1,005
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Current strategies to guarantee the authenticity of coffee

, , &

References

  • Adnan, A., M. Naumann, D. Mörlein, and E. Pawelzik. 2020. Reliable discrimination of green coffee beans species: A comparison of UV-Vis-based determination of caffeine and chlorogenic acid with non-targeted near-infrared spectroscopy. Foods 9 (6):788. doi: 10.3390/foods9060788.
  • Akamine, T., A. Otaka, I. Nakai, A. Hokura, and Y. Ito. 2010. Determination of trace elements in coffee beans by XRF spectrometer equipped with polarization optics and its application to identification of their production area. Bunseki Kagaku 59 (10):863–71. doi: 10.2116/bunsekikagaku.59.863.
  • Alonso-Salces, R. M., F. Serra, F. Reniero, and K. Héberger. 2009. Botanical and geographical characterization of green coffee (Coffea Arabica and Coffea Canephora): Chemometric evaluation of phenolic and methylxanthine contents. Journal of Agricultural and Food Chemistry 57 (10):4224–35. doi: 10.1021/jf8037117.
  • Alves, R. C., S. Casal, M. R. Alves, and M. B. Oliveira. 2009. Discrimination between Arabica and robusta coffee species on the basis of their tocopherol profiles. Food Chemistry 114 (1):295–9. doi: 10.1016/j.foodchem.2008.08.093.
  • Anderson, K. A., and B. W. Smith. 2002. Chemical profiling to differentiate geographic growing origins of coffee. Journal of Agricultural and Food Chemistry 50 (7):2068–75. doi: 10.1021/jf011056v.
  • Arrieta, A. A., P. L. Arrieta, and J. M. Mendoza. 2019. Analysis of coffee adulterated with roasted corn and roasted soybean using voltammetric electronic tongue. Acta Scientiarum Polonorum. Technologia Alimentaria 18 (1):35–41. doi: 10.17306/J.AFS.2019.0619.
  • Bertholee, D., P. G. ter Horst, A. Wieringa, and J. P. Smit. 2013. Life-threatening psychosis caused by using sibutramine-contaminated weight-loss coffee. Nederlands Tijdschrift Voor Geneeskunde 157 (51):A6676.
  • Bertrand, B., D. Villarreal, A. Laffargue, H. Posada, P. Lashermes, and S. Dussert. 2008. Comparison of the effectiveness of fatty acids, chlorogenic acids, and elements for the chemometric discrimination of coffee (Coffea Arabica L.) varieties and growing origins. Journal of Agricultural and Food Chemistry 56 (6):2273–80. doi: 10.1021/jf073314f.
  • Bharath, N., N. K. Sowmya, and D. S. Mehta. 2015. Determination of antibacterial activity of green coffee bean extract on periodontogenic bacteria like Porphyromonas Gingivalis, Prevotella Intermedia, Fusobacterium Nucleatum and Aggregatibacter Actinomycetemcomitans: An in Vitro Study. Contemporary Clinical Dentistry 6 (2):166.
  • Blanc, M. 2004. Green coffee transport and the risk of mold development. Tea and Coffee Trade Journal 176:16–25.
  • Bułdak, R. J., T. Hejmo, M. Osowski, Ł. Bułdak, M. Kukla, R. Polaniak, and E. Birkner. 2018. The impact of coffee and its selected bioactive compounds on the development and progression of colorectal cancer in vivo and in vitro. Molecules 23 (12):3309. doi: 10.3390/molecules23123309.
  • Buratti, S., N. Sinelli, E. Bertone, A. Venturello, E. Casiraghi, and F. Geobaldo. 2015. Discrimination between Washed Arabica, Natural Arabica and robusta coffees by using near infrared spectroscopy, electronic nose and electronic tongue analysis. Journal of the Science of Food and Agriculture 95 (11):2192–200. doi: 10.1002/jsfa.6933.
  • Butt, M. S., and M. T. Sultan. 2011. Coffee and its consumption: Benefits and risks. Critical Reviews in Food Science and Nutrition 51 (4):363–73. doi: 10.1080/10408390903586412.
  • Cagliani, L. R., G. Pellegrino, G. Giugno, and R. Consonni. 2013. Quantification of Coffea Arabica and Coffea Canephora Var. robusta in roasted and ground coffee blends. Talanta 106:169–73. doi: 10.1016/j.talanta.2012.12.003.
  • Cai, T., H. Ting, and Z. Jin-Lan. 2016. Novel identification strategy for ground coffee adulteration based on UPLC-HRMS oligosaccharide profiling. Food Chemistry 190:1046–9. doi: 10.1016/j.foodchem.2015.06.084.
  • Casal, S., M. R. Alves, E. Mendes, M. B. P. P. Oliveira, and M. A. Ferreira. 2003. Discrimination between Arabica and robusta coffee species on the basis of their amino acid enantiomers. Journal of Agricultural and Food Chemistry 51 (22):6495–501. doi: 10.1021/jf034354w.
  • Casal, S., E. Mendes, M. R. Alves, R. C. Alves, M. Beatriz, P. P. Oliveira, and M. A. Ferreira. 2004. Free and conjugated biogenic amines in green and roasted coffee beans. Journal of Agricultural and Food Chemistry 52 (20):6188–92. doi: 10.1021/jf049509u.
  • Casal, S., M. B. P. P. Oliveira, M. R. Alves, and M. A. Ferreira. 2000. Discriminate analysis of roasted coffee varieties for trigonelline, nicotinic acid, and caffeine content. Journal of Agricultural and Food Chemistry 48 (8):3420–4. doi: 10.1021/jf990702b.
  • Cebi, N., M. T. Yilmaz, and O. Sagdic. 2017. A rapid ATR-FTIR spectroscopic method for detection of sibutramine adulteration in tea and coffee based on hierarchical cluster and principal component analyses. Food Chemistry 229:517–26. doi: 10.1016/j.foodchem.2017.02.072.
  • Cheah, W. L., and M. Fang. 2020. HPLC-based chemometric analysis for coffee adulteration. Foods 9 (7):880. doi: 10.3390/foods9070880.
  • Clarke, R. J. 2012. Coffee: Volume 1: Chemistry. The Netherlands: Springer Science & Business Media.
  • Colzi, I., C. Taiti, E. Marone, S. Magnelli, C. Gonnelli, and S. Mancuso. 2017. Covering the different steps of the coffee processing: Can headspace VOC emissions be exploited to successfully distinguish between Arabica and Robusta? Food Chemistry 237:257–63. doi: 10.1016/j.foodchem.2017.05.071.
  • Consonni, R., L. R. Cagliani, and C. Cogliati. 2012. NMR based geographical characterization of roasted coffee. Talanta 88:420–6. doi: 10.1016/j.talanta.2011.11.010.
  • Craig, A. P., A. S. Franca, and L. S. Oliveira. 2012. Evaluation of the potential of FTIR and chemometrics for separation between defective and non-defective coffees. Food Chemistry 132 (3):1368–74. doi: 10.1016/j.foodchem.2011.11.121.
  • Daniel, D., F. S. Lopes, V. B. D. Santos, and C. L. do Lago. 2018. Detection of coffee adulteration with soybean and corn by capillary electrophoresis-tandem mass spectrometry. Food Chemistry 243:305–10. doi: 10.1016/j.foodchem.2017.09.140.
  • Davis, A. P., R. Govaerts, D. M. Bridson, and P. Stoffelen. 2006. An annotated taxonomic conspectus of the Genus Coffea (Rubiaceae). Botanical Journal of the Linnean Society 152 (4):465–512. doi: 10.1111/j.1095-8339.2006.00584.x.
  • De Luca, S., E. Ciotoli, A. Biancolillo, R. Bucci, A. D. Magrì, and F. Marini. 2018. Simultaneous quantification of caffeine and chlorogenic acid in coffee green beans and varietal classification of the samples by HPLC-DAD coupled with chemometrics. Environmental Science and Pollution Research International 25 (29):28748–59. doi: 10.1007/s11356-018-1379-6.
  • de Morais, T. C. B., D. R. Rodrigues, U. T. de Carvalho Polari Souto, and S. G. Lemos. 2019. A Simple voltammetric electronic tongue for the analysis of coffee adulterations. Food Chemistry 273:31–8. doi: 10.1016/j.foodchem.2018.04.136.
  • de Oliveira, G. A., F. de Castilhos, C. Marie-Geneviève Claire Renard, and S. Bureau. 2014. Comparison of NIR and MIR spectroscopic methods for determination of individual sugars, organic acids and carotenoids in passion fruit. Food Research International 60:154–62. doi: 10.1016/j.foodres.2013.10.051.
  • de Pádua Gandra, F. P., A. Ribeiro Lima, E. Batista Ferreira, M. Cardoso De Angelis Pereira, and R. Gualberto Fonseca Alvarenga Pereira. 2017. Adding adulterants to coffee reduces bioactive compound levels and antioxidant activity. Journal of Food and Nutrition Research 5 (5):313–9. doi: 10.12691/jfnr-5-5-5.
  • Dias, R. C. E., and M. d. T. Benassi. 2015. Discrimination between Arabica and Robusta coffees using hydrosoluble compounds: Is the efficiency of the parameters dependent on the roast degree? Beverages 1 (3):127–39. doi: 10.3390/beverages1030127.
  • Domingues, D. S., E. D. Pauli, J. E. M. de Abreu, F. W. Massura, V. Cristiano, M. J. Santos, and S. L. Nixdorf. 2014. Detection of roasted and ground coffee Adulteration by HPLC and by amperometric and by post-column derivatization UV-Vis detection . Food Chemistry 146:353–62. doi: 10.1016/j.foodchem.2013.09.066.
  • Dong, P.-Z., X.-P. Liu, L. Zhang, G.-H. Shen, Z.-L. Wang, G.-W. Yang, W. Li, and X.-H. Xiang. 2020. Isolation and characterisation of N-Benzyl tadalafil as a novel adulterant in a coffee-based dietary supplement. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 37 (12):2033–9. doi: 10.1080/19440049.2020.1825829.
  • Ebrahimi-Najafabadi, H., R. Leardi, P. Oliveri, M. C. Casolino, M. Jalali-Heravi, and S. Lanteri. 2012. Detection of addition of barley to coffee using near infrared spectroscopy and chemometric techniques. Talanta 99:175–9. doi: 10.1016/j.talanta.2012.05.036.
  • Esquivel, P., and V. M. Jimenez. 2012. Functional properties of coffee and coffee by-products. Food Research International 46 (2):488–95. doi: 10.1016/j.foodres.2011.05.028.
  • Esteban-Díez, I., J. M. González-Sáiz, C. Sáenz-González, and C. Pizarro. 2007. Coffee varietal differentiation based on near infrared spectroscopy. Talanta 71 (1):221–9. doi: 10.1016/j.talanta.2006.03.052.
  • Feria-Morales, A. M. 2002. Examining the case of green coffee to illustrate the limitations of grading systems/expert tasters in sensory evaluation for quality control. Food Quality and Preference 13 (6):355–67. doi: 10.1016/S0950-3293(02)00028-9.
  • Ferreira, T., A. Farah, T. C. Oliveira, I. S. Lima, F. Vitório, and E. M. M. Oliveira. 2016. Using real-time PCR as a tool for monitoring the authenticity of commercial coffees. Food Chemistry 199:433–8. doi: 10.1016/j.foodchem.2015.12.045.
  • Flament, I. 2001. Coffee flavor chemistry. New York, USA: John Wiley & Sons.
  • Flores-Valdez, M., O. G. Meza-Márquez, G. Osorio-Revilla, and T. Gallardo-Velázquez. 2020. Identification and quantification of adulterants in coffee (Coffea Arabica L.) using FT-MIR spectroscopy coupled with chemometrics. Foods 9 (7):851. doi: 10.3390/foods9070851.
  • Fuchs, M., M. Cichna-Markl, and R. Hochegger. 2012. Development and validation of a novel real-time PCR method for the detection of celery (Apium Graveolens) in food. Food Chemistry 130 (1):189–95. doi: 10.1016/j.foodchem.2011.07.005.
  • Garrett, R., B. G. Vaz, A. M. C. Hovell, M. N. Eberlin, and C. M. Rezende. 2012. Arabica and Robusta coffees: Identification of major polar compounds and quantification of blends by direct-infusion electrospray ionization-mass spectrometry. Journal of Agricultural and Food Chemistry 60 (17):4253–8. doi: 10.1021/jf300388m.
  • George, S. E., Ramalakshmi, K. L. J. Mohan Rao. 2008. A perception on health benefits of coffee. Critical Reviews in Food Science and Nutrition 48 (5):464–86. doi: 10.1080/10408390701522445.
  • Gökcen, B. B., and N. Şanlier. 2019. Coffee consumption and disease correlations. Critical Reviews in Food Science and Nutrition 59 (2):336–48. doi: 10.1080/10408398.2017.1369391.
  • González, A. G., F. Pablos, M. J. Martı́n, M. León-Camacho, and M. S. Valdenebro. 2001. HPLC analysis of tocopherols and triglycerides in coffee and their use as authentication parameters. Food Chemistry 73 (1):93–101. doi: 10.1016/S0308-8146(00)00282-X.
  • Górnaś, P., A. Siger, I. Pugajeva, J. Czubinski, A. Waśkiewicz, and K. Polewski. 2014. New insights regarding tocopherols in Arabica and Robusta species coffee beans: RP-UPLC-ESI/MSn and NP-HPLC/FLD study. Journal of Food Composition and Analysis 36 (1-2):117–23. doi: 10.1016/j.jfca.2014.08.005.
  • Hayakawa, S., T. Ohishi, N. Miyoshi, Y. Oishi, Y. Nakamura, and M. Isemura. 2020. Anti-cancer effects of green tea epigallocatchin-3-gallate and coffee chlorogenic acid. Molecules 25 (19):4553. doi: 10.3390/molecules25194553.
  • Herawati, D., P. E. Giriwono, F. N. A. Dewi, T. Kashiwagi, and N. Andarwulan. 2019. Critical roasting level determines bioactive content and antioxidant activity of Robusta coffee beans. Food Science and Biotechnology 28 (1):7–14. doi: 10.1007/s10068-018-0442-x.
  • Hong, E., S. Y. Lee, J. Y. Jeong, J. M. Park, B. H. Kim, K. Kwon, and H. S. Chun. 2017. Modern analytical methods for the detection of food fraud and adulteration by food category. Journal of the Science of Food and Agriculture 97 (12):3877–96. doi: 10.1002/jsfa.8364.
  • Ishwarya S, P., and P. Nisha. 2021. Unraveling the science of coffee foam—A comprehensive review. Critical Reviews in Food Science and Nutrition 61 (10)Taylor & Francis: :1704–24. doi: 10.1080/10408398.2020.1765136.
  • Jeszka-Skowron, M., A. Zgoła-Grześkowiak, and T. Grześkowiak. 2015. Analytical methods applied for the characterization and the determination of bioactive compounds in coffee. European Food Research and Technology 240 (1):19–31. doi: 10.1007/s00217-014-2356-z.
  • Jham, G. N., J. K. Winkler, M. A. Berhow, and S. F. Vaughn. 2007. Gamma-tocopherol as a marker of Brazilian coffee (Coffea arabica L.) adulteration by corn . Journal of Agricultural and Food Chemistry 55 (15):5995–9. doi: 10.1021/jf070967n.
  • Karoui, R., G. Downey, and C. Blecker. 2010. Mid-infrared spectroscopy coupled with chemometrics: A tool for the analysis of intact food systems and the exploration of their molecular structure-quality relationships—A review. Chemical Reviews 110 (10):6144–68. doi: 10.1021/cr100090k.
  • Keidel, A., D. von Stetten, C. Rodrigues, C. Máguas, and P. Hildebrandt. 2010. Discrimination of Green Arabica and Robusta coffee beans by raman spectroscopy. Journal of Agricultural and Food Chemistry 58 (21):11187–92. doi: 10.1021/jf101999c.
  • Laube, I., H. Hird, P. Brodmann, S. Ullmann, M. Schöne-Michling, J. Chisholm, and H. Broll. 2010. Development of primer and probe sets for the detection of plant species in honey. Food Chemistry 118 (4):979–86. doi: 10.1016/j.foodchem.2008.09.063.
  • Ludwig, I. A., M. N. Clifford, M. E. J. Lean, H. Ashihara, and A. Crozier. 2014. Coffee: Biochemistry and potential impact on health. Food & Function 5 (8):1695–717. doi: 10.1039/c4fo00042k.
  • Marquetti, I., J. V. Link, A. L. G. Lemes, M. B. d S. Scholz, P. Valderrama, and E. Bona. 2016. Partial least square with discriminant analysis and near infrared spectroscopy for evaluation of geographic and genotypic origin of Arabica coffee. Computers and Electronics in Agriculture 121:313–9. doi: 10.1016/j.compag.2015.12.018.
  • Martellossi, C., E. J. Taylor, D. Lee, G. Graziosi, and P. Donini. 2005. DNA extraction and analysis from processed coffee beans. Journal of Agricultural and Food Chemistry 53 (22):8432–6. doi: 10.1021/jf050776p.
  • Martı́n, M. J., F. Pablos, and A. G. González. 1998. Discrimination between Arabica and Robusta green coffee varieties according to their chemical composition. Talanta 46 (6):1259–64. doi: 10.1016/S0039-9140(97)00409-8.
  • Martı́n, M. J., F. Pablos, A. Gustavo González, M. S. Valdenebro, and M. León-Camacho. 2001. Fatty acid profiles as discriminant parameters for coffee varieties differentiation. Talanta 54 (2):291–7. doi: 10.1016/S0039-9140(00)00647-0.
  • Medina, J., D. Caro Rodríguez, V. A. Arana, A. Bernal, P. Esseiva, and J. Wist. 2017. Comparison of attenuated total reflectance mid-infrared, near infrared, and 1H-nuclear magnetic resonance spectroscopies for the determination of coffee’s geographical origin. International Journal of Analytical Chemistry 2017:1–8. doi: 10.1155/2017/7210463.
  • Mehari, B., B. S. Chandravanshi, M. Redi-Abshiro, S. Combrinck, R. McCrindle, and M. Atlabachew. 2021. Polyphenol contents of green coffee beans from different regions of Ethiopia. International Journal of Food Properties 24 (1):17–27. doi: 10.1080/10942912.2020.1858866.
  • Milani, M. I., E. L. Rossini, T. A. Catelani, L. Pezza, A. T. Toci, and H. R. Pezza. 2020. Authentication of roasted and ground coffee samples containing multiple adulterants using NMR and a chemometric approach. Food Control 112:107104. doi: 10.1016/j.foodcont.2020.107104.
  • Monakhova, Y. B., W. Ruge, T. Kuballa, M. Ilse, O. Winkelmann, B. Diehl, F. Thomas, and D. W. Lachenmeier. 2015. Rapid approach to identify the presence of Arabica and Robusta species in coffee using 1H NMR spectroscopy. Food Chemistry 182:178–84. doi: 10.1016/j.foodchem.2015.02.132.
  • Mullen, W., B. Nemzer, A. Stalmach, S. Ali, and E. Combet. 2013. Polyphenolic and hydroxycinnamate contents of whole coffee fruits from China, India, and Mexico. Journal of Agricultural and Food Chemistry 61 (22):5298–309. doi: 10.1021/jf4003126.
  • Núñez, N., X. Collado, C. Martínez, J. Saurina, and O. Núñez. 2020. Authentication of the origin, variety and roasting degree of coffee samples by non-targeted HPLC-UV fingerprinting and chemometrics. Application to the detection and quantitation of adulterated coffee samples. Foods 9 (3):378.
  • Nogueira, T., and C. L. do Lago. 2009. Detection of adulterations in processed coffee with cereals and coffee husks using capillary zone electrophoresis. Journal of Separation Science 32 (20):3507–11. doi: 10.1002/jssc.200900357.
  • Ohishi, T., R. Fukutomi, Y. Shoji, S. Goto, and M. Isemura. 2021. The beneficial effects of principal polyphenols from green tea, coffee, wine, and curry on obesity. Molecules 26 (2):453. doi: 10.3390/molecules26020453.
  • Oliveira, R. C. S., L. S. Oliveira, A. S. Franca, and R. Augusti. 2009. Evaluation of the potential of SPME-GC-MS and chemometrics to detect adulteration of ground roasted coffee with roasted barley. Journal of Food Composition and Analysis 22 (3):257–61. doi: 10.1016/j.jfca.2008.10.015.
  • Olmo‐Cunillera, A., A. López‐Yerena, J. Lozano‐Castellón, A. Tresserra‐Rimbau, A. Vallverdú‐Queralt, and M. Pérez. 2020. NMR spectroscopy: A powerful tool for the analysis of polyphenols in extra virgin olive oil. Journal of the Science of Food and Agriculture 100 (5):1842–51. doi: 10.1002/jsfa.10173.
  • Papetti, A., and R. Colombo. 2019. High-performance capillary electrophoresis for food quality evaluation. In Evaluation technologies for food quality, ed J. Zhong and X. Wang, 301–77. Cambridge, UK: Elsevier.
  • Parliment, T. H., C.-T. Ho, and P. Schieberle. 2000. Caffeinated beverages: Health benefits, physiological effects, and chemistry. Washington, DC: American Chemical Society.
  • Pauli, E. D., F. Barbieri, P. S. Garcia, T. B. Madeira, V. R. Acquaro, I. S. Scarminio, C. A. P. da Camara, and S. L. Nixdorf. 2014. Detection of ground roasted coffee adulteration with roasted soybean and wheat. Food Research International 61:112–9. doi: 10.1016/j.foodres.2014.02.032.
  • Perez, M., A. Lopez-Yerena, and A. Vallverdú-Queralt. 2020. Traceability, authenticity and sustainability of cocoa and chocolate products: A challenge for the chocolate industry. Critical Reviews in Food Science and Nutrition, 1–15.doi: 10.1080/10408398.2020.1819769
  • Pittet, A., D. Tornare, A. Huggett, and R. Viani. 1996. Liquid chromatographic determination of ochratoxin A in pure and adulterated soluble coffee using an immunoaffinity column cleanup procedure. Journal of Agricultural and Food Chemistry 44 (11):3564–9. doi: 10.1021/jf9602939.
  • Pizarro, C., I. Esteban-Díez, and J. M. González-Sáiz. 2007. Mixture resolution according to the percentage of Robusta variety in order to detect adulteration in roasted coffee by near infrared spectroscopy. Analytica Chimica Acta 585 (2):266–76. doi: 10.1016/j.aca.2006.12.057.
  • Putri, S. P., T. Irifune, and E. Fukusaki. 2019. GC/MS based metabolite profiling of Indonesian specialty coffee from different species and geographical origin. Metabolomics 15 (10):1–11. doi: 10.1007/s11306-019-1591-5.
  • Reis, N., A. S. Franca, and L. S. Oliveira. 2013a. Discrimination between roasted coffee, roasted corn and coffee husks by diffuse reflectance infrared fourier transform spectroscopy. Lwt - Food Science and Technology 50 (2):715–22. doi: 10.1016/j.lwt.2012.07.016.
  • Reis, N., A. S. Franca, and L. S. Oliveira. 2013b. Quantitative evaluation of multiple adulterants in roasted coffee by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) and chemometrics. Talanta 115:563–8. doi: 10.1016/j.talanta.2013.06.004.
  • Risticevic, S., E. Carasek, and J. Pawliszyn. 2008. Headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric methodology for geographical origin verification of coffee. Analytica Chimica Acta 617 (1-2):72–84. doi: 10.1016/j.aca.2008.04.009.
  • Romano, R., A. Santini, L. Le Grottaglie, N. Manzo, A. Visconti, and A. Ritieni. 2014. Identification markers based on fatty acid composition to differentiate between roasted Arabica and Canephora (Robusta) coffee varieties in mixtures. Journal of Food Composition and Analysis 35 (1):1–9. doi: 10.1016/j.jfca.2014.04.001.
  • Rubayiza, A. B., and M. Meurens. 2005. Chemical discrimination of Arabica and Robusta coffees by fourier transform raman spectroscopy. Journal of Agricultural and Food Chemistry 53 (12):4654–9. doi: 10.1021/jf0478657.
  • Rui Alves, M., S. Casal, M. B. P. P. Oliveira, and M. A. Ferreira. 2003. Contribution of FA profile obtained by high‐resolution GC/chemometric techniques to the authenticity of green and roasted coffee varieties. Journal of the American Oil Chemists' Society 80 (6):511–7. doi: 10.1007/s11746-003-0730-0.
  • Serra, F., C. G. Guillou, F. Reniero, L. Ballarin, M. I. Cantagallo, M. Wieser, Sundaram, S. Iyer, K. Héberger, and F. Vanhaecke. 2005. Determination of the geographical origin of green coffee by principal component analysis of carbon, nitrogen and boron stable isotope ratios. Rapid Communications in Mass Spectrometry 19 (15):2111–5. doi: 10.1002/rcm.2034.
  • Sezer, B., H. Apaydin, G. Bilge, and I. H. Boyaci. 2018. Coffee Arabica adulteration: Detection of wheat, corn and chickpea. Food Chemistry 264:142–8. doi: 10.1016/j.foodchem.2018.05.037.
  • Sunarharum, W. B., D. J. Williams, and H. E. Smyth. 2014. Complexity of coffee flavor: A compositional and sensory perspective. Food Research International 62:315–25. doi: 10.1016/j.foodres.2014.02.030.
  • Suryoprabowo, S., L. Liu, H. Kuang, G. Cui, and C. Xu. 2020. Gold immunochromatographic assay for simultaneous detection of sibutramine and sildenafil in slimming tea and coffee. Science China Materials, 63:1–6.
  • Tavares, K. M., A. R. Lima, C. A. Nunes, V. A. Silva, E. Mendes, S. Casal, and R. G. F. Alvarenga Pereira. 2016. Free tocopherols as chemical markers for Arabica coffee adulteration with maize and coffee by-products. Food Control 70:318–24. doi: 10.1016/j.foodcont.2016.06.011.
  • Toci, A. T., A. Farah, H. R. Pezza, and L. Pezza. 2016. Coffee adulteration: More than two decades of research. Critical Reviews in Analytical Chemistry 46 (2):83–92. doi: 10.1080/10408347.2014.966185.
  • Trantakis, I. A., T. K. Christopoulos, S. Spaniolas, P. Kalaitzis, P. C. Ioannou, and G. A. Tucker. 2012. Quantitative bioluminometric method for DNA-based species/varietal identification in food authenticity assessment. Journal of Agricultural and Food Chemistry 60 (4):912–6. doi: 10.1021/jf203531h.
  • Trantakis, I. A., S. Spaniolas, P. Kalaitzis, P. C. Ioannou, G. A. Tucker, and T. K. Christopoulos. 2012. Dipstick test for DNA-based food authentication. Application to coffee authenticity assessment. Journal of Agricultural and Food Chemistry 60 (3):713–7. doi: 10.1021/jf203180h.
  • Wang, X., L.-T. Lim, and Y. Fu. 2020. Review of analytical methods to detect adulteration in coffee. Journal of AOAC International 103 (2):295–305. doi: 10.1093/jaocint/qsz019.
  • Weckerle, B., E. Richling, S. Heinrich, and P. Schreier. 2002. Origin assessment of green coffee (Coffea Arabica) by multi-element stable isotope analysis of caffeine. Analytical and Bioanalytical Chemistry 374 (5):886–90. doi: 10.1007/s00216-002-1560-z.
  • Wei, F., K. Furihata, M. Koda, F. Hu, R. Kato, T. Miyakawa, and M. Tanokura. 2012. (13)C NMR-based metabolomics for the classification of green coffee beans according to variety and origin. Journal of Agricultural and Food Chemistry 60 (40):10118–25. doi: 10.1021/jf3033057.
  • Winkler-Moser, J. K., M. Singh, K. A. Rennick, E. L. Bakota, G. Jham, S. X. Liu, and S. F. Vaughn. 2015. Detection of corn adulteration in Brazilian Coffee (Coffea Arabica) by tocopherol profiling and near-infrared (NIR) spectroscopy. Journal of Agricultural and Food Chemistry 63 (49):10662–8. doi: 10.1021/acs.jafc.5b04777.
  • Wongsa, P., N. Khampa, S. Horadee, J. Chaiwarith, and N. Rattanapanone. 2019. Quality and bioactive compounds of blends of Arabica and Robusta spray-dried coffee. Food Chemistry 283 :579–87. doi: 10.1016/j.foodchem.2019.01.088.
  • Yener, S., A. Romano, L. Cappellin, T. D. Märk, J. Sánchez del Pulgar, F. Gasperi, L. Navarini, and F. Biasioli. 2014. PTR-ToF-MS characterisation of roasted coffees (C. arabica) from different geographic origins. Journal of Mass Spectrometry 49 (9):929–35. doi: 10.1002/jms.3455.
  • Yu, X., Z. Bao, J. Zou, and J. Dong. 2011. Coffee consumption and risk of cancers: A meta-analysis of cohort studies. BMC Cancer 11 (1):96. doi: 10.1186/1471-2407-11-96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.