., E. M. de Almeida Siqueira, S. F. Arruda, and R. C. Zambiazi. 2012. The effect of roasting on the phenolic compounds and antioxidant potential of baru nuts [Dipteryx alata Vog.]. Food Research International 48 (2):592–597. doi: 10.1016/j.foodres.2012.05.027.
  • Lima, T. B., O. N. Silva, J. T. A. Oliveira, I. M. Vasconcelos, F. B. Scalabrin, T. L. Rocha, M. F. Grossi-de-Sá, L. P. Silva, R. V. Guadagnin, B. F. Quirino, et al. 2010. Identification of E. dysenterica laxative peptide: A novel strategy in the treatment of chronic constipation and irritable bowel syndrome. Peptides 31 (8):1426–1433. doi: 10.1016/j.peptides.2010.05.003.
  • Lima, A. d., A. M. d O. Silva, R. A. Trindade, R. P. Torres, and J. Mancini-Filho. 2007. Chemical composition and bioactive compounds in the pulp and almond of pequi fruit (Caryocar brasiliense Camb.). Revista Brasileira de Fruticultura 29 (3):695–698. doi: 10.1590/S0100-29452007000300052.
  • Lin, D., M. Xiao, J. Zhao, Z. Li, B. Xing, X. Li, M. Kong, L. Li, Q. Zhang, Y. Liu, et al. 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21 (10):1374. doi: 10.3390/molecules21101374.
  • Liu, C., C. Zhong, R. Chen, X. Zhou, J. Wu, J. Han, X. Li, Y. Zhang, Q. Gao, M. Xiao, et al. 2020. Higher dietary vitamin C intake is associated with a lower risk of gestational diabetes mellitus: A longitudinal cohort study. Clinical Nutrition 39 (1):198–203. doi: 10.1016/j.clnu.2019.01.015.
  • Lorenzi, H., L. Bacher, M. Lacerda, and S. Sartori. 2006. Frutas brasileiras e exóticas cultivadas (de consumo in natura) [Brazilian and exotic cultivated fruits (for fresh consumption), 640. São Paulo: Instituto plantarum de estudos da Flora.
  • Mariano, A., A. Ramos, R. Augusti, R. Araújo, and J. Melo. 2020. Analysis of the chemical profile of cerrado pear fixed compounds by mass spectrometry with paper spray and volatile ionization by SPME-HS CG-MS. Research, Society and Development 9 (9):e949998219. doi: 10.33448/rsd-v9i9.8219.
  • Martinez-Gonzalez, A. I., Á. G. Díaz-Sánchez, L. A. Rosa, C. L. Vargas-Requena, I. Bustos-Jaimes, and E. Alvarez-Parrilla. 2017. Polyphenolic compounds and digestive enzymes: In vitro non-covalent interactions. Molecules 22 (4):669. doi: 10.3390/molecules22040669.
  • Martins Gregório, B., D. B. de Souza, F. M. de Morais Nascimento, L. Matta, and C. Fernandes-Santos. 2016. The potential role of antioxidants in metabolic syndrome. Current Pharmaceutical Design 22 (7):859–869. doi: 10.2174/1381612822666151209152352.
  • Mason, S., B. Rasmussen, L. van Loon, J. Salmon, and G. Wadley. 2019. Ascorbic acid supplementation improves postprandial glycaemic control and blood pressure in individuals with type 2 diabetes: Findings of a randomized cross‐over trial. Diabetes, Obesity and Metabolism 21 (3):674–682. doi: 10.1111/dom.13571.
  • Minatel, I., C. Borges, M. Ferreira, H. Gomez, C.-Y. Chen, and G. Lima. 2017. Phenolic compounds: Functional properties, impact of processing and bioavailability. In Phenolic compounds biological activity, ed. M. Soto-Hernández, M. Palma-Tenango and R. García-Mateos, 1–24. Rijeka, Croatia: InTech.
  • Miranda-Vilela, A., I. Ribeiro, and C. Grisolia. 2016. Association between interleukin 6-174 G/C promoter gene polymorphism and runners' responses to the dietary ingestion of antioxidant supplementation based on pequi (Caryocar brasiliense Camb.) oil: A before-after study. Genetics and Molecular Biology 39 (4):554–566. doi: 10.1590/1678-4685-gmb-2015-0299.
  • Mitchell, J., and S. A. Mori. 1987. The cashew and its relatives (Anacardium: Anacardiaceae). El marañón y sus parientes (Anacardium: Anacardiaceae). Memoirs of the New York Botanical Garden 42 (1):1–76.
  • Mohammadi, M.,. M. Gozashti, M. Aghadavood, M. Mehdizadeh, and M. Hayatbakhsh. 2017. Clinical significance of serum IL-6 and TNF-α levels in patients with Metabolic Syndrome. Reports of Biochemistry & Molecular Biology 6 (1):74–79.
  • Monachino, J. 1945. A revision of Hancornia (Apocynaceae). Lilloa 11:19–48.
  • Moraes, F. P., and F. M. Colla. 2006. Alimentos funcionais e nutracêuticos: Definições, legislação e benefícios à saúde. Revista Eletrônica de Farmácia 3 (2):109–122.
  • Murtaza, G., H. U. H. Virk, M. Khalid, C. J. Lavie, H. Ventura, D. Mukherjee, V. Ramu, S. Bhogal, G. Kumar, M. Shanmugasundaram, et al. 2019. Diabetic cardiomyopathy-A comprehensive updated review. Progress in Cardiovascular Diseases 62 (4):315–326. doi: 10.1016/j.pcad.2019.03.003.
  • Narain, N., F. R. M. França, and M. T. S. L. Neta. 2018. Mangaba—Hancornia speciosa. In Exotic fruits, ed. S. Rodrigues, E. de Oliveira Silva and E. S. de Brito, 305–318. Cambridge, MA: Academic Press.
  • Nascimento-Silva, N., N. Mendes, and F. Silva. 2020. Nutritional composition and total phenolic compounds content of pequi pulp (Caryocar brasiliense Cambess). Journal of Bioenergy and Food Science 7 (2):2812019.
  • NIH. 2011. National Institute of Health. Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Total Water and Macronutrients. Retrieved Oct 10, 2020.
  • NIH. 2020. Metabolic syndrome. Retrieved November 18, 2020.
  • Oliveira, M., E. Gusmão, P. Lopes, M. Simões, L. Ribeiro, and B. Dias. 2006. Maturity stage of fruits and factors related to nutritive and texture characters of pequi (Caryocar brasiliense Camb.) pulp. Revista Brasileira de Fruticultura 28 (3):380–386. doi: 10.1590/S0100-29452006000300010.
  • Oliveira, D., and C. Rocha. 2008. Sustainable Alternatives for school lunches with the use of plants of the savanna, Promote environmental education. REMEA-Revista Eletrônica do Mestrado em Educação Ambiental 21.
  • Oliveira, V. F., F. G. Silva, E. C. Resende, P. S. Pereira, F. H. d L. e Silva, and M. B. Egea. 2019. Physicochemical characterization of ‘Cerrado’ cashew (Anacardium othonianum Rizzini) fruits and pseudofruits. Journal of the Science of Food and Agriculture 99 (14):6199–6208. doi: 10.1002/jsfa.9892.
  • Oliveira, V. B., L. T. Yamada, C. W. Fagg, and M. G. Brandão. 2012. Native foods from Brazilian biodiversity as a source of bioactive compounds. Food Research International 48 (1):170–179. doi: 10.1016/j.foodres.2012.03.011.
  • Ombredane, A. S., V. H. S. Araujo, C. O. Borges, P. L. Costa, M. G. Landim, A. C. Pinheiro, Í. O. Szlachetka, L. E. C. Benedito, L. S. Espindola, D. J. S. Dias, et al. 2020. Nanoemulsion-based systems as a promising approach for enhancing the antitumoral activity of pequi oil (Caryocar brasilense Cambess.) in breast cancer cells. Journal of Drug Delivery Science and Technology 58:101819. doi: 10.1016/j.jddst.2020.101819.
  • Ommati, M., O. Farshad, K. Mousavi, M. Khalili, A. Jamshidzadeh, and R. Heidari. 2020. Chlorogenic acid supplementation improves skeletal muscle mitochondrial function in a rat model of resistance training. Biologia 75:1–10.
  • Packard, C. J., J. Boren, and M.-R. Taskinen. 2020. Causes and consequences of hypertriglyceridemia. Frontiers in Endocrinology 11:252. doi: 10.3389/fendo.2020.00252.
  • Pianovski, A. R., A. F. G. Vilela, A. A. S. de Silva, C. G. Lima, K. K. de Silva, V. F. M. Carvalho, C. R. D. Musis, S. R. P. Machado, and M. Ferrari. 2008. Use of pequi oil (Caryocar brasiliense) in cosmetics emulsions: Development and evaluate of physical stability. Revista Brasileira de Ciências Farmacêuticas 44 (2):249–259. doi: 10.1590/S1516-93322008000200010.
  • Pinto, M. R. M. R., D. de Almeida Paula, A. I. Alves, M. Z. Rodrigues, É. N. R. Vieira, E. A. F. Fontes, and A. M. Ramos. 2018. Encapsulation of carotenoid extracts from pequi (Caryocar brasiliense Camb) by emulsification (O/W) and foam-mat drying. Powder Technology 339:939–946. doi: 10.1016/j.powtec.2018.08.076.
  • Pirola, L., and J. Ferraz. 2017. Role of pro-and anti-inflammatory phenomena in the physiopathology of type 2 diabetes and obesity. World Journal of Biological Chemistry 8 (2):120. doi: 10.4331/wjbc.v8.i2.120.
  • Ramos, M., M. Umaki, P. Hiane, and F. M. Ramos. 2001. Efeito do cozimento convencional sobre os carotenóides pró-vitamínicos" A" da polpa do piqui (Caryocar brasiliense Camb) [Effect of conventional cooking on the pro-vitamin carotenoids "A" of the piqui pulp (Caryocar brasiliense Camb)]. Boletim Do Centro de Pesquisa de Processamento de Alimentos 19 (1):23–32. doi: 10.5380/cep.v19i1.1219.
  • Reis, A., and M. Schmiele. 2019. Characteristics and potentialities of Savanna fruits in the food industry. Brazilian Journal of Food Technology 22:e2017150. doi: 10.1590/1981-6723.15017.
  • Rincón-León, F. 2003. Functional Foods. In Encyclopedia of Food Sciences and Nutrition, ed. B. Caballero, 2nd ed., 2827–2832. Oxford: Academic Press.
  • Rocha, W., R. Lopes, D. Silva, R. Vieira, J. Silva, and T. Agostini-Costa. 2011. Total phenolics and condensed tannins in native fruits from Brazilian savanna. Revista Brasileira de Fruticultura 33 (4):1215–1221. doi: 10.1590/S0100-29452011000400021.
  • Rochlani, Y., N. V. Pothineni, S. Kovelamudi, and J. L. Mehta. 2017. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Therapeutic Advances in Cardiovascular Disease 11 (8):215–225. doi: 10.1177/1753944717711379.
  • Rodrigues, E., R. Collevatti, L. Chaves, L. Moreira, and M. Telles. 2016. Mating system and pollen dispersal in Eugenia dysenterica (Myrtaceae) germplasm collection: Tools for conservation and domestication. Genetica 144 (2):139–146. doi: 10.1007/s10709-016-9884-3.
  • Rufino, M. D S. M., R. E. Alves, E. S. de Brito, J. Pérez-Jiménez, F. Saura-Calixto, and J. Mancini-Filho. 2010. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry 121 (4):996–1002. doi: 10.1016/j.foodchem.2010.01.037.
  • Saklani, R., S. Gupta, I. Mohanty, B. Kumar, S. Srivastava, and R. Mathur. 2016. Cardioprotective effects of rutin via alteration in TNF-α, CRP, and BNP levels coupled with antioxidant effect in STZ-induced diabetic rats. Molecular and Cellular Biochemistry 420 (1–2):65–72. doi: 10.1007/s11010-016-2767-1.
  • Samamad, N., L. Ribeiro, M. de Almeida Lopes, R. Puschmann, and E. de Oliveira Silva. 2018. Near infrared spectroscopy, a suitable tool for fast phenotyping–The case of cashew genetic improvement. Scientia Horticulturae 238:363–368. doi: 10.1016/j.scienta.2018.05.007.
  • Sano, S. M., J. F. Ribeiro, and M. De Brito. 2004. Baru: biologia e uso. Embrapa Cerrados-Documentos (INFOTECA-E).
  • Santana, R. V., D. C. de Santos, A. C. A. Santana, J. G. de Oliveira Filho, A. B. de Almeida, T. M. de Lima, F. G. Silva, and M. B. Egea. 2020. Quality parameters and sensorial profile of clarified “Cerrado” cashew juice supplemented with Sacharomyces boulardii and different sweeteners. LWT 128:109319. doi: 10.1016/j.lwt.2020.109319.
  • Santos, U., J. Campos, H. Torquato, E. Paredes-Gamero, C. Carollo, L. Estevinho, K. de Picoli Souza, and E. D. Santos. 2016. Antioxidant, antimicrobial and cytotoxic properties as well as the phenolic content of the extract from Hancornia speciosa Gomes. PLoS ONE 11 (12):e0167531. doi: 10.1371/journal.pone.0167531.
  • Schiassi, M., V. de Souza, A. Lago, L. Campos, and F. Queiroz. 2018. Fruits from the Brazilian Cerrado region: Physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chemistry 245:305–311. doi: 10.1016/j.foodchem.2017.10.104.
  • Schweiggert, R. M., E. Vargas, J. Conrad, J. Hempel, C. C. Gras, J. U. Ziegler, A. Mayer, V. Jiménez, P. Esquivel, and R. Carle. 2016. Carotenoids, carotenoid esters, and anthocyanins of yellow-, orange-, and red-peeled cashew apples (Anacardium occidentale L.). Food Chemistry 200:274–282. doi: 10.1016/j.foodchem.2016.01.038.
  • Silva, M., D. Lacerda, G. Santos, and D. Martins. 2008. Chemical characterization of native species of fruits from savanna ecosystem. Ciência Rural 38 (6):1790–1793. doi: 10.1590/S0103-84782008000600051.
  • Silva, A., D. Santos, T. Sousa, F. Silva, and M. Egea. 2020. Cerrado” cashew (Anacardium othonianum Rizz.) juice improves metabolic parameters in women: A pilot study. Journal of Functional Foods 69 (103950):103950. doi: 10.1016/j.jff.2020.103950.
  • Silva, S., C. Silva, Y. Bazzo, P. Magalhães, and D. Silveira. 2015. Eugenia dysenterica Mart. Ex DC. (cagaita): Brazilian plant with therapeutic potential. Infarma - Ciências Farmacêuticas 27 (1):49–95. doi: 10.14450/2318-9312.v27.e1.a2015.pp49-95.
  • Silveira, T. F. V. D., C. M. D M. Vianna, and G. B. G. Mosegui. 2009. Brazilian legislation for functional foods and the interface with the legislation for other food and medicine classes: Contradictions and omissions. Physis: Revista de Saúde Coletiva 19 (4):1189–1202. doi: 10.1590/S0103-73312009000400015.
  • Siqueira, E., A. Marin, M. Cunha, A. Fustinoni, L. Sant'Ana, and S. Arruda. 2012. Consumption of baru seeds [Dipteryx alata Vog.], a Brazilian savanna nut, prevents iron-induced oxidative stress in rats. Food Research International 45 (1):427–433. doi: 10.1016/j.foodres.2011.11.005.
  • Siqueira, A. P. S., M. T. B. Pacheco, and M. M. V. Naves. 2015. Nutritional quality and bioactive compounds of partially defatted baru almond flour. Food Science and Technology (Campinas) 35 (1):127–132. doi: 10.1590/1678-457X.6532.
  • Slavin, J. 2013. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 5 (4):1417–1435. doi: 10.3390/nu5041417.
  • Sousa, J. N., A. F. Paraíso, J. M. O. Andrade, D. F. Lelis, E. M. Santos, J. P. Lima, R. S. Monteiro-Junior, M. F. S. V. D'Angelo, A. M. B. de Paula, and A. L. S. Guimarães. 2020. Oral gallic acid improve liver steatosis and metabolism modulating hepatic lipogenic markers in obese mice. Experimental Gerontology 134:110881.
  • Souza, F., R. Figueiredo, R. Alves, G. Maia, and I. Araújo. 2007. Postharvest quality of fruits from different mangabeira clones (Hancornia speciosa Gomes). Ciência e Agrotecnologia 31 (5):1449–1454. doi: 10.1590/S1413-70542007000500027.
  • Souza, P. L. C., and M. R. Silva. 2015. Quality of granola prepared with dried caju-do-cerrado (Anacardium othonianum Rizz) and baru almonds (Dipteryx alata Vog). Journal of Food Science and Technology 52 (3):1712–1717. doi: 10.1007/s13197-013-1134-4.
  • Stefanello, M., A. Pascoal, and M. Salvador. 2011. Essential oils from neotropical Myrtaceae: Chemical diversity and biological properties. Chemistry & Biodiversity 8 (1):73–94. doi: 10.1002/cbdv.201000098.
  • Sugizaki, C. S., and M. M. V. Naves. 2018. Potential prebiotic properties of nuts and edible seeds and their relationship to obesity. Nutrients 10 (11):1645. doi: 10.3390/nu10111645.
  • Tamiello-Rosa, C. S., T. M. Cantu-Jungles, M. Iacomini, and L. M. Cordeiro. 2019. Pectins from cashew apple fruit (Anacardium occidentale): Extraction and chemical characterization. Carbohydrate Research 483 (107752):107752. doi: 10.1016/j.carres.2019.107752.
  • Teixeira, T., E. Esteves, L. Oliveira, M. Oliveira, R. Santana, and A. Rodrigues. 2013. Caryocar brasiliense pulp increases serum HDL and reduces hepatic lipid accumulation in rats fed a high fat diet. Journal of Medicinal Plants Research 7 (15):963–969.
  • Torres, L., F. Santana, F. B. Shinagawa, and J. Mancini-Filho. 2018. Bioactive compounds and functional potential of pequi (Caryocar spp.), a native Brazilian fruit: A review. Grasas y Aceites 69 (2):257. doi: 10.3989/gya.1222172.
  • Torres-Rêgo, M., A. A. Furtado, M. A. O. Bitencourt, M. C. J. D S. Lima, R. C. L. C. D Andrade, E. P. D Azevedo, T. D C. Soares, J. C. Tomaz, N. P. Lopes, A. A. da Silva-Júnior, et al. 2016. Anti-inflammatory activity of aqueous extract and bioactive compounds identified from the fruits of Hancornia speciosa Gomes (Apocynaceae). BMC Complementary and Alternative Medicine 16 (1):275. doi: 10.1186/s12906-016-1259-x.
  • Valli, M., and V. Bolzani. 2019. Natural products: Perspectives and challenges for use of Brazilian plant species in the bioeconomy. Anais da Academia Brasileira de Ciências 91 (suppl 3): e20190208. doi: 10.1590/0001-3765201920190208.
  • Vallilo, M., J. Baitello, L. Lamardo, and C. Lobanco. 2003. Composição química do fruto de Eugenia klotzschiana Berg.(MYRTACEAE) [Chemical composition of the fruit of Eugenia klotzschiana Berg. (MYRTACEAE. Revista Do Instituto Florestal 15 (1):33–44.
  • Valli, M., H. Russo, and V. Bolzani. 2018. The potential contribution of the natural products from Brazilian biodiversity to bioeconomy. Anais da Academia Brasileira de Ciências 90 (1 suppl 1):763–778. doi: 10.1590/0001-3765201820170653.
  • Van Dijk, A., M. Olthof, J. Meeuse, E. Seebus, R. Heine, and R. Van Dam. 2009. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 32 (6):1023–1025. doi: 10.2337/dc09-0207.
  • Vera, R., M. S. Soares Junior, R. V. Naves, E. R. B. d Souza, E. P. Fernandes, M. Caliari, and W. M. Leandro. 2009. Chemical characteristics of baru almonds (Dipteryx alata vog.) from the savannah of Goiás, Brazil. Revista Brasileira de Fruticultura 31 (1):112–118. doi: 10.1590/S0100-29452009000100017.
  • Vieira, R., J. Camillo, and L. Coradin. 2018. Espécies nativas da flora brasileira de valor econômico atual ou potencial: Plantas para o futuro: Região Centro-Oeste [Native species of Brazilian flora of current or potential economic value: Plants for the future: Midwest Region]. Embrapa Recursos Genéticos e Biotecnologia-Livro científico (ALICE).
  • Wang, Z., K. L. Lam, J. Hu, S. Ge, A. Zhou, B. Zheng, S. Zeng, and S. Lin. 2019. Chlorogenic acid alleviates obesity and modulates gut microbiota in high‐fat‐fed mice. Food Science & Nutrition 7 (2):579–588. doi: 10.1002/fsn3.868.
  • Webster, D. 1981. Mineral composition of apple fruits. Relationships between and within peel, cortex and whole fruit samples. Canadian Journal of Plant Science 61 (1):73–85. doi: 10.4141/cjps81-010.
  • WHO. 2019. Raised cholesterol. Retrieved October 3, 2020.
  • WHO. 2020, 1 April. World Health Organization. Obesity and overweight. Retrieved 20 September 2020, 2020.
  • Yanai, H., Y. Tomono, K. Ito, N. Furutani, H. Yoshida, and N. Tada. 2008. The underlying mechanisms for development of hypertension in the metabolic syndrome. Nutrition Journal 7 (1):1–6. doi: 10.1186/1475-2891-7-10.
  • Yang, J., J. Guo, and J. Yuan. 2008. In vitro antioxidant properties of rutin. Lwt - Food Science and Technology 41 (6):1060–1066. doi: 10.1016/j.lwt.2007.06.010.
  • Zuin, V. 2020. What can be learnt from the Brazilian Cerrado? In Biomass burning in sub-Saharan Africa, ed. L. Mammino, 143–160. Dordrecht: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.