1,039
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Upconversion luminescent nanomaterials: A promising new platform for food safety analysis

, , &

References

  • Alonso, N., N. Griffa, R. D. Moyano, M. L. Mon, M. A. Colombatti Olivieri, S. Barandiaran, M. M. Vivot, G. Fiorini, A. M. Canal, M. P. Santangelo, et al. 2021. Development of a lateral flow immunochromatography test for the rapid detection of bovine tuberculosis. Journal of Immunological Methods 491:112941–6. doi: 10.1016/j.jim.2020.112941.
  • Anfossi, L., F. Di Nardo, C. Giovannoli, C. Passini, and C. Baggiani. 2013. Increased sensitivity of lateral flow immunoassay for ochratoxin A through silver enhancement. Analytical and Bioanalytical Chemistry 405 (30):9859–67. doi: 10.1007/s00216-013-7428-6.
  • Anfossi, L., C. Giovannoli, G. Giraudi, F. Biagioli, C. Passini, and C. Baggiani. 2012. A lateral flow immunoassay for the rapid detection of Ochratoxin A in wine and grape must. Journal of Agricultural and Food Chemistry 60 (46):11491–7. doi: 10.1021/jf3031666.
  • Ang, L. Y., M. E. Lim, L. C. Ong, and Y. Zhang. 2011. Applications of upconversion nanoparticles in imaging, detection and therapy. Nanomedicine (London, England) 6 (7):1273–88. doi: 10.2217/nnm.11.108.
  • Annavaram, V., M. Chen, F. Y. H. Kutsanedzie, A. A. Agyekum, M. Zareef, W. Ahmad, M. M. Hassan, L. Huanhuan, and Q. Chen. 2019. Synthesis of highly fluorescent RhDCP as an ideal inner filter effect pair for the NaYF4:Yb,Er upconversion fluorescent nanoparticles to detect trace amount of Hg(II) in water and food samples. Journal of Photochemistry and Photobiology A: Chemistry 382:111950–8. doi: 10.1016/j.jphotochem.2019.111950.
  • Arriagada, F. J., and K. Osseo-Asare. 1999. Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. Journal of Colloid and Interface Science 211 (2):210–20. doi: 10.1006/jcis.1998.5985.
  • Auzel, F. 1966. Compteur quantique par transfert d'energie entre deux ions de terres rares dans un tungstate mixte et dans un verre. Comptes rendus de l'Académie des Sciences 262:1016–9.
  • Auzel, F. 2004. Upconversion and anti-stokes processes with f and d ions in solids. Chemical Reviews 104 (1):139–74. doi: 10.1021/cr020357g.
  • Bastian, P. U., L. Yu, A. López de Guereñu, R. Haag, and M. U. Kumke. 2020. Bioinspired confinement of upconversion nanoparticles for improved performance in aqueous solution. The Journal of Physical Chemistry C 124 (52):28623–35. doi: 10.1021/acs.jpcc.0c09798.
  • Berlina, A. N., N. A. Taranova, A. V. Zherdev, Y. Y. Vengerov, and B. B. Dzantiev. 2013. Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk. Analytical and Bioanalytical Chemistry 405 (14):4997–5000. doi: 10.1007/s00216-013-6876-3.
  • Bloembergen, N. 1959. Solid state infrared quantum counters. Physical Review Letters 2 (3):84–5. doi: 10.1103/PhysRevLett.2.84.
  • Bogdan, N., F. Vetrone, G. A. Ozin, and J. A. Capobianco. 2011. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Letters 11 (2):835–40. doi: 10.1021/nl1041929.
  • Bogdan, N., F. Vetrone, R. Roy, and J. A. Capobianco. 2010. Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition. Journal of Materials Chemistry 20 (35):7543. doi: 10.1039/c0jm01617a.
  • Boyer, J.-C., M.-P. Manseau, J. I. Murray, and F. C. J. M. van Veggel. 2010. Surface modification of upconverting NaYF4 nanoparticles with PEG − Phosphate Ligands for NIR (800 nm) biolabeling within the biological window. Langmuir: The ACS Journal of Surfaces and Colloids 26 (2):1157–64. doi: 10.1021/la902260j.
  • Cao, C., W. Qin, and J. Zhang. 2010. Study on up-conversion emissions of Yb3+/Tm3+ co-doped GdF3 and NaGdF4. Optics Communications 283 (4):547–50. doi: 10.1016/j.optcom.2009.10.097.
  • Chan, M.-H., C.-Y. Lai, Y.-C. Chan, M. Hsiao, R.-J. Chung, X. Chen, and R.-S. Liu. 2019. Development of upconversion nanoparticle-conjugated indium phosphide quantum dot for matrix metalloproteinase-2 cancer transformation sensing. Nanomedicine (London, England) 14 (14):1791–804. doi: 10.2217/nnm-2018-0524.
  • Chatterjee, D. K., M. K. Gnanasammandhan, and Y. Zhang. 2010. Small upconverting fluorescent nanoparticles for biomedical applications. Small (Weinheim an Der Bergstrasse, Germany) 6 (24):2781–95. doi: 10.1002/smll.201000418.
  • Chen, Z., H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang, Z. Zhou, T. Yi, and C. Huang. 2008. Versatile synthesis strategy for carboxylic acid − functionalized upconverting nanophosphors as biological labels. Journal of the American Chemical Society 130 (10):3023–9. doi: 10.1021/ja076151k.
  • Chen, H., A. Fang, L. He, Y. Zhang, and S. Yao. 2017. Sensitive fluorescent detection of H2O2 and glucose in human serum based on inner filter effect of squaric acid-iron(III) on the fluorescence of upconversion nanoparticle. Talanta 164:580–7. doi: 10.1016/j.talanta.2016.10.008.
  • Chen, J., C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, and S. Xu. 2011b. Controllable synthesis of NaYF4 : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans. Journal of Materials Chemistry 21 (8):2632–8. doi: 10.1039/c0jm02854a.
  • Chen, Q., W. Hu, C. Sun, H. Li, and Q. Ouyang. 2016. Synthesis of improved upconversion nanoparticles as ultrasensitive fluorescence probe for mycotoxins. Analytica Chimica Acta 938:137–45. doi: 10.1016/j.aca.2016.08.003.
  • Chen, W., Z. Huang, S. Hu, J. Peng, D. Liu, Y. Xiong, H. Xu, H. Wei, and W. Lai. 2019b. Invited review: Advancements in lateral flow immunoassays for screening hazardous substances in milk and milk powder. Journal of Dairy Science 102 (3):1887–900. doi: 10.3168/jds.2018-15462.
  • Chen, M., F. Y. H. Kutsanedzie, W. Cheng, H. Li, and Q. Chen. 2019a. Ratiometric fluorescence detection of Cd2+ and Pb2+ by inner filter-based upconversion nanoparticle-dithizone nanosystem. Microchemical Journal 144:296–302. doi: 10.1016/j.microc.2018.09.022.
  • Chen, G., T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad. 2011a. Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm. ACS Nano 5 (6):4981–6. doi: 10.1021/nn201083j.
  • Chen, G., H. Qiu, P. N. Prasad, and X. Chen. 2014. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chemical Reviews 114 (10):5161–214. doi: 10.1021/cr400425h.
  • Chen, G., I. Roy, C. Yang, and P. N. Prasad. 2016. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chemical Reviews 116 (5):2826–85. doi: 10.1021/acs.chemrev.5b00148.
  • Chen, Q., R. Sheng, P. Wang, Q. Ouyang, A. Wang, S. Ali, M. Zareef, and M. M. Hassan. 2020. Ultra-sensitive detection of malathion residues using FRET-based upconversion fluorescence sensor in food. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 241:118654. doi: 10.1016/j.saa.2020.118654.
  • Chen, B., and F. Wang. 2020. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorganic Chemistry Frontiers 7 (5):1067–81. doi: 10.1039/C9QI01358J.
  • Chen, Q., X. Wang, F. Chen, Q. Zhang, B. Dong, H. Yang, G. Liu, and Y. Zhu. 2011c. Functionalization of upconverted luminescent NaYF4 : Yb/Er nanocrystals by folic acid–chitosan conjugates for targeted lung cancer cell imaging. Journal of Materials Chemistry 21 (21):7661–7. doi: 10.1039/c0jm04468g.
  • Chen, H., W. Wang, C. Ji, and L. Wang. 2021. Dye-sensitized core–shell NaGdF4:Yb,Er@NaGdF4:Yb,Nd upconversion nanoprobe for determination of H2S. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 248:119281. doi: 10.1016/j.saa.2020.119281.
  • Chen, S., Y.-L. Yu, and J.-H. Wang. 2018. Inner filter effect-based fluorescent sensing systems: A review. Analytica Chimica Acta 999:13–26. doi: 10.1016/j.aca.2017.10.026.
  • Chen, J., and J. X. Zhao. 2012. Upconversion nanomaterials: Synthesis, mechanism, and applications in sensing. Sensors (Basel) 12 (3):2414–35. doi: 10.3390/s120302414.
  • Cheng, Z., and J. Lin. 2015. Synthesis and application of nanohybrids based on upconverting nanoparticles and polymers. Macromolecular Rapid Communications 36 (9):790–827. doi: 10.1002/marc.201400588.
  • Cheng, L., C. Wang, and Z. Liu. 2013. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5 (1):23–37. doi: 10.1039/c2nr32311g.
  • Chu, Z.-Y., W.-N. Wang, C.-Y. Zhang, J. Ruan, B.-J. Chen, H.-M. Xu, and H.-S. Qian. 2019. Monitoring and removal of trace heavy metal ions via fluorescence resonance energy transfer mechanism: In case of silver ions. Chemical Engineering Journal and the Biochemical Engineering Journal 375:121927. doi: 10.1016/j.cej.2019.121927.
  • Chung, H.-H., J.-B. Lee, Y.-H. Chung, and K.-G. Lee. 2009. Analysis of sulfonamide and quinolone antibiotic residues in Korean milk using microbial assays and high performance liquid chromatography. Food Chemistry 113 (1):297–301. doi: 10.1016/j.foodchem.2008.07.021.
  • DaCosta, M. V., S. Doughan, Y. Han, and U. J. Krull. 2014. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Analytica Chimica Acta 832:1–33. doi: 10.1016/j.aca.2014.04.030.
  • Dai, S., S. Wu, N. Duan, and Z. Wang. 2016. A near-infrared magnetic aptasensor for Ochratoxin A based on near-infrared upconversion nanoparticles and magnetic nanoparticles. Talanta 158:246–53. doi: 10.1016/j.talanta.2016.05.063.
  • Dias, J. V., M. d G. P. Nunes, I. R. Pizzutti, B. Reichert, A. A. Jung, and C. D. Cardoso. 2019. Simultaneous determination of pesticides and mycotoxins in wine by direct injection and liquid chromatography-tandem mass spectrometry analysis. Food Chemistry 293:83–91. doi: 10.1016/j.foodchem.2019.04.088.
  • Dong, S., W. Ji, Z. Ma, Z. Zhu, N. Ding, J. Nie, and B. Du. 2020. Thermosensitive fluorescent microgels for selective and sensitive detection of Fe3+ and Mn2+ in aqueous solutions. ACS Applied Polymer Materials 2 (8):3621–31. doi: 10.1021/acsapm.0c00622.
  • Dong, A., X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, and C. B. Murray. 2011. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. Journal of the American Chemical Society 133 (4):998–1006. doi: 10.1021/ja108948z.
  • Dou, Q. Q., H. C. Guo, and E. Ye. 2014. Near-infrared upconversion nanoparticles for bio-applications. Materials Science & Engineering. C, Materials for Biological Applications 45:635–43. doi: 10.1016/j.msec.2014.03.056.
  • Duan, C. C., L. E. Liang, L. Li, R. Zhang, and Z. P. Xu. 2018. Recent progress in upconversion luminescence nanomaterials for biomedical applications. Journal of Materials Chemistry. B 6 (2):192–209. doi: 10.1039/c7tb02527k.
  • Duan, N., S. Wu, S. Dai, H. Gu, L. Hao, H. Ye, and Z. Wang. 2016. Advances in aptasensors for the detection of food contaminants. The Analyst 141 (13):3942–61. doi: 10.1039/c6an00952b.
  • Dutton, M. F. 1996. Fumonisins, mycotoxins of increasing importance: Their nature and their effects. Pharmacology & Therapeutics 70 (2):137–61. doi: 10.1016/0163-7258(96)00006-X.
  • El-Tholoth, M., M. G. Mauk, E. Anis, and H. H. Bau. 2020. A closed-tube, single-step, real time, reverse transcription-loop-mediated isothermal amplification assay for infectious bronchitis virus detection in chickens. Journal of Virological Methods 284:113940–6. doi: 10.1016/j.jviromet.2020.113940.
  • Ensafi, A. A., N. Kazemifard, and B. Rezaei. 2016. A simple and sensitive fluorimetric aptasensor for the ultrasensitive detection of arsenic(III) based on cysteamine stabilized CdTe/ZnS quantum dots aggregation. Biosensors & Bioelectronics 77:499–504. doi: 10.1016/j.bios.2015.10.011.
  • Esterowitz, L., J. Noonan, and J. Bahler. 1967. Enhancement in a Ho3+–Yb3+ quantum counter by energy transfer. Applied Physics Letters 10 (4):126–7. doi: 10.1063/1.1754876.
  • Fang, C., S. Wu, N. Duan, S. Dai, and Z. Wang. 2015. Highly sensitive aptasensor for oxytetracycline based on upconversion and magnetic nanoparticles. Analytical Methods 7 (6):2585–93. doi: 10.1039/C4AY03035D.
  • Feng, W., C. Han, and F. Li. 2013a. Upconversion-nanophosphor-based functional nanocomposites. Advanced Materials (Deerfield Beach, Fla.) 25 (37):5287–303. doi: 10.1002/adma.201301946.
  • Feng, W., X. Zhu, and F. Li. 2013b. Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications. NPG Asia Materials 5 (12):e75–e90. doi: 10.1038/am.2013.63.
  • Gai, S., G. Yang, P. Yang, F. He, J. Lin, D. Jin, and B. Xing. 2018. Recent advances in functional nanomaterials for light–triggered cancer therapy. Nano Today 19:146–87. doi: 10.1016/j.nantod.2018.02.010.
  • Gan, S. D., and K. R. Patel. 2013. Enzyme immunoassay and enzyme-linked immunosorbent assay. Journal of Investigative Dermatology 133 (9):1–3. doi: 10.1038/jid.2013.287.
  • Gao, X., N. Wang, T. Shi, S. Wang, M. Zhang, W. Zhang, J. Zhong, H. Tong, and X. Zhang. 2016. Sol-gel synthesis of β-NaYF4:Yb3+/Nd3+/Tm3+/Mn2+ nanophosphors and color-tunable upconversion luminescence. Journal of Fluorine Chemistry 188:23–7. doi: 10.1016/j.jfluchem.2016.06.002.
  • Garrido, E., L. Pla, B. Lozano-Torres, S. El Sayed, R. Martinez-Manez, and F. Sancenon. 2018. Chromogenic and fluorogenic probes for the detection of illicit drugs. Chemistry Open 7 (5):401–28. doi: 10.1002/open.201800034.
  • Generalova, A. N., B. N. Chichkov, and E. V. Khaydukov. 2017. Multicomponent nanocrystals with anti-Stokes luminescence as contrast agents for modern imaging techniques. Advances in Colloid and Interface Science 245:1–19. doi: 10.1016/j.cis.2017.05.006.
  • Genovese, D., E. Rampazzo, S. Bonacchi, M. Montalti, N. Zaccheroni, and L. Prodi. 2014. Energy transfer processes in dye-doped nanostructures yield cooperative and versatile fluorescent probes. Nanoscale 6 (6):3022–36. doi: 10.1039/c3nr05599j.
  • Gong, Y., Y. Zheng, B. Jin, M. You, J. Wang, X. Li, M. Lin, F. Xu, and F. Li. 2019. A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing. Talanta 201:126–33. doi: 10.1016/j.talanta.2019.03.105.
  • Gorris, H. H., and O. S. Wolfbeis. 2013. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angewandte Chemie (International ed. in English) 52 (13):3584–600. doi: 10.1002/anie.201208196.
  • Gorris, H. H., and U. Resch-Genger. 2017. Perspectives and challenges of photon-upconversion nanoparticles - Part II: Bioanalytical applications. Analytical and Bioanalytical Chemistry 409 (25):5875–90. doi: 10.1007/s00216-017-0482-8.
  • Groopman, J. D., T. W. Kensler, and C. P. Wild. 2008. Protective interventions to prevent aflatoxin-induced carcinogenesis in developing countries. Annual Review of Public Health 29:187–203. doi: 10.1146/annurev.publhealth.29.020907.090859.
  • Gu, B., and Q. Zhang. 2018. Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems. Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 5 (3):1700609–25. doi: 10.1002/advs.201700609.
  • Guo, T., Q. Deng, G. Fang, C. Liu, X. Huang, and S. Wang. 2015. Molecularly imprinted upconversion nanoparticles for highly selective and sensitive sensing of Cytochrome c. Biosensors & Bioelectronics 74:498–503. doi: 10.1016/j.bios.2015.06.058.
  • Guo, Y., R. Zou, F. Si, W. Liang, T. Zhang, Y. Chang, X. Qiao, and J. Zhao. 2021. A sensitive immunoassay based on fluorescence resonance energy transfer from up-converting nanoparticles and graphene oxide for one-step detection of imidacloprid. Food Chemistry 335:127609. doi: 10.1016/j.foodchem.2020.127609.
  • Haase, M., and H. Schäfer. 2011. Upconverting nanoparticles. Angewandte Chemie (International ed. in English) 50 (26):5808–29. doi: 10.1002/anie.201005159.
  • Hampl, J., M. Hall, N. A. Mufti, Y-m M. Yao, D. B. MacQueen, W. H. Wright, and D. E. Cooper. 2001. Upconverting phosphor reporters in immunochromatographic assays. Analytical Biochemistry 288 (2):176–87. doi: 10.1006/abio.2000.4902.
  • Han, G.-M., H. Li, X.-X. Huang, and D.-M. Kong. 2016. Simple synthesis of carboxyl-functionalized upconversion nanoparticles for biosensing and bioimaging applications. Talanta 147:207–12. doi: 10.1016/j.talanta.2015.09.059.
  • Hao, S., G. Chen, and C. Yang. 2013. Sensing using rare-earth-doped upconversion nanoparticles. Theranostics 3 (5):331–45. doi: 10.7150/thno.5305.
  • Hassairi, M. A., A. Garrido Hernández, M. Dammak, D. Zambon, G. Chadeyron, and R. Mahiou. 2018. Tuning white upconversion emission in GdPO4:Er/Yb/Tm phosphors. Journal of Luminescense 203:707–13. doi: 10.1016/j.jlumin.2018.07.024.
  • Hayat, A., N. Paniel, A. Rhouati, J.-L. Marty, and L. Barthelmebs. 2012. Recent advances in ochratoxin A-producing fungi detection based on PCR methods and ochratoxin A analysis in food matrices. Food Control 26 (2):401–15. doi: 10.1016/j.foodcont.2012.01.060.
  • He, D., Z. Wu, B. Cui, E. Xu, and Z. Jin. 2019. Building a fluorescent aptasensor based on exonuclease-assisted target recycling strategy for one-step detection of T-2 Toxin. Food Analytical Methods 12 (2):625–32. doi: 10.1007/s12161-018-1392-x.
  • He, D., Z. Wu, B. Cui, Z. Jin, and E. Xu. 2020. A fluorometric method for aptamer-based simultaneous determination of two kinds of the fusarium mycotoxins zearalenone and fumonisin B1 making use of gold nanorods and upconversion nanoparticles. Microchimica Acta 187:254–62.
  • Hermann, C. A., A. Duerkop, and A. J. Baeumner. 2019. Food safety analysis enabled through biological and synthetic materials: A critical review of current trends. Analytical Chemistry 91 (1):569–87. doi: 10.1021/acs.analchem.8b04598.
  • Hervás, M., M. Á. López, and A. Escarpa. 2009. Electrochemical immunoassay using magnetic beads for the determination of zearalenone in baby food: An anticipated analytical tool for food safety. Analytica Chimica Acta 653 (2):167–72. doi: 10.1016/j.aca.2009.09.024.
  • Hewes, R. A., and J. F. Sarver. 1969. Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides. Physical Review 182 (2):427–36. doi: 10.1103/PhysRev.182.427.
  • Hinojosa, S., O. Barbosa-Garcı́a, M. A. Meneses-Nava, J. L. Maldonado, E. de la Rosa-Cruz, and, and G. Ramos-Ortiz. 2005. Luminescent properties and energy transfer processes of co-doped Yb–Er poly-crystalline YAG matrix. Optical Materials 27 (12):1839–44. doi: 10.1016/j.optmat.2004.11.011.
  • Hong, E., L. Liu, L. Bai, C. Xia, L. Gao, L. Zhang, and B. Wang. 2019. Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. Materials Science and Engineering: C 105:110097. doi: 10.1016/j.msec.2019.110097.
  • Hu, G., W. Sheng, Y. Zhang, J. Wang, X. Wu, and S. Wang. 2016. Upconversion nanoparticles and monodispersed magnetic polystyrene microsphere based fluorescence immunoassay for the detection of sulfaquinoxaline in animal-derived foods. Journal of Agricultural and Food Chemistry 64 (19):3908–15. doi: 10.1021/acs.jafc.6b01497.
  • Hu, G., W. Sheng, Y. Zhang, X. Wu, and S. Wang. 2015. A novel and sensitive fluorescence immunoassay for the detection of fluoroquinolones in animal-derived foods using upconversion nanoparticles as labels. Analytical and Bioanalytical Chemistry 407 (28):8487–96. doi: 10.1007/s00216-015-8996-4.
  • Hu, S., H. Xu, B. Zhou, S. Xu, B. Shen, B. Dong, Z. Yin, S. Xu, L. Sun, J. Lv, et al. 2021. Double stopband bilayer photonic crystal based upconversion fluorescence PSA sensor. Sensors and Actuators B: Chemical 326:128816–26. doi: 10.1016/j.snb.2020.128816.
  • Huang, P., W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen. 2014. Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of the disease bio-markers. Angewandte Chemie (International ed. in English) 53 (5):1252–7. doi: 10.1002/anie.201309503.
  • Huang, X., Q. Liu, S. Yao, and G. Jiang. 2017. Recent progress in the application of nanomaterials in the analysis of emerging chemical contaminants. Analytical Methods 9 (19):2768–83. doi: 10.1039/C7AY00859G.
  • Inoue, K., P. Ferrante, Y. Hirano, T. Yasukawa, H. Shiku, and T. Matsue. 2007. A competitive immunochromatographic assay for testosterone based on electrochemical detection. Talanta 73 (5):886–92. doi: 10.1016/j.talanta.2007.05.008.
  • Jin, B., S. Wang, M. Lin, Y. Jin, S. Zhang, X. Cui, Y. Gong, A. Li, F. Xu, and T. J. Lu. 2017. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosensors & Bioelectronics 90:525–33. doi: 10.1016/j.bios.2016.10.029.
  • Jin, B., Y. Yang, R. He, Y. I. Park, A. Lee, D. Bai, F. Li, T. J. Lu, F. Xu, and M. Lin. 2018. Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles. Sensors and Actuators B: Chemical 276:48–56. doi: 10.1016/j.snb.2018.08.074.
  • Jin, J., Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong. 2011. Polymer-Coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging. ACS Nano 5 (10):7838–47. doi: 10.1021/nn201896m.
  • Jin, X., X. Jin, L. Chen, J. Jiang, G. Shen, and R. Yu. 2009. Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for quantification of aflatoxin B1. Biosensors & Bioelectronics 24 (8):2580–5. doi: 10.1016/j.bios.2009.01.014.
  • Jo, E.-J., J.-Y. Byun, H. Mun, D. Bang, J. H. Son, J. Y. Lee, L. P. Lee, and M.-G. Kim. 2018. Single-Step LRET aptasensor for rapid mycotoxin detection. Analytical Chemistry 90 (1):716–22. doi: 10.1021/acs.analchem.7b02368.
  • Johnson, L. F., and H. J. Guggenheim. 1971. Infrared‐pumped visible laser. Applied Physics Letters 19 (2):44–7. doi: 10.1063/1.1653816.
  • Ju, Q., Y. Liu, D. Tu, H. Zhu, R. Li, and X. Chen. 2011. Lanthanide-doped multicolor GdF3 nanocrystals for time-resolved photoluminescent biodetection. Chemistry (Weinheim an der Bergstrasse, Germany) 17 (31):8549–54. doi: 10.1002/chem.201101170.
  • Kale, V. 2015. Blue and UV-emitting upconversion nanoparticles: Synthesis and (bio) analytical applications. Thesis., University of Turku, Turku, Finland.
  • Kim , D. H. and J. U. Kang. 2010. Review Upconversion microscopy for biological applications. Microscopy: Science Technology Application and Education:571–82. http://formatex.info/microscopy4/571-582.pdf
  • Kang, D., S. Lee, H. Shin, J. Pyun, and J. Lee. 2020. An efficient NIR-to-NIR signal-based LRET system for homogeneous competitive immunoassay. Biosensors & Bioelectronics 150:111921. doi: 10.1016/j.bios.2019.111921.
  • Kang, N., J. Zhao, Y. Zhou, C. Ai, X. Wang, and L. Ren. 2019. Enhanced upconversion luminescence intensity of core–shell NaYF4 nanocrystals guided by morphological control. Nanotechnol 30 (10):105701. doi: 10.1088/1361-6528/aafb19.
  • Kerdivel, G., D. Habauzit, and F. Pakdel. 2013. Assessment and molecular actions of endocrine-disrupting chemicals that interfere with estrogen receptor pathways. International Journal of Endocrinology 2013:1–14. doi: 10.1155/2013/501851.
  • Kim, K., E.-J. Jo, K. j Lee, J. Park, G. Y. Jung, Y.-B. Shin, L. P. Lee, and M.-G. Kim. 2020. Gold nanocap-supported upconversion nanoparticles for fabrication of a solid-phase aptasensor to detect ochratoxin A. Biosensors & Bioelectronics 150:111885. doi: 10.1016/j.bios.2019.111885.
  • Kirk, M. D., S. M. Pires, R. E. Black, M. Caipo, J. A. Crump, B. Devleesschauwer, D. Döpfer, A. Fazil, C. L. Fischer-Walker, T. Hald, et al. 2015. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLoS Medicine 12 (12):e1001921. doi: 10.1371/journal.pmed.1001921.
  • Kiyama, R., and Y. Wada-Kiyama. 2015. Estrogenic endocrine disruptors: Molecular mechanisms of action. Environment International 83:11–40. doi: 10.1016/j.envint.2015.05.012.
  • Koch, M. E., A. W. Kueny, and W. E. Case. 1990. Photon avalanche upconversion laser at 644 nm. Applied Physics Letters 56 (12):1083–5. doi: 10.1063/1.103328.
  • Kong, W., T. Sun, B. Chen, X. Chen, F. Ai, X. Zhu, M. Li, W. Zhang, G. Zhu, and F. Wang. 2017. A general strategy for ligand exchange on upconversion nanoparticles. Inorganic Chemistry 56 (2):872–7. doi: 10.1021/acs.inorgchem.6b02479.
  • Kumar, D., K. Verma, S. Verma, B. Chaudhary, S. Som, V. Sharma, V. Kumar, and H. C. Swart. 2018. Recent advances in enhanced luminescence upconversion of lanthanide-doped NaYF4 phosphors. Physica B: Condensed Matter 535:278–86. doi: 10.1016/j.physb.2017.08.003.
  • Law, J. W.-F., N.-S. Ab Mutalib, K.-G. Chan, and L.-H. Lee. 2014. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology 5:770. doi: 10.3389/fmicb.2014.00770.
  • Leem, H., S. Shukla, X. Song, S. Heu, and M. Kim. 2014. An efficient liposome-based immunochromatographic strip assay for the sensitive detection of salmonella typhimurium in pure culture. Journal of Food Safety 34 (3):239–48. doi: 10.1111/jfs.12119.
  • Lenth, W., and R. M. Macfarlane. 1990. Excitation mechanisms for upconversion lasers. Journal of Luminescense 45 (1-6):346–50. doi: 10.1016/0022-2313(90)90190-M.
  • Li, F., J. Li, Y. Wang, Y. Huang, Y. Peng, and L. Chen. 2019. Impact of organic additives on synthesis and upconversion luminescence properties in Ln3+, Yb3+ (Ln3+ = Er3+/Tm3+/Ho3+) doped CaSc2O4 nanocrystals via hydrothermal method. Optical Materials 96:109293 doi:10.1016/j.optmat.2019.109293.
  • Li, A., L. Tang, D. Song, S. Song, W. Ma, L. Xu, H. Kuang, X. Wu, L. Liu, X. Chen, et al. 2016. A SERS-active sensor based on heterogeneous gold nanostar core–silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxin B1. Nanoscale 8 (4):1873–8. doi: 10.1039/c5nr08372a.
  • Li, C. X., C. M. Zhang, Z. Y. Hou, L. L. Wang, Z. W. Quan, H. Z. Lian, and J. Lin. 2009. β-NaYF4 and β-NaYF4:Eu3+ Microstructures: Morphology control and tunable luminescence properties. The Journal of Physical Chemistry C 113 (6):2332–9. doi: 10.1021/jp8101628.
  • Li, H., S. Ali, W. Wei, Y. Xu, H. Lu, M. Mehedi Hassan, X. Wu, M. Zuo, Q. Ouyang, and Q. Chen. 2020b. Rapid detection of organophosphorus in tea using NaY/GdF4:Yb, Er-based fluorescence sensor. Microchemical Journal 159:105462. doi: 10.1016/j.microc.2020.105462.
  • Li, H., W. Ahmad, Y. Rong, Q. Chen, M. Zuo, Q. Ouyang, and Z. Guo. 2020a. Designing an aptamer based magnetic and upconversion nanoparticles conjugated fluorescence sensor for screening Escherichia coli in food. Food Control 107:106761. doi: 10.1016/j.foodcont.2019.106761.
  • Li, H., X. Wang, D. Huang, and G. Chen. 2019a. Recent advances of lanthanide-doped upconversion nanoparticles for biological applications. Nanotechnology 31 (7):072001. doi: 10.1088/1361-6528/ab4f36.
  • Li, K., E. Hong, B. Wang, Z. Wang, L. Zhang, R. Hu, and B. Wang. 2019b. Advances in the application of upconversion nanoparticles for detecting and treating cancers. Photodiagnosis and Photodynamic Therapy 25:177–92. doi: 10.1016/j.pdpdt.2018.12.007.
  • Li, Q.-F., S.-Y. Ren, Y. Wang, J.-L. Bai, Y. Peng, B.-A. Ning, Q.-J. Lyu, and Z.-X. Gao. 2018. Efficient detection of environmental estrogens Bisphenol A and estradiol by sensing system based on AuNP-AuNP-UCNP triple structure. Chinese Journal of Analytical Chemistry 46 (4):486–92. doi: 10.1016/S1872-2040(17)61079-X.
  • Li, Y., D. Jia, W. Ren, F. Shi, and C. Liu. 2019d. A versatile photoinduced electron transfer-based upconversion fluorescent biosensing platform for the detection of disease biomarkers and nerve agent. Advanced Functional Materials 29 (32):1903191. doi: 10.1002/adfm.201903191.
  • Li, Z., and Y. Zhang. 2006. Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 Nanocrystals with multicolor upconversion fluorescence emission. Angewandte Chemie (International ed. in English) 45 (46):7732–5. doi: 10.1002/anie.200602975.
  • Liang, T., Z. Li, D. Song, L. Shen, Q. Zhuang, and Z. Liu. 2016. Modulating the luminescence of upconversion nanoparticles with heavy metal ions: a new strategy for probe design. Analytical Chemistry 88 (20):9989–95. doi: 10.1021/acs.analchem.6b01963.
  • Liao, J., Q. Wang, L. Kong, Z. Ming, Y. Wang, Y. Li, and L. Che. 2018. Effect of Yb3+ concentration on tunable upconversion luminescence and optically temperature sensing behavior in Gd2TiO5:Yb3+/Er3+ phosphors. Optical Materials 75:841–9. doi: 10.1016/j.optmat.2017.12.009.
  • Liebherr, R. B., T. Soukka, O. S. Wolfbeis, and H. H. Gorris. 2012. Maleimide activation of photon upconverting nanoparticles for bioconjugation. Nanotechnology 23 (48):485103. doi: 10.1088/0957-4484/23/48/485103.
  • Lin, M., Y. Zhao, S. Wang, M. Liu, Z. Duan, Y. Chen, F. Li, F. Xu, and T. Lu. 2012. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications. Biotechnology Advances 30 (6):1551–61. doi: 10.1016/j.biotechadv.2012.04.009.
  • Lin, X., Q. Yu, W. Yang, C. He, Y. Zhou, N. Duan, and S. Wu. 2021. Double-enzymes-mediated fluorescent assay for sensitive determination of organophosphorus pesticides based on the quenching of upconversion nanoparticles by Fe3+. Food Chemistry 345:128809. doi: 10.1016/j.foodchem.2020.128809.
  • Liu, B., C. X. Li, D. M. Yang, Z. Y. Hou, P. A. Ma, Z. Y. Cheng, H. Z. Lian, S. S. Huang, and J. Lin. 2014. Upconversion-luminescent core/mesoporous-silica-shell-structured β-NaYF4:Yb3+,Er3+@SiO2@mSiO2 Composite Nanospheres: Fabrication and drug-storage/release properties. European Journal of Inorganic Chemistry 11:1906–13.
  • Liu, C., W. Ma, Z. Gao, J. Huang, Y. Hou, C. Xu, W. Yang, and M. Gao. 2014a. Upconversion luminescence nanoparticles-based lateral flow immunochromatographic assay for cephalexin detection. Journal of Materials Chemistry C 2 (45):9637–42. doi: 10.1039/C4TC02034K.
  • Liu, G., Z. Sun, M. Jia, Z. Fu, A. Zhang, and P. Li. 2019. One pot synthesis and optimized luminescent intensity of Gd2(WO4)3: Yb3+/Ho3+@SiO2 nanoparticles for biological application. Journal of Luminescense 206:1–5. doi: 10.1016/j.jlumin.2018.10.039.
  • Liu, H., J. Li, P. Hu, S. Sun, L. Shi, and L. Sun. 2020a. Facile synthesis of Er3+/Tm3+ co-doped magnetic/luminescent nanosystems for possible bioimaging and therapy applications. Journal of Rare Earths. In Press. doi: 10.1016/j.jre.2020.11.006.
  • Liu, J.-M., Z.-H. Wang, H. Ma, and S. Wang. 2018a. Probing and quantifying the food-borne pathogens and toxins: From in vitro to in vivo. Journal of Agricultural and Food Chemistry 66 (5):1061–6. doi: 10.1021/acs.jafc.7b05225.
  • Liu, Q., J. Peng, L. Sun, and F. Li. 2011a. High-efficiency upconversion luminescent sensing and bioimaging of Hg(II) by chromophoric ruthenium complex-assembled nanophosphors. ACS Nano 5 (10):8040–8. doi: 10.1021/nn202620u.
  • Liu, Q., W. Feng, and F. Li. 2014b. Water-soluble lanthanide upconversion nanophosphors: Synthesis and bioimaging applications in vivo. Coordination Chemistry Reviews 273-274:100–10. doi: 10.1016/j.ccr.2014.01.004.
  • Liu, Q., Y. Sun, T. Yang, W. Feng, C. Li, and F. Li. 2011b. Sub-10 nm hexagonal lanthanide-doped NaluF4 upconversion nanocrystals for sensitive bioimaging in vivo. Journal of the American Chemical Society 133 (43):17122–5. doi: 10.1021/ja207078s.
  • Liu, X., C.-H. Yan, and J. A. Capobianco. 2015. Photon upconversion nanomaterials. Chemical Society Reviews 44 (6):1299–301. doi: 10.1039/c5cs90009c.
  • Liu, X., J. Zhao, Y. Sun, K. Song, Y. Yu, C. Du, X. Kong, and H. Zhang. 2009. Ionothermal synthesis of hexagonal-phase NaYF4:Yb3+,Er3+/Tm3+ upconversion nanophosphors. Chemical Communications (43):6628–30. doi: 10.1039/b915517a.
  • Liu, X., L. Su, L. Zhu, X. Gao, Y. Wang, F. Bai, Y. Tang, and J. Li. 2016. Hybrid material for enrofloxacin sensing based on aptamer-functionalized magnetic nanoparticle conjugated with upconversion nanoprobes. Sensors and Actuators B: Chemical 233:394–401. doi: 10.1016/j.snb.2016.04.096.
  • Liu, Y., D. Tu, H. Zhu, and X. Chen. 2013. Lanthanide-doped luminescent nanoprobes: Controlled synthesis, optical spectroscopy, and bioapplications. Chemical Society Reviews 42 (16):6924–58. doi: 10.1039/c3cs60060b.
  • Liu, Y., S. Zhou, D. Tu, Z. Chen, M. Huang, H. Zhu, E. Ma, and X. Chen. 2012. Amine-functionalized lanthanide-doped zirconia nanoparticles: Optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging. Journal of the American Chemical Society 134 (36):15083–90. doi: 10.1021/ja306066a.
  • Liu, Z., L. Yang, M. Chen, and Q. Chen. 2020b. Amine functionalized NaY/GdF4:Yb,Er upconversion-silver nanoparticles system as fluorescent turn-off probe for sensitive detection of Cr(III). Journal of Photochemistry and Photobiology A: Chemistry 388:112203. doi: 10.1016/j.jphotochem.2019.112203.
  • Lombardi, G., S. Zarrilli, A. Colao, L. Paesano, C. Di Somma, F. Rossi, and M. De Rosa. 2001. Estrogens and health in males. Molecular and Cellular Endocrinology 178 (1-2):51–5. doi: 10.1016/S0303-7207(01)00420-8.
  • Long, Q., H. Li, Y. Zhang, and S. Yao. 2015. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides. Biosensors & Bioelectronics 68:168–74. doi: 10.1016/j.bios.2014.12.046.
  • López Marzo, A. M., J. Pons, D. A. Blake, and A. Merkoçi. 2013. High sensitive gold-nanoparticle based lateral flow Immunodevice for Cd2+ detection in drinking waters. Biosensors & Bioelectronics 47:190–8. doi: 10.1016/j.bios.2013.02.031.
  • Lorand, T., E. Vigh, and J. Garai. 2010. Hormonal action of plant derived and anthropogenic non-steroidal estrogenic compounds: Phytoestrogens and Xenoestrogens. Current Medicinal Chemistry 17 (30):3542–74. doi: 10.2174/092986710792927813.
  • Ma, X., S. Li, Y. Xia, and Z. Wang. 2014. Determination of Salmonella typhimurium by a fluorescence resonance energy transfer biosensor using upconversion nanoparticles as labels. Analytical Letters 47 (12):2048–60. doi: 10.1080/00032719.2014.898152.
  • Mader, H. S., P. Kele, S. M. Saleh, and O. S. Wolfbeis. 2010. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Current Opinion in Chemical Biology 14 (5):582–96. doi: 10.1016/j.cbpa.2010.08.014.
  • Mahata, M. K., H. C. Hofsäss , and U. Vetter. 2016. Chapter 6: Photon-upconverting materials advances and prospects for various emerging applications. In Luminescence - an outlook on the phenomena and their applications. doi: 10.5772/65118.
  • Mahata, M. K., K. Kumar, and V. K. Rai. 2014. Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 124:285–91. doi: 10.1016/j.saa.2014.01.014.
  • Märkl, S., A. Schroter, and T. Hirsch. 2020. Small and bright water-protected upconversion nanoparticles with long-time stability in complex, aqueous media by phospholipid membrane coating. Nano Letters 20 (12):8620–5. doi: 10.1021/acs.nanolett.0c03327.
  • Mendez-Gonzalez, D., E. Lopez-Cabarcos, J. Rubio-Retama, and M. Laurenti. 2017. Sensors and bioassays powered by upconverting materials. Advances in Colloid and Interface Science 249:66–87. doi: 10.1016/j.cis.2017.06.003.
  • Meng, Q., T. Liu, J. Dai, and W. Sun. 2016. Study on optical temperature sensing properties of YVO4:Er3+, Yb3+ nanocrystals. Journal of Luminescense 179:633–8. doi: 10.1016/j.jlumin.2016.07.002.
  • Minh, L. Q., T. K. Anh, N. D. Hung, P. T. Minh Chau, N. T. Quy Hai, H. Van Tuyen, V. T. Thai Ha, V. D. Tu, and W. Strek. 2019. Upconversion luminescence of Gd2O3:Er3+ and Gd2O3:Er3+/silica nanophosphors fabricated by EDTA combustion method. Journal of Rare Earths 37 (11):1126–31. doi: 10.1016/j.jre.2019.04.004.
  • Miyakawa, T., and D. L. Dexter. 1970a. Cooperative and stepwise excitation of luminescence: Trivalent rare-earth ions in Yb3+-sensitized crystals. Physical Review B 1 (1):70–80. doi: 10.1103/PhysRevB.1.70.
  • Miyakawa, T., and D. L. Dexter. 1970b. Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Physical Review B 1 (7):2961–9. doi: 10.1103/PhysRevB.1.2961.
  • Mohan, M., and R. Poddar. 2021. Polymerically engineered upconversion nanoparticles (UCNPs) as contrast agent for functionally modified optical coherence tomography (OCT). Materials Science & Engineering. C, Materials for Biological Applications 121:111841. doi: 10.1016/j.msec.2020.111841.
  • Muhr, V., C. Würth, M. Kraft, M. Buchner, A. J. Baeumner, U. Resch-Genger, and T. Hirsch. 2017. Particle-size-dependent förster resonance energy transfer from upconversion nanoparticles to organic dyes. Analytical Chemistry 89 (9):4868–74. doi: 10.1021/acs.analchem.6b04662.
  • Naccache, R., F. Vetrone, V. Mahalingam, L. A. Cuccia, and J. A. Capobianco. 2009. Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles. Chemistry of Materials 21 (4):717–23. doi: 10.1021/cm803151y.
  • Nguyen, T., and M. B. Francis. 2003. Practical synthetic route to functionalized rhodamine dyes. Organic Letters 5 (18):3245–8. doi: 10.1021/ol035135z.
  • Niazi, S., I. M. Khan, L. Yan, M. I. Khan, A. Mohsin, N. Duan, S. Wu, and Z. Wang. 2019. Simultaneous detection of fumonisin B1 and ochratoxin A using dual-color, time-resolved luminescent nanoparticles (NaYF4: Ce, Tb and NH2-Eu/DPA@SiO2) as labels. Analytical and Bioanalytical Chemistry 411 (7):1453–65. doi: 10.1007/s00216-019-01580-0.
  • Niedbala, R. S., H. Feindt, K. Kardos, T. Vail, J. Burton, B. Bielska, S. Li, D. Milunic, P. Bourdelle, and R. Vallejo. 2001. Detection of analytes by immunoassay using up-converting phosphor technology. Analytical Biochemistry 293 (1):22–30. doi: 10.1006/abio.2001.5105.
  • Ouyang, Q., L. Wang, W. Ahmad, Y. Rong, H. Li, Y. Hu, and Q. Chen. 2021. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Food Chemistry 349:129157. doi: 10.1016/j.foodchem.2021.129157.
  • Ouyang, Q., Y. Liu, Q. Chen, Z. Guo, J. Zhao, H. Li, and W. Hu. 2017. Rapid and specific sensing of tetracycline in food using a novel upconversion aptasensor. Food Control 81:156–63. doi: 10.1016/j.foodcont.2017.06.004.
  • Ovsyakin, V. V., and P. P. Feofilov. 1966. Cooperative sensitization of luminescence in crystals activated with rare earth ions. Soviet Phys. JETP Letters 4:317–8.
  • Pan, W., J. Zhao, and Q. Chen. 2015. Fabricating upconversion fluorescent probes for rapidly sensing foodborne pathogens. Journal of Agricultural and Food Chemistry 63 (36):8068–74. doi: 10.1021/acs.jafc.5b02331.
  • Peltomaa, R., Z. Farka, M. J. Mickert, J. C. Brandmeier, M. Pastucha, A. Hlaváček, M. Martínez-Orts, Á. Canales, P. Skládal, E. Benito-Peña, et al. 2020. Competitive upconversion-linked immunoassay using peptide mimetics for the detection of the mycotoxin zearalenone. Biosensors & Bioelectronics 170:112683. doi: 10.1016/j.bios.2020.112683.
  • Peng, J., Y. Sun, L. Zhao, Y. Wu, W. Feng, Y. Gao, and F. Li. 2013. Polyphosphoric acid capping radioactive/upconverting NaLuF4:Yb,Tm,153Sm nanoparticles for blood pool imaging in vivo. Biomaterials 34 (37):9535–44. doi: 10.1016/j.biomaterials.2013.07.098.
  • Perera, T. S. H., Y. Han, X. Lu, X. Wang, H. Dai, and S. Li. 2015. Rare earth doped apatite nanomaterials for biological application. Journal of Nanomaterials 2015:1–6. doi: 10.1155/2015/705390.
  • Preechakasedkit, P., K. Pinwattana, W. Dungchai, W. Siangproh, W. Chaicumpa, P. Tongtawe, and O. Chailapakul. 2012. Development of a one-step immunochromatographic strip test using gold nanoparticles for the rapid detection of Salmonella typhi in human serum. Biosensors & Bioelectronics 31 (1):562–6. doi: 10.1016/j.bios.2011.10.031.
  • Qiu, H. L., G. Y. Chen, L. Sun, S. W. Hao, G. Han, and C. H. Yang. 2011. Ethylenedia-minetetraacetic acid (EDTA)-controlled synthesis of multicolor lanthanide doped BaYF5 upconversion nanocrystals. Journal of Materials Chemistry 21 (43):17202–8. doi: 10.1039/c1jm12950c.
  • Qiu, P., N. Zhou, H. Chen, C. Zhang, G. Gao, and D. Cui. 2013. Recent advances in lanthanide-doped upconversion nanomaterials: Synthesis, nanostructures and surface modification. Nanoscale 5 (23):11512–25. doi: 10.1039/c3nr03642a.
  • Qiu, Z., J. Shu, Y. He, Z. Lin, K. Zhang, S. Lv, and D. Tang. 2017. CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization. Biosensors & Bioelectronics 87:18–24. doi: 10.1016/j.bios.2016.08.003.
  • Quesada-González, D., and A. Merkoçi. 2015. Nanoparticle-based lateral flow biosensors. Biosensors & Bioelectronics 73:47–63. doi: 10.1016/j.bios.2015.05.050.
  • Rafique, R., S. H. Baek, L. M. T. Phan, S.-J. Chang, A. R. Gul, and T. J. Park. 2019. A facile hydrothermal synthesis of highly luminescent NaYF4:Yb3+/Er3+ upconversion nanoparticles and their biomonitoring capability. Materials Science & Engineering. C, Materials for Biological Applications 99:1067–74. doi: 10.1016/j.msec.2019.02.046.
  • Rissin, D. M., C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, et al. 2010. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nature Biotechnology 28 (6):595–9. doi: 10.1038/nbt.1641.
  • Rong, Y., H. Li, Q. Ouyang, S. Ali, and Q. Chen. 2020. Rapid and sensitive detection of diazinon in food based on the FRET between rare-earth doped upconversion nanoparticles and graphene oxide. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 239:118500. doi: 10.1016/j.saa.2020.118500.
  • Saha, K., S. S. Agasti, C. Kim, X. Li, and V. M. Rotello. 2012. Gold nanoparticles in chemical and biological sensing. Chemical Reviews 112 (5):2739–79. doi: 10.1021/cr2001178.
  • Saleh, S. M., F. M. Alminderej, R. Ali, and O. I. Abdallah. 2020. Optical sensor film for metribuzin pesticide detection. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 229:117971. doi: 10.1016/j.saa.2019.117971.
  • Saleh, S. M., R. Ali, and O. S. Wolfbeis. 2011. Quenching of the luminescence of upconverting luminescent nanoparticles by heavy metal ions. Chemistry (Weinheim an der Bergstrasse, Germany) 17 (51):14611–7. doi: 10.1002/chem.201101860.
  • Santos, A. O., A. Vaz, P. Rodrigues, A. C. A. Veloso, A. Venâncio, and A. M. Peres. 2019. Thin films sensor devices for mycotoxins detection in foods: Applications and challenges. Chemosensors 7 (1):3. doi: 10.3390/chemosensors7010003.
  • Schares, G., D. Nascimento, A. Bärwald, C. Jutras, S. Rivard, V. Brodeur, S. L. DeNotta, W. Basso, and F. J. Conraths. 2020. First highly sensitive and specific competitive ELISA for detection of bovine besnoitiosis with potential as a multi-species test. International Journal for Parasitology 50 (5):389–401. doi: 10.1016/j.ijpara.2019.12.010.
  • Schug, T. T., A. Janesick, B. Blumberg, and J. J. Heindel. 2011. Endocrine disrupting chemicals and disease susceptibility. The Journal of Steroid Biochemistry and Molecular Biology 127 (3-5):204–15. doi: 10.1016/j.jsbmb.2011.08.007.
  • Shahdost-Fard, F., N. Fahimi-Kashani, and M. R. Hormozi-Nezhad. 2021. A ratiometric fluorescence nanoprobe using CdTe QDs for fast detection of carbaryl insecticide in apple. Talanta 221:121467. doi: 10.1016/j.talanta.2020.121467.
  • Shen, J., L. Zhao, and G. Han. 2013. Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Advanced Drug Delivery Reviews 65 (5):744–55. doi: 10.1016/j.addr.2012.05.007.
  • Shen, J., L.-D. Sun, and C.-H. Yan. 2008. Luminescent rare earth nanomaterials for bioprobe applications. Dalton Transactions (42):5687–97. doi: 10.1039/b805306e.
  • Shen, J., L.-D. Sun, Y.-W. Zhang, and C.-H. Yan. 2010. Superparamagnetic and upconversion emitting Fe3O4/NaYF4 : Yb,Er hetero-nanoparticles via a crosslinker anchoring strategy. Chemical Communications 46 (31):5731–3. doi: 10.1039/c0cc00814a.
  • Shen, Q., R. Jin, J. Xue, Y. Lu, and Z. Dai. 2016. Analysis of trace levels of sulfonamides in fish tissue using micro-scale pipette tip-matrix solid-phase dispersion and fast liquid chromatography tandem mass spectrometry. Food Chemistry 194:508–15. doi: 10.1016/j.foodchem.2015.08.050.
  • Shukla, S., H. Leem, and M. Kim. 2011. Development of a liposome-based immunochromatographic strip assay for the detection of Salmonella. Analytical and Bioanalytical Chemistry 401 (8):2581–90. doi: 10.1007/s00216-011-5327-2.
  • Shyu, R.-H., H.-F. Shyu, H.-W. Liu, and S.-S. Tang. 2002. Colloidal gold-based immunochromatographic assay for detection of ricin. Toxicon: Official Journal of the International Society on Toxinology 40 (3):255–8. doi: 10.1016/S0041-0101(01)00193-3.
  • Si, F., R. Zou, S. Jiao, X. Qiao, Y. Guo, and G. Zhu. 2018. Inner filter effect-based homogeneous immunoassay for rapid detection of imidacloprid residue in environmental and food samples. Ecotoxicology and Environmental Safety 148:862–8. doi: 10.1016/j.ecoenv.2017.11.062.
  • Silversmith, A. J., W. Lenth, and R. M. Macfarlane. 1987. Green infrared‐pumped erbium upconversion laser. Applied Physics Letters 51 (24):1977–9. doi: 10.1063/1.98316.
  • Singh, R., G. Dumlupinar, S. Andersson-Engels, and S. Melgar. 2019. Emerging applications of upconverting nanoparticles in intestinal infection and colorectal cancer. International Journal of Nanomedicine 14:1027–38. doi: 10.2147/IJN.S188887.
  • Song, K., X. Kong, X. Liu, Y. Zhang, Q. Zeng, L. Tu, Z. Shi, and H. Zhang. 2012. Aptamer optical biosensor without bio-breakage using upconversion nanoparticles as donors. Chemical Communications (Cambridge, England) 48 (8):1156–8. doi: 10.1039/C2CC16817K.
  • Soni, A. K., R. Joshi, B. P. Singh, N. N. Kumar, and R. S. Ningthoujam. 2019. Near-infrared- and magnetic-field-responsive NaYF4:Er3+/Yb3+@SiO2@AuNP@Fe3O4 nanocomposites for hyperthermia applications induced by fluorescence resonance energy transfer and surface plasmon absorption. ACS Applied Nano Materials 2 (11):7350–61. doi: 10.1021/acsanm.9b01867.
  • Stöber, W., A. Fink, and E. Bohn. 1968. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science 26 (1):62–9. doi: 10.1016/0021-9797(68)90272-5.
  • Strohhöfer, C., and A. Polman. 2001. Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers. Journal of Applied Physics 90 (9):4314–20. doi: 10.1063/1.1406550.
  • Su, Q., W. Feng, D. Yang, and F. Li. 2017. Resonance energy transfer in upconversion nanoplatforms for selective biodetection. Accounts of Chemical Research 50 (1):32–40. doi: 10.1021/acs.accounts.6b00382.
  • Su, S., Z. Mo, G. Tan, H. Wen, X. Chen, and D. A. Hakeem. 2020. PAA modified upconversion nanoparticles for highly selective and sensitive detection of Cu2+ Ions. Frontiers in Chemistry 8:619764. doi: 10.3389/fchem.2020.619764.
  • Sun, C., H. Li, A. Koidis, and Q. Chen. 2016. Quantifying Aflatoxin B1 in peanut oil using fabricating fluorescence probes based on upconversion nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 165:120–6. doi: 10.1016/j.saa.2016.04.040.
  • Sun, L. D., Y. F. Wang, and C. H. Yan. 2014. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: Small size and tunable emission/excitation spectra. Accounts of Chemical Research 47 (4):1001–9. doi: 10.1021/ar400218t.
  • Sun, L., H. Zhou, D. Huang, T. Wang, P. Gao, Y. Sun, G. Zhou, and J. Hu. 2019. Fluorometric determination of antioxidant capacity in human plasma by using upconversion nanoparticles and an inner filter effect mechanism. Microchimica Acta 186:502.
  • Sun, L., R. Wei, J. Feng, and H. Zhang. 2018. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coordination Chemistry Reviews 364:10–32. doi: 10.1016/j.ccr.2018.03.007.
  • Tang, S. H., J. Wang, C. X. Yang, L. X. Dong, D. Kong, and X. P. Yan. 2014. Ultrasonic assisted preparation of lanthanide-oleate complexes for the synthesis of multifunctional monodisperse upconversion nanoparticles for multimodal imaging. Nanoscale 6 (14):8037–44. doi: 10.1039/c4nr00806e.
  • Tang, Y., M. Li, Z. Gao, X. Liu, X. Gao, T. Ma, X. Lu, and J. Li. 2017. Upconversion nanoparticles capped with molecularly imprinted polymer as fluorescence probe for the determination of ractopamine in water and pork. Food Analytical Methods 10 (9):2964–73. doi: 10.1007/s12161-017-0869-3.
  • Tu, R., B. Liu, Z. Wang, D. Gao, F. Wang, Q. Fang, and Z. Zhang. 2008. Amine-Capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Analytical Chemistry 80 (9):3458–65. doi: 10.1021/ac800060f.
  • van de Rijke, F., H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke. 2001. Up-converting phosphor reporters for nucleic acid microarrays. Nature Biotechnology 19 (3):273–6. doi: 10.1038/85734.
  • Wang, F., D. Banerjee, Y. Liu, X. Chen, and X. Liu. 2010a. Upconversion nanoparticles in biological labeling, imaging, and therapy. The Analyst 135 (8):1839–54. doi: 10.1039/c0an00144a.
  • Wang, F., R. Deng, and X. Liu. 2014. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nature Protocols 9 (7):1634–44. doi: 10.1038/nprot.2014.111.
  • Wang, F., Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu. 2010. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463 (7284):1061–5. doi: 10.1038/nature08777.
  • Wang, F., Y. Han, S. Wang, Z. Ye, L. Wei, and L. Xiao. 2019a. Single-particle LRET Aptasensor for the sensitive detection of Aflatoxin B1 with upconversion nanoparticles. Analytical Chemistry 91 (18):11856–63. doi: 10.1021/acs.analchem.9b02599.
  • Wang, H., Y. Li, M. Yang, P. Wang, and Y. Gu. 2019b. FRET-based upconversion nanoprobe sensitized by Nd3+ for the ratiometric detection of hydrogen peroxide in vivo. ACS Applied Materials & Interfaces 11 (7):7441–9. doi: 10.1021/acsami.8b21549.
  • Wang, H., Y. Lu, L. Wang, and H. Chen. 2019c. Detection of tyramine and tyrosinase activity using red region emission NaGdF4:Yb,Er@NaYF4 upconversion nanoparticles. Talanta 197:558–66. doi: 10.1016/j.talanta.2019.01.079.
  • Wang, L., J. Cai, Y. Wang, Q. Fang, S. Wang, Q. Cheng, D. Du, Y. Lin, and F. Liu. 2014. A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Microchimica Acta 181 (13-14):1565–72. doi: 10.1007/s00604-014-1247-0.
  • Wang, L., J. Wu, Q. Wang, C. He, L. Zhou, J. Wang, and Q. Pu. 2012. Rapid and sensitive determination of sulfonamide residues in milk and chicken muscle by microfluidic chip electrophoresis. Journal of Agricultural and Food Chemistry 60 (7):1613–8. doi: 10.1021/jf2036577.
  • Wang, L., Y. Zhang, and Y. Zhu. 2010b. One-pot synthesis and strong near-infrared upconversion luminescence of poly(acrylic acid)-functionalized YF3:Yb3+/Er3+ nanocrystals. Nano Research 3 (5):317–25. doi: 10.1007/s12274-010-1035-z.
  • Wang, M., C.-C. Mi, J.-L. Liu, X.-L. Wu, Y.-X. Zhang, W. Hou, F. Li, and S.-K. Xu. 2009. One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence. Journal of Alloys and Compounds 485 (1–2):L24–L27. doi: 10.1016/j.jallcom.2009.05.138.
  • Wang, P., H. Li, M. M. Hassan, Z. Guo, Z.-Z. Zhang, and Q. Chen. 2019d. Fabricating an acetylcholinesterase modulated UCNPs-Cu2+ fluorescence biosensor for ultrasensitive detection of organophosphorus pesticides-diazinon in food. Journal of Agricultural and Food Chemistry 67 (14):4071–9. doi: 10.1021/acs.jafc.8b07201.
  • Wang, Q.-Q., Z.-Q. Fang, Y.-T. Wu, M. Zhang, and G. Shi. 2020. A single-component yet multifunctional tongue-mimicking sensor array for upconversion fluorescence biosensing. The Analyst 145 (22):7191–6. doi: 10.1039/d0an01641a.
  • Wang, X., K. Li, D. Shi, N. Xiong, X. Jin, J. Yi, and D. Bi. 2007. Development of an immunochromatographic lateral-flow test strip for rapid detection of sulfonamides in eggs and chicken muscles. Journal of Agricultural and Food Chemistry 55 (6):2072–8. doi: 10.1021/jf062523h.
  • Wang, Y., S. Ren, H. Jiang, Y. Peng, J. Bai, Q. Li, C. Li, Z. Gao, and B. Ning. 2017. A label-free detection of diethylstilbestrol based on molecularly imprinted polymer-coated upconversion nanoparticles obtained by surface grafting. RSC Advances 7 (36):22215–21. doi: 10.1039/C6RA26999K.
  • Wang, Y., W. Lu, D. Yue, M. Wang, B. Tian, Q. Li, B. Hu, Z. Wang, and Y. Zhang. 2021. A strategy to enhance the up-conversion luminescence of nanospherical, rod-like and tube-like NaYF4: Yb3+, Er3+ (Tm3+) by combining with carbon dots. Crystengcomm 23 (4):935–43. doi: 10.1039/D0CE01516D.
  • Wen, H., H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu, S. F. Yu, and F. Wang. 2013. Upconverting near-infrared light through energy management in core-shell-shell nanoparticles. Angewandte Chemie (International ed. In English) 52 (50):13419–23. doi: 10.1002/anie.201306811.
  • Wen, S., J. Zhou, P. J. Schuck, Y. D. Suh, T. W. Schmidt, and D. Jin. 2019. Future and challenges for hybrid upconversion nanosystems. Nature Photonics 13 (12):828–38. doi: 10.1038/s41566-019-0528-x.
  • Won, S. Y., C. H. Lee, H. S. Chang, S. O. Kim, S. H. Lee, and D. S. Kim. 2011. Monitoring of 14 sulfonamide antibiotic residues in marine products using HPLC-PDA and LC-MS/MS. Food Control 22 (7):1101–7. doi: 10.1016/j.foodcont.2011.01.005.
  • Wu, J., S. Du, and Y. Wang. 2019a. Photosensitizer coated upconversion nanoparticles for triggering reactive oxygen species under 980 nm near-infrared excitation. Journal of Materials Chemistry. B 7 (46):7306–13. doi: 10.1039/c9tb01629e.
  • Wu, Q., A. Fang, H. Li, Y. Zhang, and S. Yao. 2016. Enzymatic-induced upconversion photoinduced electron transfer for sensing tyrosine in human serum. Biosensors & Bioelectronics 77:957–62. doi: 10.1016/j.bios.2015.10.084.
  • Wu, S., H. Zhang, Z. Shi, N. Duan, C. Fang, S. Dai, and Z. Wang. 2015. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control 50:597–604. doi: 10.1016/j.foodcont.2014.10.003.
  • Wu, S., N. Duan, C. Zhu, X. Ma, M. Wang, and Z. Wang. 2011b. Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels. Biosensors & Bioelectronics 30 (1):35–42. doi: 10.1016/j.bios.2011.08.023.
  • Wu, S., N. Duan, X. Li, G. Tan, X. Ma, Y. Xia, Z. Wang, and H. Wang. 2013. Homogenous detection of fumonisin B(1) with a molecular beacon based on fluorescence resonance energy transfer between NaYF4: Yb, Ho upconversion nanoparticles and gold nanoparticles. Talanta 116:611–8. doi: 10.1016/j.talanta.2013.07.016.
  • Wu, S., N. Duan, X. Ma, Y. Xia, H. Wang, Z. Wang, and Q. Zhang. 2012. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Analytical Chemistry 84 (14):6263–70. doi: 10.1021/ac301534w.
  • Wu, S., N. Duan, Z. Shi, C. Fang, and Z. Wang. 2014. Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Analytical Chemistry 86 (6):3100–7. doi: 10.1021/ac404205c.
  • Wu, S., N. Duan, Z. Wang, and H. Wang. 2011a. Aptamer-functionalized magnetic nanoparticle-based bioassay for the detection of ochratoxin a using upconversion nanoparticles as labels. The Analyst 136 (11):2306–14. doi: 10.1039/c0an00735h.
  • Wu, Z., and B. Cui. 2019. Simultaneous fluorometric and chirality based aptasensing of sulfamethazine by using upconversion nanoparticles and Au@Ag@Au core-shell nanoparticles. Microchimica Acta 186:555.
  • Würth, C., P. Manley, R. Voigt, D. Ahiboz, C. Becker, and U. Resch-Genger. 2020. Metasurface enhanced sensitized photon upconversion: toward highly efficient low power upconversion applications and nanoscale E-field sensors. Nano Letters 20 (9):6682–9. doi: 10.1021/acs.nanolett.0c02548.
  • Xin, H., Y. Li, D. Xu, Y. Zhang, C. H. Chen, and B. Li. 2017. Single upconversion nanoparticle-bacterium cotrapping for single-bacterium labeling and analysis. Small 13 (14):1603418. doi: 10.1002/smll.201603418.
  • Xu, D., F. Xie, L. Yao, Y. Li, H. Lin, A. Li, S. Yang, S. Zhong, and Y. Zhang. 2020a. Enhancing upconversion luminescence of highly doped lanthanide nanoparticles through phase transition delay. Journal of Alloys and Compounds 815:152622. doi: 10.1016/j.jallcom.2019.152622.
  • Xu, M., J. Zhuang, X. Jiang, X. Liu, and D. Tang. 2019. A three-dimensional DNA walker amplified FRET sensor for detection of telomerase activity based on the MnO2 nanosheet-upconversion nanoparticle sensing platform. Chemical Communications (Cambridge, England) 55 (66):9857–60. doi: 10.1039/c9cc05387e.
  • Xu, Y., B. Ma, E. Chen, X. Yu, C. Sun, and M. Zhang. 2020b. Functional up-conversion nanoparticle-based immunochromatography assay for simultaneous and sensitive detection of residues of four tetracycline antibiotics in milk. Frontiers in Chemistry 8:759–61. doi: 10.3389/fchem.2020.00759.
  • Xu, Z., L-l Long, Y-q Chen, M.-L. Chen, and Y.-H. Cheng. 2021. A nanozyme-linked immunosorbent assay based on metal-organic frameworks (MOFs) for sensitive detection of aflatoxin B1. Food Chemistry 338:128039. doi: 10.1016/j.foodchem.2020.128039.
  • Yan, C., H. Zhao, D. F. Perepichka, and F. Rosei. 2016. Lanthanide ion doped upconverting nanoparticles: Synthesis, structure and properties. Small (Weinheim an der Bergstrasse, Germany) 12 (29):3888–907. doi: 10.1002/smll.201601565.
  • Yan, Z., and G-z Fang. 2019. Molecularly imprinted polymer based on upconversion nanoparticles for highly selective and sensitive determination of Ochratoxin A. Journal of Central South University 26 (3):515–23. doi: 10.1007/s11771-019-4023-9.
  • Yang, D., C. Li, G. Li, M. Shang, X. Kang, and J. Lin. 2011. Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles by active-shell modification. Journal of Materials Chemistry 21 (16):5923–7. doi: 10.1039/c0jm04179c.
  • Yang, D., P. a Ma, Z. Hou, Z. Cheng, C. Li, and J. Lin. 2015. Current advances in lanthanide ion (Ln(3+))-based upconversion nanomaterials for drug delivery. Chemical Society Reviews 44 (6):1416–48. doi: 10.1039/c4cs00155a.
  • Yang, L., H. Sun, X. Wang, W. Yao, W. Zhang, and L. Jiang. 2019a. An aptamer based aggregation assay for the neonicotinoid insecticide acetamiprid using fluorescent upconversion nanoparticles and DNA functionalized gold nanoparticles. Microchimica Acta 186:308.
  • Yang, S., W. H. Tse, and J. Zhang. 2019b. Deposition of antibody modified upconversion nanoparticles on glass by a laser-assisted method to improve the performance of cell culture. Nanoscale Research Letters 14 (1):101. doi: 10.1186/s11671-019-2918-x.
  • Yang, T., H. Huang, F. Zhu, Q. Lin, L. Zhang, and J. Liu. 2016. Recent progresses in nanobiosensing for food safety analysis. Sensors (Basel) 16 (7):1118. doi: 10.3390/s16071118.
  • Yang, Y., S. Yin, Y. Li, D. Lu, J. Zhang, and C. Sun. 2017. Application of aptamers in detection and chromatographic purification of antibiotics in different matrices. TrAC Trends in Analytical Chemistry 95:1–22. doi: 10.1016/j.trac.2017.07.023.
  • Yao, J., C. Huang, C. Liu, and M. Yang. 2019. Upconversion luminescence nanomaterials: A versatile platform for imaging, sensing, and therapy. Talanta 208:120157–70.
  • Yi, G. S., and G. M. Chow. 2006. Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Advanced Functional Materials 16 (18):2324–9. doi: 10.1002/adfm.200600053.
  • Yin, M., C. Jing, H. Li, Q. Deng, and S. Wang. 2020. Surface chemistry modified upconversion nanoparticles as fluorescent sensor array for discrimination of foodborne pathogenic bacteria. Journal of Nanbiotechnology 18:41.
  • Yu, H., J. Jiang, S. L. Su, and J. Y. Ying. 2008. Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles. Langmuir 24 (11):5842–8. doi: 10.1021/la703440p.
  • Yu, Q., C. He, Q. Li, Y. Zhou, N. Duan, and S. Wu. 2020. Fluorometric determination of acetamiprid using molecularly imprinted upconversion nanoparticles. Microchimica Acta 187:222.
  • Yu, X., M. Li, M. Xie, L. Chen, Y. Li, and Q. Wang. 2010. Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging. Nano Research 3 (1):51–60. doi: 10.1007/s12274-010-1008-2.
  • Zeng, J.-H., J. Su, Z.-H. Li, R.-X. Yan, and Y.-D. Li. 2005. Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3+ phosphors of controlled size and morphology. Advanced Materials 17 (17):2119–23. doi: 10.1002/adma.200402046.
  • Zhan, Q., J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels. 2011. Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano 5 (5):3744–57. doi: 10.1021/nn200110j.
  • Zhang, B., H. Li, W. Pan, Q. Chen, Q. Ouyang, and J. Zhao. 2017a. Dual-color upconversion Nanoparticles (UCNPs)-based fluorescent immunoassay probes for sensitive sensing foodborne pathogens. Food Analytical Methods 10 (6):2036–45. doi: 10.1007/s12161-016-0758-1.
  • Zhang, F., J. Li, J. Shan, L. Xu, and D. Y. Zhao. 2009. Shape, size, and phase-controlled rare-earth fluoride nanocrystals with optical up-conversion properties. Chemistry (Weinheim an der Bergstrasse, Germany) 15 (41):11010–9. doi: 10.1002/chem.200900861.
  • Zhang, H., C. Fang, S. Wu, N. Duan, and Z. Wang. 2015. Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline. Analytical Biochemistry 489:44–9. doi: 10.1016/j.ab.2015.08.011.
  • Zhang, J., B. Li, L. Zhang, and H. Jiang. 2012. An optical sensor for Cu(II) detection with upconverting luminescent nanoparticles as an excitation source. Chemical Communications (Cambridge, England) 48 (40):4860–2. doi: 10.1039/c2cc31642k.
  • Zhang, L., B. Ling, L. Wang, and H. Chen. 2017b. A near-infrared luminescent Mn2+-doped NaYF4:Yb,Tm/Fe3+ upconversion nanoparticles redox reaction system for the detection of GSH/Cys/AA. Talanta 172:95–101. doi: 10.1016/j.talanta.2017.05.031.
  • Zhang, W., Z. Liao, X. Meng, A. E. Ai Niwaer, H. Wang, X. Li, D. Liu, and F. Zuo. 2020. Fast coating of hydrophobic upconversion nanoparticles by NaIO4-induced polymerization of dopamine: Positively charged surfaces and in situ deposition of Au nanoparticles. Applied Surface Science 527:146821. doi: 10.1016/j.apsusc.2020.146821.
  • Zhang, Y., H. Liu, L. Ning, W. Gu, and X. Liu. 2021. A novel core-shell upconversion nanoparticles@zirconium-based metal organic framework fluorescent nanoprobe for efficient continuous detection of trace methylene blue and ferrous ions. Talanta 224:121853. doi: 10.1016/j.talanta.2020.121853.
  • Zhang, Y., Z. Liao, Y. Liu, Y. Wan, J. Chang, and H. Wang. 2017c. Flow cytometric immunoassay for aflatoxin B1 using magnetic microspheres encoded with upconverting fluorescent nanocrystals. Microchimica Acta 184 (5):1471–9. doi: 10.1007/s00604-017-2116-4.
  • Zhang, Y.-W., X. Sun, R. Si, L.-P. You, and C.-H. Yan. 2005. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. Journal of the American Chemical Society 127 (10):3260–1. doi: 10.1021/ja042801y.
  • Zhang, Z., S. Shikha, J. Liu, J. Zhang, Q. Mei, and Y. Zhang. 2019. Upconversion nanoprobes: Recent advances in sensing applications. Analytical Chemistry 91 (1):548–68. doi: 10.1021/acs.analchem.8b04049.
  • Zhou, H. P., C. H. Xu, W. Sun, and C. H. Yan. 2009. Clean and flexible modification strategy for carboxyl/aldehyde-functionalized upconversion nanoparticles and their optical applications. Advanced Functional Materials 19 (24):3892–900. doi: 10.1002/adfm.200901458.
  • Zhou, J., Q. Liu, W. Feng, Y. Sun, and F. Li. 2015. Upconversion luminescent materials: advances and applications. Chemical Reviews 115 (1):395–465. doi: 10.1021/cr400478f.
  • Zhou, J., Z. Liu, and F. Li. 2012. Upconversion nanophosphors for small-animal imaging. Chemical Society Reviews 41 (3):1323–49. doi: 10.1039/c1cs15187h.
  • Zijlmans, H. J. M. A. A., J. Bonnet, J. Burton, K. Kardos, T. Vail, R. S. Niedbala, and H. J. Tanke. 1999. Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Analytical Biochemistry 267 (1):30–6. doi: 10.1006/abio.1998.2965.
  • Zuiderwijk, M., H. J. Tanke, R. Sam Niedbala, and P. L. A. M. Corstjens. 2003. An amplification-free hybridization-based DNA assay to detect Streptococcus pneumoniae utilizing the up-converting phosphor technology. Clinical Biochemistry 36 (5):401–3. doi: 10.1016/S0009-9120(03)00057-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.