686
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Contamination, bioaccumulation mechanism, detection, and control of human norovirus in bivalve shellfish: A review

, , , &

References

  • Afolayan, O. T., C. C. Webb, and J. L. Cannon. 2016. Evaluation of a porcine gastric mucin and RNase A Assay for the discrimination of infectious and non-infectious gi.1 and gii.4 norovirus following thermal, ethanol, or levulinic acid plus sodium dodecyl sulfate treatments. Food and Environmental Virology 8 (1):70–8. doi: 10.1007/s12560-015-9219-z.
  • Amarasiri, M., and D. Sano. 2019. Specific interactions between human norovirus and environmental matrices: Effects on the virus ecology. Viruses 11 (3):224. doi: 10.3390/v11030224.
  • Batule, B. S., S. U. Kim, H. Mun, C. Choi, W. B. Shim, and M. G. Kim. 2018. Colorimetric detection of norovirus in oyster samples through DNAzyme as a signaling probe. Journal of Agricultural and Food Chemistry 66 (11):3003–8. doi: 10.1021/acs.jafc.7b05289.
  • Bella, G. L., V. Martella, M. G. Basanisi, G. Nobili, V. Terio, and G. La Salandra. 2017. Food-borne viruses in shellfish: Investigation on norovirus and HAV presence in Apulia (SE Italy). Food and Environmental Virology 9 (2):179–86. doi: 10.1007/s12560-016-9273-1.
  • Bonny, P., M. Desdouits, J. Schaeffer, P. Garry, J. J. E. Ngang, and F. S. Le Guyader. 2020. Contamination of clams with human norovirus and a novel hepatitis A virus in cameroon. Food and Environmental Virology 12 (3):274–7. doi: 10.1007/s12560-020-09432-2.
  • Bozkurt, H., K. Y. Phan-Thien, F. V. Ogtrop, T. Bell, and R. Mcconchie. 2021. Outbreaks, occurrence, and control of norovirus and hepatitis a virus contamination in berries: A review. Critical Reviews in Food Science and Nutrition 61 (1):116–23. doi: 10.1080/10408398.2020.1719383.
  • Brake, F., T. Ross, G. Holds, A. Kiermeier, and C. Mcleod. 2014. A survey of Australian oysters for the presence of human noroviruses. Food Microbiology 44:264–70. doi: 10.1016/j.fm.2014.06.012.
  • Campos, C. J. A., J. Avant, J. Lowther, D. Till, and D. N. Lees. 2016. Human norovirus in untreated sewage and effluents from primary, secondary and tertiary treatment processes. Water Research 103:224–32. doi: 10.1016/j.watres.2016.07.045.
  • Campos, C. J. A., S. Kershaw, O. C. Morgan, and D. N. Lees. 2017. Risk factors for norovirus contamination of shellfish water catchments in England and Wales. International Journal of Food Microbiology 241:318–24. doi: 10.1016/j.ijfoodmicro.2016.10.028.
  • Campos, C. J. A., and D. N. Lees. 2014. Environmental transmission of human noroviruses in shellfish waters. Applied and Environmental Microbiology 80 (12):3552–61. doi: 10.1128/AEM.04188-13.
  • Chatzisymeon, E. 2016. Inactivation of bacteria in seafood processing water by means of UV treatment. Journal of Food Engineering 173:1–7. doi: 10.1016/j.jfoodeng.2015.10.027.
  • Chhabra, P., M. de Graaf, G. I. Parra, M. C. W. Chan, K. Green, V. Martella, Q. Wang, P. A. White, K. Katayama, H. Vennema, et al. 2019. Updated classification of norovirus genogroups and genotypes. The Journal of General Virology 100 (10):1393–406. doi: 10.1099/jgv.0.001318.
  • Choi, M. S., E. B. Jeon, J. Y. Kim, E. H. Choi, J. S. Lim, J. Choi, K. S. Ha, J. Y. Kwon, S. H. Jeong, and S. Y. Park. 2020. Virucidal effects of dielectric barrier discharge plasma on human norovirus infectivity in fresh oysters. Foods 9 (12):1731. doi: 10.3390/foods9121731.
  • Choi, C., and D. H. Kingsley. 2016. Temperature-dependent persistence of human norovirus within oysters (Crassostrea virginica). Food and Environmental Virology 8 (2):141–7. doi: 10.1007/s12560-016-9234-8.
  • De Graaf, M., J. van Beek, and M. P. G. Koopmans. 2016. Human norovirus transmission and evolution in a changing world. Nature Reviews Microbiology 14 (7):421–33. doi: 10.1038/nrmicro.2016.48.
  • Desdouits, M., C. Wacrenier, J. Ollivier, J. Schaeffer, and F. S. Le Guyader. 2020. A targeted metagenomics approach to study the diversity of norovirus GII in shellfish implicated in outbreaks. Viruses 12 (9):978. doi: 10.3390/v12090978.
  • DiCaprio, E., M. Ye, H. Chen, and J. Li. 2019. Inactivation of human norovirus and Tulane virus by high pressure processing in simple mediums and strawberry puree. Frontiers in Sustainable Food System 3:26.
  • El Moqri, N., F. El Mellouli, N. Hassou, M. Benhafid, N. Abouchoaib, and S. Etahiri. 2019. Norovirus detection at Oualidia lagoon, a moroccan shellfish harvesting area, by reverse transcription PCR analysis. Food and Environmental Virology 11 (3):268–73. doi: 10.1007/s12560-019-09386-0.
  • El-Senousy, W. M., and S. I. Abou-Elela. 2017. Assessment and evaluation of an integrated hybrid anaerobic–aerobic sewage treatment system for the removal of enteric viruses. Food and Environmental Virology 9 (3):287–303. doi: 10.1007/s12560-017-9286-4.
  • Eom, S. H., S. Y. Moon, D. S. Lee, H. J. Kim, K. Park, E. W. Lee, T. H. Kim, Y. H. Chung, M. S. Lee, and Y. M. Kim. 2015. In vitro antiviral activity of dieckol and phlorofucofuroeckol-A isolated from edible brown alga Eisenia bicyclis against murine norovirus. Algae 30 (3):241–6. doi: 10.4490/algae.2015.30.3.241.
  • European Commission. 2017. Community Guide to the Principles of Good Practice for the Microbiological Classification and Monitoring of Bivalve mollusc Production and Relaying Areas with regard to Regulation 854/2004. 3 European Commission DG Health and Consumers.
  • Farkas, K., D. M. Cooper, J. E. McDonald, S. K. Malham, A. de Rougemont, and D. L. Jones. 2018. Seasonal and spatial dynamics of enteric viruses in wastewater and in riverine and estuarine receiving waters. The Science of the Total Environment 634:1174–83. doi: 10.1016/j.scitotenv.2018.04.038.
  • FDA. 2013. National Shellfish Sanitation Program (NSSP): Guide for the Control of Molluscan Shellfish. 2011 Revision. U. S. Department of Health and Human Services, Public Health Service, Food and Drug Administration.
  • Filipić, A., I. Gutierrez-Aguirre, G. Primc, M. Mozetič, and D. Dobnik. 2020. Cold plasma, a new hope in the field of virus inactivation. Trends in Biotechnology 38 (11):1278–91. doi: 10.1016/j.tibtech.2020.04.003.
  • Garcia, L. A., M. A. Nascimento, and C. R. Barardi. 2015. Effect of UV light on the inactivation of recombinant human adenovirus and murine norovirus seeded in seawater in shellfish depuration tanks. Food and Environmental Virology 7 (1):67–75. doi: 10.1007/s12560-014-9177-x.
  • Gorji, M. E., M. T. H. Tan, and D. Li. 2021. Influence of fucosidase-producing bifidobacteria on the HBGA antigenicity of oyster digestive tissue and the associated norovirus binding. International Journal of Food Microbiology 340:109058. doi: 10.1016/j.ijfoodmicro.2021.109058.
  • Gyawali, P., and J. J. W. Hewitt. 2018. Detection of infectious noroviruses from wastewater and seawater using PEMAXTM treatment combined with RT-qPCR. Water 10 (7):841. doi: 10.3390/w10070841.
  • Ha, J. H., C. Choi, H. J. Lee, I. S. Ju, J. S. Lee, and S. D. Ha. 2016. Efficacy of chemical disinfectant compounds against human norovirus. Food Control 59:524–9. doi: 10.1016/j.foodcont.2015.04.040.
  • Hardstaff, J. L., H. E. Clough, V. Lutje, K. M. McIntyre, J. P. Harris, P. Garner, and S. J. O’Brien. 2018. Foodborne and food-handler norovirus outbreaks: A systematic review. Foodborne Pathogens and Disease 15 (10):589–97. doi: 10.1089/fpd.2018.2452.
  • Hassard, F., J. H. Sharp, H. Taft, L. LeVay, J. P. Harris, J. E. McDonald, K. Tuson, J. Wilson, J. L. David, and S. K. Malham. 2017. Critical review on the public health impact of norovirus contamination in shellfish and the environment: A UK perspective. Food and Environmental Virology 9 (2):123–41. doi: 10.1007/s12560-017-9279-3.
  • Hassou, N., M. Maanan, M. Hennani, B. Zourarah, and O. Assobhei. 2014. Spatial and temporal variation of faecal pollution indicators (Escherichia coli and Faecal streptococci) and physicochemical parameters at the Oualidia lagoon and its watershed (Morocco). International Journal of Current Microbiology and Applied Science 3 (3):675–94.
  • Hennechart-Collette, C., S. Martin-Latil, A. Fraisse, and S. Perelle. 2017. Comparison of three extraction methods to detect noroviruses in dairy products. Food Microbiology 61:113–9. doi: 10.1016/j.fm.2016.09.001.
  • Hunt, K., B. Doré, S. Keaveney, A. Rupnik, and F. Butler. 2020. Estimating the distribution of norovirus in individual oysters. International Journal of Food Microbiology 333:108785. doi: 10.1016/j.ijfoodmicro.2020.108785.
  • Ibrahim, C., S. Hammami, N. Khelifi, P. Pothier, and A. Hassen. 2020. The effectiveness of activated sludge procedure and UV-C254 in norovirus inactivation in a Tunisian industrial wastewater treatment plant. Food and Environmental Virology 12 (3):250–9. doi: 10.1007/s12560-020-09434-0.
  • Imamura, S., H. Kanezashi, T. Goshima, A. Suto, Y. Ueki, N. Sugawara, H. Ito, B. Zou, C. Kawasaki, T. Okada, et al. 2018. Effect of high pressure processing on a wide variety of human noroviruses naturally present in aqua-cultured Japanese oysters. Foodborne Pathogens and Disease 15 (10):621–6. doi: 10.1089/fpd.2018.2444.
  • Imamura, S., H. Kanezashi, T. Goshima, A. Suto, Y. Ueki, N. Sugawara, H. Ito, B. Zou, M. Uema, M. Noda, et al. 2017. Effect of high-pressure processing on human noroviruses in laboratory-contaminated oysters by bio-accumulation. Foodborne Pathogens and Disease 14 (9):518–23. doi: 10.1089/fpd.2017.2294.
  • Jeon, E. B., M. S. Choi, J. Y. Kim, K. S. Ha, J. Y. Kwon, S. H. Jeong, H. J. Lee, Y. J. Jung, J.-H. Ha, and S. Y. Park. 2020. Characterizing the effects of thermal treatment on human norovirus GII. 4 viability using propidium monoazide combined with RT-qPCR and quality assessments in mussels. Food Control 109:106954. doi: 10.1016/j.foodcont.2019.106954.
  • Jeon, S. B., D. J. Seo, H. Oh, D. H. Kingsley, and C. J. F. C. Choi. 2017. Development of one-step reverse transcription loop-mediated isothermal amplification for norovirus detection in oysters. Food Control 73:1002–9. doi: 10.1016/j.foodcont.2016.10.005.
  • Kang, S., S. Y. Park, and S. D. Ha. 2016. Application of gamma irradiation for the reduction of norovirus in traditional Korean half-dried seafood products during storage. LWT - Food Science and Technology 65:739–45. doi: 10.1016/j.lwt.2015.09.005.
  • Kim, S. E., S. Y. Park, M. L. Rui, and S. D. Ha. 2017. Effects of electron beam irradiation on murine norovirus-1 in abalone (Haliotis discus hannai) meat and viscera. LWT 86:611–8. doi: 10.1016/j.lwt.2017.08.058.
  • Kim, S. H., H. M. Shahbaz, D. Park, S. Chun, W. Lee, J. W. Oh, D. U. Lee, and J. Park. 2017. A combined treatment of UV-assisted TiO2 photocatalysis and high hydrostatic pressure to inactivate internalized murine norovirus. Innovative Food Science & Emerging Technologies 39:188–96. doi: 10.1016/j.ifset.2016.11.015.
  • Kittigul, L., A. Thamjaroen, S. Chiawchan, P. Chavalitshewinkoon-Petmitr, K. Pombubpa, and P. Diraphat. 2016. Prevalence and molecular genotyping of noroviruses in market oysters, mussels, and cockles in Bangkok, Thailand. Food and Environmental Virology 8 (2):133–40. doi: 10.1007/s12560-016-9228-6.
  • Kocak, A. 2019. HBGA binding modes and selectivity in noroviruses upon mutation: A docking and molecular dynamics study. Journal of Molecular Modeling 25 (12):369. doi: 10.1007/s00894-019-4261-7.
  • La Rosa, G., S. Della Libera, M. Iaconelli, Y. T. R. Proroga, D. De Medici, V. Martella, and E. Suffredini. 2017. Detection of norovirus GII.17 Kawasaki 2014 in shellfish, marine water and underwater sewage discharges in Italy. Food and Environmental Virology 9 (3):326–33. doi: 10.1007/s12560-017-9290-8.
  • Langlet, J., L. Kaas, and G. Greening. 2015. Binding-based RT-qPCR assay to assess binding patterns of noroviruses to shellfish. Food and Environmental Virology 7 (2):88–95. doi: 10.1007/s12560-015-9180-x.
  • Le Guyader, F. S., R. L. Atmar, and J. Le Pendu. 2012. Transmission of viruses through shellfish: When specific ligands come into play. Current Opinion in Virology 2 (1):103–10. doi: 10.1016/j.coviro.2011.10.029.
  • Lee, H. W., S.-R. Yoon, H.-M. Lee, J. Y. Lee, S. H. Kim, and J. H. Ha. 2019. Use of RT-qPCR with combined intercalating dye and sodium lauroyl sarcosinate pretreatment to evaluate the virucidal activity of halophyte extracts against norovirus. Food Control 98:100–6. doi: 10.1016/j.foodcont.2018.11.026.
  • Lees, D. 2000. Viruses and bivalve shellfish. International Journal of Food Microbiology 59 (1–2):81–116. doi: 10.1016/S0168-1605(00)00248-8.
  • Leon, J. S., D. H. Kingsley, J. S. Montes, G. P. Richards, G. M. Lyon, G. M. Abdulhafid, S. R. Seitz, M. L. Fernandez, P. F. Teunis, G. J. Flick, et al. 2011. Randomized, double-blinded clinical trial for human norovirus inactivation in oysters by high hydrostatic pressure processing. Applied and Environmental Microbiology 77 (15):5476–82. doi: 10.1128/AEM.02801-10.
  • Li, X., and H. Chen. 2015. Evaluation of the porcine gastric mucin binding assay for high-pressure-inactivation studies using murine norovirus and tulane virus. Applied and Environmental Microbiology 81 (2):515–21. doi: 10.1128/AEM.02971-14.
  • Li, X., H. Chen, and D. H. Kingsley. 2013. The influence of temperature, pH, and water immersion on the high hydrostatic pressure inactivation of GI. 1 and GII. 4 human noroviruses. International Journal of Food Microbiology 167 (2):138–43. doi: 10.1016/j.ijfoodmicro.2013.08.020.
  • Li, X., R. Huang, and H. Chen. 2017. Evaluation of assays to quantify infectious human norovirus for heat and high-pressure inactivation studies using Tulane virus. Food and Environmental Virology 9 (3):314–25. doi: 10.1007/s12560-017-9288-2.
  • Liu, D., J. Deng, S. Joshi, P. Liu, C. Zhang, Y. Yu, R. Zhang, D. Fan, H. Yang, and D. H. D'Souza. 2018. Monomeric catechin and dimeric procyanidin B2 against human norovirus surrogates and their physicochemical interactions. Food Microbiology 76:346–53. doi: 10.1016/j.fm.2018.06.009.
  • Liu, F., Z. Li, B. Cao, J. Wu, Y. Wang, Y. Xue, J. Xu, C. Xue, and Q. J. Tang. 2016. The effect of a novel photodynamic activation method mediated by curcumin on oyster shelf life and quality. Food Research International (Ottawa, ON) 87:204–10. doi: 10.1016/j.foodres.2016.07.012.
  • Lodo, K. L., M. G. Veitch, and M. L. Green. 2014. An outbreak of norovirus linked to oysters in Tasmania. Communicable Diseases Intelligence Quarterly Report 38 (1):16–9.
  • Loncke, D. 2016. Viral-bacterial interactions: The effect of histo-blood group antigen (HBGA)-expressing bacteria and probiotics on Noroviruses. MSc. Thesis., Faculty of Bioscience Engineering, University of Ghent, Belgume.
  • Lou, F., E. DiCaprio, X. Li, X. Dai, Y. Ma, J. Hughes, H. Chen, D. H. Kingsley, and J. Li. 2016. Variable high-pressure-processing sensitivities for genogroup II human noroviruses. Applied and Environmental Microbiology 82 (19):6037–45. doi: 10.1128/AEM.01575-16.
  • Lowther, J. A., N. E. Gustar, A. L. Powell, S. O’Brien, and D. N. Lees. 2018. A one-year survey of norovirus in UK oysters collected at the point of sale. Food and Environmental Virology 10 (3):278–87. doi: 10.1007/s12560-018-9338-4.
  • Ma, L., H. Liu, L. Su, F. Zhao, D. Zhou, and D. Duan. 2018. Histo-blood group antigens in Crassostrea gigas and binding profiles with GII. 4 Norovirus. Journal of Oceanology and Limnology 36 (4):1383–91. doi: 10.1007/s00343-018-7024-x.
  • Maalouf, H., M. Pommepuy, and F. S. Le Guyader. 2010. Environmental conditions leading to shellfish contamination and related outbreaks. Food and Environmental Virology 2 (3):136–45. doi: 10.1007/s12560-010-9043-4.
  • Maalouf, H., J. Schaeffer, S. Parnaudeau, J. Le Pendu, R. L. Atmar, S. E. Crawford, and F. S. Le Guyader. 2011. Strain-dependent norovirus bioaccumulation in oysters. Applied and Environmental Microbiology 77 (10):3189–96. doi: 10.1128/AEM.03010-10.
  • Maalouf, H., M. Zakhour, J. Le Pendu, J.-C. Le Saux, R. L. Atmar, and F. S. Le Guyader. 2010. Distribution in tissue and seasonal variation of norovirus genogroup I and II ligands in oysters. Applied and Environmental Microbiology 76 (16):5621–30. doi: 10.1128/AEM.00148-10.
  • Mallagaray, A., R. Creutznacher, J. Dülfer, P. H. Mayer, L. L. Grimm, J. M. Orduña, E. Trabjerg, T. Stehle, K. D. Rand, B. S. Blaum, et al. 2019. A post-translational modification of human Norovirus capsid protein attenuates glycan binding. Nature Communications 10 (1):1–14. doi: 10.1038/s41467-019-09251-5.
  • Malm, M., K. Tamminen, T. Vesikari, and V. Blazevic. 2018. Norovirus GII.17 virus-like particles bind to different histo-blood group antigens and cross-react with genogroup II-specific mouse sera. Viral Immunology 31 (10):649–57. doi: 10.1089/vim.2018.0115.
  • Manuel, C. S., M. D. Moore, and L. A. Jaykus. 2018. Predicting human norovirus infectivity - Recent advances and continued challenges . Food Microbiology 76:337–45. doi: 10.1016/j.fm.2018.06.015.
  • Mcleod, C., D. Polo, J. C. Le Saux, and F. S. Le Guyader. 2017. Depuration and relaying: A review on potential removal of norovirus from oysters. Comprehensive Reviews in Food Science and Food Safety 16 (4):692–706. doi: 10.1111/1541-4337.12271.
  • Mennec, C. L., S. Parnaudeau, M. Rumebe, J. C. L. Saux, J. C. M. Piquet, and S. F. Guyader. 2017. Follow-Up of norovirus contamination in an oyster production area linked to repeated outbreaks. Food and Environmental Virology 9 (1):54–61. doi: 10.1007/s12560-016-9260-6.
  • Miura, T., J. Schaeffer, J. C. L. Saux, P. L. Mehaute, and F. S. Le Guyader. 2018. Virus type-specific removal in a full-scale membrane bioreactor treatment process. Food and Environmental Virology 10 (2):176–86. doi: 10.1007/s12560-017-9330-4.
  • Molina-Chavarria, A., L. Félix-Valenzuela, E. Silva-Campa, and V. Mata-Haro. 2020. Evaluation of gamma irradiation for human norovirus inactivation and its effect on strawberry cells. International Journal of Food Microbiology 330:108695. doi: 10.1016/j.ijfoodmicro.2020.108695.
  • Morozov, V., F.-G. Hanisch, K. M. Wegner, and H. Schroten. 2018. Pandemic GII.4 Sydney and epidemic GII.17 Kawasaki308 noroviruses display distinct specificities for histo-blood group antigens leading to different transmission vector dynamics in Pacific Oysters. Frontiers in Microbiology 9:2826. doi: 10.3389/fmicb.2018.02826.
  • Nasir, W., M. Frank, A. Kunze, M. Bally, F. Parra, P.-G. Nyholm, F. Höök, and G. Larson. 2017. Histo-blood group antigen presentation is critical for binding of norovirus VLP to glycosphingolipids in model membranes. ACS Chemical Biology 12 (5):1288–96. doi: 10.1021/acschembio.7b00152.
  • Nayak, G., H. A. Aboubakr, S. M. Goyal, and P. J. Bruggeman. 2018. Reactive species responsible for the inactivation of feline calicivirus by a two‐dimensional array of integrated coaxial microhollow dielectric barrier discharges in air. Plasma Processes and Polymers 15 (1):1700119. doi: 10.1002/ppap.201700119.
  • Ng, Y. C., Y. W. Kim, S. Ryu, A. Lee, J. S. Lee, and M. J. Song. 2017. Suppression of norovirus by natural phytochemicals from Aloe vera and Eriobotryae Folium. Food Control 73:1362–70. doi: 10.1016/j.foodcont.2016.10.051.
  • Park, S. Y., and S. D. Ha. 2019. Synergistic effects of combined chlorine and vitamin B1 on the reduction of murine norovirus-1 on the oyster (Crassostrea gigas) surface. Food and Environmental Virology 11 (3):205–13. doi: 10.1007/s12560-019-09380-6.
  • Park, D., H. M. Shahbaz, S. H. Kim, M. Lee, W. Lee, J. W. Oh, D. U. Lee, and J. Park. 2016. Inactivation efficiency and mechanism of UV-TiO2 photocatalysis against murine norovirus using a solidified agar matrix. International Journal of Food Microbiology 238:256–64. doi: 10.1016/j.ijfoodmicro.2016.09.025.
  • Patin, N., A. Peña-Gonzalez, J. Hatt, C. Moe, A. Kirby, and K. Konstantinidis. 2020. The role of the gut microbiome in resisting norovirus infection as revealed by a human challenge study. Mbio 11 (6):e02634-20. doi: 10.1128/mBio.02634-20.
  • Persson, S., R. Eriksson, J. Lowther, P. Ellström, and M. Simonsson. 2018. Comparison between RT droplet digital PCR and RT real-time PCR for quantification of noroviruses in oysters. International Journal of Food Microbiology 284:73–83. doi: 10.1016/j.ijfoodmicro.2018.06.022.
  • Polo, D., C. Álvarez, J. Díez, S. Darriba, Á. Longa, and J. L. Romalde. 2014. Viral elimination during commercial depuration of shellfish. Food Control 43:206–12. doi: 10.1016/j.foodcont.2014.03.022.
  • Polo, D., J. Schaeffer, N. Fournet, J.-C. Le Saux, S. Parnaudeau, C. McLeod, and F. S. Le Guyader. 2016. Digital PCR for quantifying norovirus in oysters implicated in outbreaks, France. Emerging Infectious Diseases 22 (12):2189–91. doi: 10.3201/eid2212.160841.
  • Polo, D., M. F. Varela, and J. L. Romalde. 2015. Detection and quantification of hepatitis a virus and norovirus in Spanish authorized shellfish harvesting areas. International Journal of Food Microbiology 193:43–50. doi: 10.1016/j.ijfoodmicro.2014.10.007.
  • Prado, T., A. De Castro Bruni, M. R. F. Barbosa, S. C. Garcia, L. Z. Moreno, and M. I. Z. Sato. 2019. Noroviruses in raw sewage, secondary effluents and reclaimed water produced by sand-anthracite filters and membrane bioreactor/reverse osmosis system. The Science of the Total Environment 646:427–37. doi:10.1016/j.scitotenv.2018.07.301. PMID:30056231
  • Praveen, C., B. A. Dancho, D. H. Kingsley, K. R. Calci, G. K. Meade, K. D. Mena, and S. D. Pillai. 2013. Susceptibility of murine norovirus and hepatitis A virus to electron beam irradiation in oysters and quantifying the reduction in potential infection risks. Applied and Environmental Microbiology 79 (12):3796–801. doi: 10.1128/AEM.00347-13.
  • Predmore, A., G. C. Sanglay, E. DiCaprio, J. Li, R. Uribe, and K. Lee. 2015. Electron beam inactivation of Tulane virus on fresh produce, and mechanism of inactivation of human norovirus surrogates by electron beam irradiation. International Journal of Food Microbiology 198:28–36. doi: 10.1016/j.ijfoodmicro.2014.12.024.
  • Provost, K., B. A. Dancho, G. Ozbay, R. S. Anderson, G. P. Richards, and D. H. Kingsley. 2011. Hemocytes are sites of enteric virus persistence within oysters. Applied and Environmental Microbiology 77 (23):8360–9. doi: 10.1128/AEM.06887-11.
  • Quang Le, H., E. Suffredini, D. Tien Pham, A. Kim To, and D. De Medici. 2018. Development of a method for direct extraction of viral RNA from bivalve molluscs. Letters in Applied Microbiology 67 (5):426–34. doi: 10.1111/lam.13065.
  • Randazzo, W., M. Khezri, J. Ollivier, F. S. Le Guyader, J. Rodríguez-Díaz, R. Aznar, and G. Sánchez. 2018. Optimization of PMAxx pretreatment to distinguish between human norovirus with intact and altered capsids in shellfish and sewage samples. International Journal of Food Microbiology 266:1–7. doi: 10.1016/j.ijfoodmicro.2017.11.011.
  • Razafimahefa, R. M., L. F. Ludwig-Begall, F. S. Le Guyader, F. Farnir, A. Mauroy, and E. Thiry. 2021. Optimisation of a PMAxx™-RT-qPCR assay and the preceding extraction method to selectively detect infectious murine norovirus particles in mussels. Food and Environmental Virology 13 (1):93–106. doi: 10.1007/s12560-020-09454-w.
  • Richards, G. P. 2016. Shellfish-associated enteric virus illness: Virus localization, disease outbreaks and prevention. Viruses in Foods 185–207. doi: 10.1007/978-3-319-30723-7_7
  • Rincé, A., C. Balière, D. Hervio-Heath, J. Cozien, S. Lozach, S. Parnaudeau, F. S. Le Guyader, S. Le Hello, J.-C. Giard, N. Sauvageot, et al. 2018. Occurrence of bacterial pathogens and human noroviruses in shellfish-harvesting areas and their catchments in France. Frontiers in Microbiology 9:2443. doi: 10.3389/fmicb.2018.02443.
  • Rupnik, A., S. Keaveney, L. Devilly, F. Butler, and W. Doré. 2018. The Impact of winter relocation and depuration on norovirus concentrations in Pacific oysters harvested from a commercial production site. Food and Environmental Virology 10 (3):288–96. doi: 10.1007/s12560-018-9345-5.
  • Sarmento, S. K., C. R. Guerra, F. C. Malta, R. Coutinho, M. P. Miagostovich, and T. M. Fumian. 2020. Human norovirus detection in bivalve shellfish in Brazil and evaluation of viral infectivity using PMA treatment. Marine Pollution Bulletin 157:111315. doi: 10.1016/j.marpolbul.2020.111315.
  • Schaeffer, J., C. Treguier, J. C. Piquet, S. Gachelin, N. Cochennec-Laureau, J. C. Le Saux, P. Garry, and F. S. Le Guyader. 2018. Improving the efficacy of sewage treatment decreases norovirus contamination in oysters. International Journal of Food Microbiology 286:1–5. doi: 10.1016/j.ijfoodmicro.2018.07.016.
  • Schroten, H., F. G. Hanisch, and G. S. Hansman. 2016. Human norovirus interactions with histo-blood group antigens and human milk oligosaccharides. Journal of Virology 90 (13):5855–9. doi: 10.1128/JVI.00317-16.
  • Seo, D. J., D. Jung, S. Jung, D. Yeo, and C. Choi. 2020. Inhibitory effect of lactic acid bacteria isolated from kimchi against murine norovirus. Food Control 109:106881. doi: 10.1016/j.foodcont.2019.106881.
  • Seo, D. J., M. H. Lee, N. R. Son, S. Seo, K. B. Lee, X. Wang, and C. Choi. 2014. Seasonal and regional prevalence of norovirus, hepatitis A virus, hepatitis E virus, and rotavirus in shellfish harvested from South Korea. Food Control 41:178–84. doi: 10.1016/j.foodcont.2014.01.020.
  • Shao, L., H. Chen, H. Doris, and C. Wu. 2018. Thermal inactivation of human norovirus surrogates in oyster homogenate. International Journal of Food Microbiology 281:47–53. doi: 10.1016/j.ijfoodmicro.2018.05.013.
  • Singh, B. K., M. M. Leuthold, and G. S. Hansman. 2016. Structural constraints on human norovirus binding to histo-blood group antigens. MSphere 1 (2):e00049-16. doi: 10.1128/mSphere.00049-16.
  • Su, L., L. Ma, H. Liu, F. Zhao, Z. Su, and D. Zhou. 2018. Presence and distribution of histo-blood group antigens in Pacific oysters and the effects of exposure to noroviruses GI.3 and GII.4 on their expression. Journal of Food Protection 81 (11):1783–90. doi: 10.4315/0362-028X.JFP-18-074.
  • Suffredini, E., Q. H. Le, S. Di Pasquale, T. D. Pham, T. Vicenza, M. Losardo, K. A. To, and D. De Medici. 2020. Occurrence and molecular characterization of enteric viruses in bivalve shellfish marketed in Vietnam. Food Control 108:106828. doi: 10.1016/j.foodcont.2019.106828.
  • Takahashi, M., Y. Okakura, H. Takahashi, H. Yamane, S. Akashige, T. Kuda, and B. Kimura. 2019. Evaluation of inactivation of murine norovirus in inoculated shell oysters by high hydrostatic pressure treatment. Journal of Food Protection 82 (12):2169–73. doi: 10.4315/0362-028X.JFP-19-186.
  • Tame, A., G. Ozawa, T. Maruyama, and T. Yoshida. 2018. Morphological and functional characterization of hemocytes from two deep-sea vesicomyid clams Phreagena okutanii and Abyssogena phaseoliformis. Fish & Shellfish Immunology 74:281–94. doi: 10.1016/j.fsi.2017.12.058.
  • Tan, D. M., S. L. Lyu, L. Wei, X. Y. Zeng, L. Lan, Q. Cong, S. Y. Zhuge, Y. X. Zhong, Y. H. Xie, and X. G. Li. 2018. Utility of droplet digital PCR assay for quantitative detection of norovirus in shellfish, from production to consumption in Guangxi, China. Biomedical and Environmental Sciences: BES 31 (10):713–20. doi: 10.3967/bes2018.096.
  • Tang, Q., D. Li, J. Xu, J. Wang, Y. Zhao, Z. Li, and C. Xue. 2010. Mechanism of inactivation of murine norovirus-1 by high pressure processing. International Journal of Food Microbiology 137 (2–3):186–9. doi: 10.1016/j.ijfoodmicro.2009.10.033.
  • Tian, P., A. L. Engelbrektson, X. Jiang, W. Zhong, and R. E. Mandrell. 2007. Norovirus recognizes histo-blood group antigens on gastrointestinal cells of clams, mussels, and oysters: A possible mechanism of bioaccumulation. Journal of Food Protection 70 (9):2140–7. doi: 10.4315/0362-028x-70.9.2140.
  • Tian, P., D. Yang, L. Shan, Q. Li, D. Liu, and D. Wang. 2018. Estimation of human norovirus infectivity from environmental water samples by in situ capture RT-qPCR method. Food and Environmental Virology 10 (1):29–38. doi: 10.1007/s12560-017-9317-1.
  • Torok, V., K. Hodgson, C. Mcleod, J. Tan, N. Malhi, and A. Turnbull. 2018. National survey of foodborne viruses in Australian oysters at production. Food Microbiology 69:196–203. doi: 10.1016/j.fm.2017.08.014.
  • Tunyakittaveeward, T., K. Rupprom, K. Pombubpa, N. Howteerakul, and L. Kittigul. 2019. Norovirus monitoring in oysters using two different extraction methods. Food and Environmental Virology 11 (4):374–82. doi: 10.1007/s12560-019-09396-y.
  • Ueki, Y., M. Amarasiri, S. Kamio, A. Sakagami, H. Ito, S. Uprety, A. N. Umam, T. Miura, T. H. Nguyen, and D. Sano. 2021. Human norovirus disease burden of consuming Crassostrea gigas oysters: A case-study from Japan. Food Control 121:107556. doi: 10.1016/j.foodcont.2020.107556.
  • Vimont, A., I. Fliss, and J. Jean. 2015. Study of the virucidal potential of organic peroxyacids against norovirus on food-contact surfaces. Food and Environmental Virology 7 (1):49–57. doi: 10.1007/s12560-014-9174-0.
  • Walker, D. I., L. J. Cross, T. A. Stapleton, C. L. Jenkins, D. N. Lees, and J. A. Lowther. 2019. Assessment of the applicability of capsid-integrity assays for detecting infectious norovirus inactivated by heat or UV irradiation. Food and Environmental Virology 11 (3):229–37. doi: 10.1007/s12560-019-09390-4.
  • Wang, H., P. Sikora, C. Rutgersson, M. Lindh, T. Brodin, B. Bjorlenius, D. G. J. Larsson, and H. Norder. 2018. Differential removal of human pathogenic viruses from sewage by conventional and ozone treatments. International Journal of Hygiene and Environmental Health 221 (3):479–88. doi: 10.1016/j.ijheh.2018.01.012.
  • Woods, J. W., K. R. Calci, J. G. Marchant-Tambone, and W. Burkhardt. 2016. Detection and molecular characterization of norovirus from oysters implicated in outbreaks in the US. Food Microbiology 59:76–84. doi: 10.1016/j.fm.2016.05.009.
  • Wu, Y., S. Chang, R. Nannapaneni, R. Coker, Z. Haque, and B. S. Mahmoud. 2016. The efficacy of X-ray doses on murine norovirus-1 (MNV-1) in pure culture, half-shell oyster, salmon sushi, and tuna salad. Food Control 64:77–80. doi: 10.1016/j.foodcont.2015.12.018.
  • Wu, Y., S. Chang, R. Nannapaneni, Y. Zhang, R. Coker, and B. S. Mahmoud. 2017. The effects of X-ray treatments on bioaccumulated murine norovirus-1 (MNV-1) and survivability, inherent microbiota, color, and firmness of Atlantic oysters (Crassostrea virginica) during storage at 5 °C for 20 days. Food Control 73:1189–94. doi: 10.1016/j.foodcont.2016.10.036.
  • Wu, J., W. Hou, B. Cao, T. Zuo, C. Xue, A. W. Leung, C. Xu, and Q. J. Tang. 2015. Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters. Photodiagnosis and Photodynamic Therapy 12 (3):385–92. doi: 10.1016/j.pdpdt.2015.06.005.
  • Ye, M., X. Li, D. H. Kingsley, X. Jiang, and H. Chen. 2014. Inactivation of human norovirus in contaminated oysters and clams by high hydrostatic pressure. Applied and Environmental Microbiology 80 (7):2248–53. doi: 10.1128/AEM.04260-13.
  • Ye, M., T. Lingham, Y. Huang, G. Ozbay, L. Ji, M. Karwe, and H. Chen. 2015. Effects of high‐hydrostatic pressure on inactivation of human norovirus and physical and sensory characteristics of oysters. Journal of Food Science 80 (6):M1330–1335. doi: 10.1111/1750-3841.12899.
  • Younger, A. D., A. Neish, D. I. Walker, K. L. Jenkins, J. A. Lowther, T. A. Stapleton, and M. T. Alves. 2020. Strategies to reduce norovirus (NoV) contamination from oysters under depuration conditions. Food and Chemical Toxicology 143:111509. doi: 10.1016/j.fct.2020.111509.
  • Yu, Y., H. Cai, L. Hu, R. Lei, Y. Pan, S. Yan, and Y. Wang. 2015. Molecular epidemiology of oyster-related human noroviruses and their global genetic diversity and temporal-geographical distribution from 1983 to 2014. Applied and Environmental Microbiology 81 (21):7615–24. doi: 10.1128/AEM.01729-15.
  • Zhang, L., L. Xue, J. Gao, W. Cai, Y. Jiang, Y. Zuo, Y. Liao, Z. Qin, H. Wu, T. Cheng, et al. 2020. Development of a high-efficient concentrated pretreatment method for noroviruses detection in independent oysters: An extension of the ISO/TS 15216-2: 2013 standard method. Food Control 111:107032. doi: 10.1016/j.foodcont.2019.107032.
  • Zhou, Z., Z. Tian, Q. Li, P. Tian, Q. Wu, D. Wang, and X. Shi. 2017. In situ capture RT-qPCR: A new simple and sensitive method to detect human norovirus in oysters. Frontiers in Microbiology 8:554. doi: 10.3389/fmicb.2017.00554.
  • Zonta, W., A. Mauroy, F. Farnir, and E. Thiry. 2016. Comparative virucidal efficacy of seven disinfectants against murine norovirus and feline calicivirus, surrogates of human norovirus. Food and Environmental Virology 8 (1):1–12. doi: 10.1007/s12560-015-9216-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.