962
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Advanced techniques in edible oil authentication: A systematic review and critical analysis

, , &

References

  • Agiomyrgianaki, A., P. V. Petrakis, and P. Dais. 2010. Detection of refined olive oil adulteration with refined hazelnut oil by employing NMR spectroscopy and multivariate statistical analysis. Talanta 80 (5):2165–71. doi: 10.1016/j.talanta.2009.11.024.
  • Aktaş, N., and M. Kaya. 2001. Detection of beef body fat and margarine in butterfat by differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry 66 (3):795–801. doi: 10.1023/A:1013196106365.
  • Al-Ismail, K. M., A. K. Alsaed, R. Ahmad, and M. Al-Dabbas. 2010. Detection of olive oil adulteration with some plant oils by GLC analysis of sterols using polar column. Food Chemistry 121 (4):1255–9. doi: 10.1016/j.foodchem.2010.01.016.
  • Anonymous. 2007. Technology Comparison: FTIR, NIR and Raman Spectroscopy for pharmaceutical raw materials inspection. Accessed May 8, 2020. https://www.pharmaceuticalonline.com/doc/ftir-nir-raman-for-raw-material-inspection-0001.
  • Anonymous. 2016a. '60 Minutes' Exposes Italy’s Olive Oil Fraud. Accessed April 26, 2020. https://www.foodlogistics.com/safety/news/12154786/60-minutes-exposes-italys-olive-oil-fraud.
  • Anonymous. 2016b. Consumer voice. 2016. Rampant adulteration in loose edible oil sold openly despite ban-reveals a report by NGO consumer voice. Accessed June 2, 2020. https://www.consumer-voice.org/media/press-releases/rampant-adulteration-loose-edible-oil-sold-openly-despite-ban/
  • Anonymous. 2016c. Simple test to check purity of your ghee at home. Accessed April 17, 2020. https://blog.getgrowfit.com/simple-tests-check-purity-ghee-home/.
  • Anonymous. 2018. India’s edible oil consumption to exceed 34 million tonnes by 2030: PTI Mumbai report. Accessed March 31, 2020. https://www.dtnext.in/News/Business/2018/06/25183334/1077423/Indias-edible-oil-consumption-to-exceed-34-million-.vpf.
  • Anonymous. 2019. Commodity profile of edible oil for September. Accessed April 17, 2020. http://agricoop.nic.in/sites/default/files/Edible%20oil%20Profile%205-4-2019.pdf.
  • Antora, S. A., M. N. Hossain, M. M. Rahman, M. A. Alim, and M. Kamruzzaman. 2019. Detection of adulteration in edible oil using FT-IR spectroscopy and machine learning. International Journal of Biochemistry Research & Review 26 (1):1–14. doi: 10.9734/ijbcrr/2019/v26i130085.
  • AOCS. 1978. Official and tentative methods of the American oil chemist’s society. Champaign, IL: AOCS, Method (1978) Cb 1–25.
  • Apetrei, I. M., and C. Apetrei. 2014. Detection of virgin olive oil adulteration using a voltammetric e-tongue. Computers and Electronics in Agriculture 108:148–54. doi: 10.1016/j.compag.2014.08.002.
  • Azadmard-Damirchi, S., and M. Torbati. 2015. Adulterations in some edible oils and fats and their detection methods. Journal of Food Quality and Hazards Control 2 (2):38–44.
  • Azizian, H. 2018. Method and Technique for Verification of Olive Oil Composition. U.S. Patent 15/556,736 filed January 01, 2016, and issued February 22, 2018.
  • Azizian, H., M. M. Mossoba, A. R. Fardin‐Kia, P. Delmonte, S. R. Karunathilaka, and J. K. Kramer. 2015. Novel, rapid identification, and quantification of adulterants in extra virgin olive oil using near-infrared spectroscopy and chemometrics. Lipids 50 (7):705–18. doi: 10.1007/s11745-015-4038-4.
  • Baeten, V., M. Meurens, M. T. Morales, and R. Aparicio. 1996. Detection of virgin olive oil adulteration by Fourier transform Raman spectroscopy. Journal of Agricultural and Food Chemistry 44 (8):2225–30. doi: 10.1021/jf9600115.
  • Belmiro, T. M. C., C. F. Pereira, and A. P. S. Paim. 2017. Red wines from South America: Content of phenolic compounds and chemometric distinction by origin. Microchemical Journal 133:114–20. doi: 10.1016/j.microc.2017.03.018.
  • BIS. 1976. Methods of Sampling and Test for Oils and Fats 1976 IS: 548 (Part- II),Bureau of Indian Standards.
  • Bose, P. K. 1969. Spot tests for the detection of argemone oil in other edible oils. Science and Culture 35:169.
  • Bougrini, M., K. Tahri, Z. Haddi, T. Saidi, N. E. Bari, and B. Bouchikhi. 2014. Detection of adulteration in argan oil by using an electronic nose and a voltammetric electronic tongue. Journal of Sensors 2014:1–10. doi: 10.1155/2014/245831.
  • Calvano, C. D., C. D. Ceglie, L. D'Accolti, and C. G. Zambonin. 2012. MALDI-TOF mass spectrometry detection of extra-virgin olive oil adulteration with hazelnut oil by analysis of phospholipids using an ionic liquid as matrix and extraction solvent. Food Chemistry 134 (2):1192–8. doi: 10.1016/j.foodchem.2012.02.154.
  • Cataldo, A., E. Piuzzi, G. Cannazza, E. De Benedetto, and L. Tarricone. 2010. Quality and anti-adulteration control of vegetable oils through microwave dielectric spectroscopy. Measurement 43 (8):1031–9. doi:10.1016/j.measurement.2010.02.008.
  • Catharino, R. R., R. Haddad, L. G. Cabrini, I. B. Cunha, A. C. Sawaya, and M. N. Eberlin. 2005. Characterization of vegetable oils by electrospray ionization mass spectrometry fingerprinting: Classification, quality, adulteration, and aging. Analytical Chemistry 77 (22):7429–33. doi: 10.1021/ac0512507.
  • Chen, H., D. Geng, T. Chen, D. Lu, and B. Chen. 2018. Second-derivative laser-induced fluorescence spectroscopy combined with chemometrics for authentication of the adulteration of camellia oil. CyTA - Journal of Food 16 (1):747–54. doi: 10.1080/19476337.2018.1466834.
  • Chen, H., Z. Lin, and C. Tan. 2018. Fast quantitative detection of sesame oil adulteration by near-infrared spectroscopy and chemometric models. Vibrational Spectroscopy 99:178–83. doi: 10.1016/j.vibspec.2018.10.003.
  • Chenchen, C., D. Yanyun, W. Lujuan, and W. Ying. 2017. Linseed oil quality detection method. CN Patent CN201610209181.8A, filed April 04 2016, and issued October 27, 2017.
  • Chiavaro, E., E. Vittadini, M. T. Rodriguez-Estrada, L. Cerretani, and A. Bendini. 2008b. Differential scanning calorimeter application to the detection of refined hazelnut oil in extra virgin olive oil. Food Chemistry 110 (1):248–56. doi: 10.1016/j.foodchem.2008.01.044.
  • Chiavaro, E., E. Vittadini, M. T. Rodriguez-Estrada, L. Cerretani, L. Capelli, and A. Bendini. 2009. Differential scanning calorimetry detection of high oleic sunflower oil as an adulterant in extra‐virgin olive oil. Journal of Food Lipids 16 (2):227–44. doi: 10.1111/j.1745-4522.2009.01143.x.
  • Chiavaro, E., M. T. Rodriguez-Estrada, C. Barnaba, E. Vittadini, L. Cerretani, and A. Bendini. 2008a. Differential scanning calorimetry: A potential tool for discrimination of olive oil commercial categories. Analytica Chimica Acta 625 (2):215–26. doi: 10.1016/j.aca.2008.07.031.
  • Christy, A. A., S. Kasemsumran, Y. Du, and Y. Ozaki. 2004. The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics. Analytical Sciences : The International Journal of the Japan Society for Analytical Chemistry 20 (6):935–40. doi: 10.2116/analsci.20.935.
  • Ciosek, P., and W. Wróblewski. 2011. Potentiometric electronic tongues for foodstuff and biosample recognition-an overview. Sensors (Basel, Switzerland) 11 (5):4688–701. doi: 10.3390/s110504688.
  • CN CN201610209181, filed April 4 2016, and issued October 27 2017.
  • Cordella, C., I. Moussa, A.-C. Martel, N. Sbirrazzuoli, and L. Lizzani-Cuvelier. 2002. Recent developments in food characterization and adulteration detection: Technique-oriented perspectives. Journal of Agricultural and Food Chemistry 50 (7):1751–64. doi: 10.1021/jf011096z.
  • Cosio, M. S., D. Ballabio, S. Benedetti, and C. Gigliotti. 2006. Geographical origin and authentication of extra virgin olive oils by an electronic nose in combination with artificial neural networks. Analytica Chimica Acta 567 (2):202–10. doi: 10.1016/j.aca.2006.03.035.
  • Coskun, O. 2016. Separation techniques: Chromatography. Northern Clinics of Istanbul 3 (2):156–60. doi: 10.14744/nci.2016.32757.
  • Craig, A. P., A. S. Franca, and J. Irudayaraj. 2013. Surface-enhanced Raman spectroscopy applied to food safety. Annual Review of Food Science and Technology 4:369–80. doi: 10.1146/annurev-food-022811-101227.
  • Cuatrecasas, P., M. Wilchek, and C. B. Anfinsen. 1968. Selective enzyme purification by affinity chromatography. Proceedings of the National Academy of Sciences of the United States of America 61 (2):636–43. doi: 10.1073/pnas.61.2.636.
  • Dais, P., and E. Hatzakis. 2013. Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review. Analytica Chimica Acta 765:1–27. doi: 10.1016/j.aca.2012.12.003.
  • Dankowska, A., and M. MaÅEcka. 2009. Application of synchronous fluorescence spectroscopy for determination of extra virgin olive oil adulteration. European Journal of Lipid Science and Technology 111 (12):1233–9. doi: 10.1002/ejlt.200800295.
  • Dankowska, A., M. Malecka, and W. Kowalewski. 2013. Utilization of synchronous fluorescence spectroscopy to detect adulteration of olive oil. Zywnosc-Nauka Technologia Jakosc 20 (2):106–15.
  • Das, M., and S. K. Khanna. 1997. Clinicoepidemiological, toxicological, and safety evaluation studies on argemone oil. Critical Reviews in Toxicology 27 (3):273–97. doi: 10.3109/10408449709089896.
  • Das, M., K. M. Ansari, A. Dhawan, Y. Shukla, and S. K. Khanna. 2005. Correlation of DNA damage in epidemic dropsy patients to carcinogenic potential of argemone oil and isolated sanguinarine alkaloid in mice. International Journal of Cancer 117 (5):709–17. doi: 10.1002/ijc.21234.
  • Datta, A. K., G. Sumnu, and G. S. V. Raghavan. 2014. Dielectric properties of foods. In Engineering properties of foods, 523–88. London: CRC Press.
  • Dey, D. C., S. N. Mitra, and A. K. Sanyal. 1956. A modified hexabromide test for the detection of linseed and other highly unsaturated oils in mustard oil. Current Science 25 (7):227.
  • Di Girolamo, F., A. Masotti, I. Lante, M. Scapaticci, C. D. Calvano, C. Zambonin, M. Muraca, and L. Putignani. 2015. A simple and effective mass spectrometric approach to identify the adulteration of the mediterranean diet component extra-virgin olive oil with corn oil. International Journal of Molecular Sciences 16 (9):20896–20912. doi: 10.3390/ijms160920896.
  • Dias, L. A., A. M. Peres, A. C. Veloso, F. S. Reis, M. Vilas-Boas, and A. A. Machado. 2009. An electronic tongue taste evaluation: Identification of goat milk adulteration with bovine milk. Sensors and Actuators B: Chemical 136 (1):209–217. doi: 10.1016/j.snb.2008.09.025.
  • Dias, L. G., A. Fernandes, A. C. Veloso, A. A. Machado, J. A. Pereira, and A. M. Peres. 2014. Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue. Food Chemistry 160:321–329. doi: 10.1016/j.foodchem.2014.03.072.
  • Dong, W., Y. Zhang, B. Zhang, and X. Wang. 2012. Quantitative analysis of adulteration of extra virgin olive oil using Raman spectroscopy improved by Bayesian framework least squares support vector machines. Analytical Methods 4 (9):2772–2777. doi: 10.1039/c2ay25431j.
  • Downey, G., P. McIntyre, and A. N. Davies. 2002. Detecting and quantifying sunflower oil adulteration in extra virgin olive oils from the Eastern Mediterranean by visible and near-infrared spectroscopy. Journal of Agricultural and Food Chemistry 50 (20):5520–5525. doi: 10.1021/jf0257188.
  • Ekop, S. A., B. A. Etuk, and N. O. Eddy. 2007. Effect of some local additives on the chemical constituent of palm oil. Journal of Applied Sciences and Environmental Management 11 (1):85–89.
  • El Abassy, R. M., P. Donfack, and A. Materny. 2009. Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration. Journal of Raman Spectroscopy 40 (9):1284–1289. doi: 10.1002/jrs.2279.
  • El-Shami, S. M., I. Z. Selim, I. M. El-Anwar, and M. H. El-Mallah. 1992. Dielectric properties for monitoring the quality of heated oils. Journal of the American Oil Chemists' Society 69 (9):872–875. doi: 10.1007/BF02636335.
  • Esteki, M., J. Simal-Gandara, Z. Shahsavari, S. Zandbaaf, E. Dashtaki, and Y. Vander Heyden. 2018. A review on the application of chromatographic methods, coupled to chemometrics, for food authentication. Food Control 93:165–182. doi: 10.1016/j.foodcont.2018.06.015.
  • Esteki, M., Z. Shahsavari, and J. Simal-Gandara. 2018. Use of spectroscopic methods in combination with linear discriminant analysis for authentication of food products. Food Control 91:100–112. doi: 10.1016/j.foodcont.2018.03.031.
  • Felix, F. 1933. Hexabromide determination in linseed oil. Chem. Zig 57,596.
  • Fengxiang, Y. 2015. A kind of method utilizing characteristic fatty acid to detect rice bran oil purity. CN Patent CN201410215886, filed May 21 2014, and issued September 23, 2015.
  • Ferrari, R. A., E. Schulte, W. Esteves, L. Brühl, and K. D. Mukherjee. 1996. Minor constituents of vegetable oils during industrial processing. Journal of the American Oil Chemists' Society 73 (5):587–592. doi: 10.1007/BF02518112.
  • Fragaki, G., A. Spyros, G. Siragakis, E. Salivaras, and P. Dais. 2005. Detection of extra virgin olive oil adulteration with lampante olive oil and refined olive oil using nuclear magnetic resonance spectroscopy and multivariate statistical analysis. Journal of Agricultural and Food Chemistry 53 (8):2810–2816. doi: 10.1021/jf040279t.
  • FSSAI. 2012. Quick test for some adulterants in food- Instruction manual- Part II (methods for detection of adulterants). Accessed March 22, 2020. http://old.fssai.gov.in/Portals/0/Pdf/Final_test_manual_part_I%2816-08-2012%29.pdf
  • FSSAI. 2019. Detect adulteration with rapid test. Accessed March 22, 2020. https://fssai.gov.in/dart.
  • Georgouli, K., J. M. Del Rincon, and A. Koidis. 2017. Continuous statistical modelling for rapid detection of adulteration of extra virgin olive oil using mid infrared and Raman spectroscopic data. Food Chemistry 217:735–742. doi: 10.1016/j.foodchem.2016.09.011.
  • Gerhardt, N., M. Birkenmeier, S. Schwolow, S. Rohn, and P. Weller. 2018. Volatile-compound fingerprinting by headspace-gas-chromatography ion-mobility spectrometry (HS-GC-IMS) as a benchtop alternative to 1H NMR profiling for assessment of the authenticity of honey. Analytical Chemistry 90 (3):1777–1785. doi: 10.1021/acs.analchem.7b03748.
  • Ghosh, P., M. K. Reddy, and R. B. Sashidhar. 2005. Quantitative evaluation of sanguinarine as an index of argemone oil adulteration in edible mustard oil by high performance thin layer chromatography. Food Chemistry 91 (4):757–764. doi: 10.1016/j.foodchem.2004.10.012.
  • Gliszczyńska-Świgło, A., and J. Chmielewski. 2017. Electronic nose as a tool for monitoring the authenticity of food. A review. Food Analytical Methods 10 (6):1800–1816. doi: 10.1007/s12161-016-0739-4.
  • Gouilleux, B., J. Marchand, B. Charrier, G. S. Remaud, and P. Giraudeau. 2018. High-throughput authentication of edible oils with benchtop Ultrafast 2D NMR. Food Chemistry 244:153–158. doi: 10.1016/j.foodchem.2017.10.016.
  • Guimet, F., J. Ferré, and R. Boqué. 2005. Rapid detection of olive–pomace oil adulteration in extra virgin olive oils from the protected denomination of origin “Siurana” using excitation–emission fluorescence spectroscopy and three-way methods of analysis. Analytica Chimica Acta 544 (1–2):143–152. doi: 10.1016/j.aca.2005.02.013.
  • Gurdeniz, G., and B. Ozen. 2009. Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chemistry 116 (2):519–525. doi: 10.1016/j.foodchem.2009.02.068.
  • Guyader, S., F. Thomas, V. Portaluri, E. Jamin, S. Akoka, V. Silvestre, and G. Remaud. 2018. Authentication of edible fats and oils by non-targeted 13C INEPT NMR spectroscopy. Food Control 91:216–224. doi: 10.1016/j.foodcont.2018.03.046.
  • Haddi, Z., A. Amari, A. O. Ali, N. E. Bari, H. Barhoumi, A. Maaref, N. Jaffrezic-Renault, and B. Bouchikhi. 2011. Discrimination and identification of geographical origin virgin olive oil by an e-nose based on MOS sensors and pattern recognition techniques. Procedia Engineering 25:1137–1140. doi: 10.1016/j.proeng.2011.12.280.
  • Hai, Z., and J. Wang. 2006. Electronic nose and data analysis for detection of maize oil adulteration in sesame oil. Sensors and Actuators B: Chemical 119 (2):449–455. doi: 10.1016/j.snb.2006.01.001.
  • Hajimahmoodi, M., Y. Vander Heyden, N. Sadeghi, B. Jannat, M. R. Oveisi, and S. Shahbazian. 2005. Gas-chromatographic fatty-acid fingerprints and partial least squares modeling as a basis for the simultaneous determination of edible oil mixtures. Talanta 66 (5):1108–1116. doi: 10.1016/j.talanta.2005.01.011.
  • Harris, D. C. 2004. Exploring chemical analysis. 3rd ed. Macmillan, Brooklyn, New York..
  • Hong, C., G. Jian, G. K. Ze, L. Bingning, L. Qingpeng, S. Yane, W. Ying, W. Yanwen, and Y. Yanlin. 2016. Method for identifying soybean product oil in soybean crude oil. CN Patent 103,901,004, filed March 6, 2014, and issued April 13, 2016.
  • Hongzhi, L., L. Li, W. Li, W. Qiang, and Z. Jianshu. 2015. Quality determination of peanuts suitable for peanut oil processing, and evaluation method thereof. CN 102,854,291, filed September 4, 2012, and issued July 22, 2015.
  • Hu, R., T. He, Z. Zhang, Y. Yang, and M. Liu. 2019. Safety analysis of edible oil products via Raman spectroscopy. Talanta 191:324–332. doi: 10.1016/j.talanta.2018.08.074.
  • Hussain, M. N., M. F. A. Khir, M. H. Hisham, and Z. M. Yusof. 2014. Feasibility study of detecting canola oil adulteration with palm oil using NIR spectroscopy and multivariate analysis. In Proceedings of International Conference on Information, Communication Technology and System (ICTS), IEEE Explore, 111–114.
  • Inoue, C., Y. Hagura, M. Ishikawa, and K. Suzuki. 2002. The dielectric property of soybean oil in deep‐fat frying and the effect of frequency. Journal of Food Science 67 (3):1126–1129. doi: 10.1111/j.1365-2621.2002.tb09464.x.
  • Jabeur, H., A. Zribi, J. Makni, A. Rebai, R. Abdelhedi, and M. Bouaziz. 2014. Detection of Chemlali extra-virgin olive oil adulteration mixed with soybean oil, corn oil, and sunflower oil by using GC and HPLC. Journal of Agricultural and Food Chemistry 62 (21):4893–4904. doi: 10.1021/jf500571n.
  • Jabeur, H., M. Drira, A. Rebai, and M. Bouaziz. 2017. Putative markers of adulteration of higher-grade olive oil with less expensive pomace olive oil identified by gas chromatography combined with chemometrics. Journal of Agricultural and Food Chemistry 65 (26):5375–5383. doi: 10.1021/acs.jafc.7b00687.
  • James, T. L. 1998. Fundamentals of NMR. Online Textbook. San Francisco: Department of Pharmaceutical Chemistry. University of California, 1–31.
  • Jandrić, Z., D. Roberts, M. N. Rathor, A. Abrahim, M. Islam, and A. Cannavan. 2014. Assessment of fruit juice authenticity using UPLC-QToF MS: a metabolomics approach. Food Chemistry 148:7–17. doi: 10.1016/j.foodchem.2013.10.014.
  • Jha, S. N., K. Narsaiah, A. L. Basediya, R. Sharma, P. Jaiswal, R. Kumar, and R. Bhardwaj. 2011. Measurement techniques and application of electrical properties for nondestructive quality evaluation of foods-a review. Journal of Food Science and Technology 48 (4):387–411. doi: 10.1007/s13197-011-0263-x.
  • Jianhuai, C., H. Huiying, and H. Peiqiang. 2013. Method for detecting authenticity of peanut oil. CN Patent 102,901,744, filed November 8, 2012, and issued January 30, 2013.
  • Jiménez-Carvelo, A. M., E. Pérez-Castaño, A. González-Casado, and L. Cuadros-Rodríguez. 2017. One input-class and two input-class classifications for differentiating olive oil from other edible vegetable oils by use of the normal-phase liquid chromatography fingerprint of the methyl-transesterified fraction. Food Chemistry 221:1784–1791. doi: 10.1016/j.foodchem.2016.10.103.
  • Jiménez-Carvelo, A. M., M. T. Osorio, A. Koidis, A. González-Casado, and L. Cuadros-Rodríguez. 2017. Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR-ATR and Raman spectroscopy. LWT Food Science and Technology 86:174–184. doi: 10.1016/j.lwt.2017.07.050.
  • Kasemsumran, S., N. Kang, A. Christy, and Y. Ozaki. 2005. Partial least squares processing of near‐infrared spectra for discrimination and quantification of adulterated olive oils. Spectroscopy Letters 38 (6):839–851. doi: 10.1080/00387010500316189.
  • Kim, J. M., H. J. Kim, and J. M. Park. 2015. Determination of milk fat adulteration with vegetable oils and animal fats by gas chromatographic analysis. Journal of Food Science 80 (9):C1945–C1951. doi: 10.1111/1750-3841.12979.
  • Kumar, U. P., and A. R. Shree. 2014. A rapid technique for detection and quantification of mineral oil in vegetable oils used as vehicles in ayurvedic formulations. International Journal of Herbal Medicine 2 (2):20–22.
  • Larkin, P., and P. Larkin. 2011. Chapter 4 - environmental dependence of vibrational spectra. In Infrared and Raman spectroscopy, 2nd ed, 55–62. USA: Elsevier.
  • Le Gresley, A., G. Ampem, M. Grootveld, B. C. Percival, and D. P. Naughton. 2019. Characterisation of peroxidation products arising from culinary oils exposed to continuous and discontinuous thermal degradation processes. Food & Function 10 (12):7952–7966. doi: 10.1039/c9fo02065a.
  • Lerma-García, M. J., G. Ramis-Ramos, J. M. Herrero-Martínez, and E. F. Simó-Alfonso. 2010. Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chemistry 118 (1):78–83. doi: 10.1016/j.foodchem.2009.04.092.
  • Li, B., H. Wang, Q. Zhao, J. Ouyang, and Y. Wu. 2015. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: A comparative study. Food Chemistry 181:25–30. doi: 10.1016/j.foodchem.2015.02.079.
  • Li, Y., T. Fang, S. Zhu, F. Huang, Z. Chen, and Y. Wang. 2018. Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy combined with iPLS and SiPLS. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 189:37–43. doi: 10.1016/j.saa.2017.06.049.
  • Lia, F., A. M. Castellano, M. Zammit-Mangion, and C. Farrugia. 2018. Application of fluorescence spectroscopy and chemometric models for the detection of vegetable oil adulterants in Maltese virgin olive oils. Journal of Food Science and Technology 55 (6):2143–2151. doi: 10.1007/s13197-018-3131-0.
  • Lian, W. N., J. Shiue, H. H. Wang, W. C. Hong, P. H. Shih, C. K. Hsu, and Y. L. Wang. 2015. Rapid detection of copper chlorophyll in vegetable oils based on surface-enhanced Raman spectroscopy. Food Additives and Contaminants: Part A 32 (5):627–634.
  • Lim, S. Y., M. S. Abdul Mutalib, H. Khaza’ai, and S. K. Chang. 2018. Detection of fresh palm oil adulteration with recycled cooking oil using fatty acid composition and FTIR spectral analysis. International Journal of Food Properties 21 (1):2428–2451. doi: 10.1080/10942912.2018.1522332.
  • Liu, B., L. Chen, N. Zhou, P. Yang, X. Wang, and Y. Zhang. 2012. Method for identifying quality of edible oil with low-field NMR (Nuclear Magnetic Resonance). CN Patent 101,975,788, filed September 1, 2010, and February 15, 2012.
  • Lizhi, H., K. Toyoda, and I. Ihara. 2008. Dielectric properties of edible oils and fatty acids as a function of frequency, temperature, moisture and composition. Journal of Food Engineering 88 (2):151–158. doi: 10.1016/j.jfoodeng.2007.12.035.
  • Lizhi, H., K. Toyoda, and I. Ihara. 2010. Discrimination of olive oil adulterated with vegetable oils using dielectric spectroscopy. Journal of Food Engineering 96 (2):167–171. doi: 10.1016/j.jfoodeng.2009.06.045.
  • Lohumi, S., S. Lee, H. Lee, and B. K. Cho. 2015. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends in Food Science & Technology 46 (1):85–98. doi: 10.1016/j.tifs.2015.08.003.
  • López-Díez, E. C., G. Bianchi, and R. Goodacre. 2003. Rapid quantitative assessment of the adulteration of virgin olive oils with hazelnut oils using Raman spectroscopy and chemometrics. Journal of Agricultural and Food Chemistry 51 (21):6145–6150. doi: 10.1021/jf034493d.
  • Loutfi, A., S. Coradeschi, G. K. Mani, P. Shankar, and J. B. B. Rayappan. 2015. Electronic noses for food quality: A review. Journal of Food Engineering 144:103–111. doi: 10.1016/j.jfoodeng.2014.07.019.
  • Lv, M. Y., X. Zhang, H. R. Ren, L. Liu, Y. M. Zhao, Z. Wang, Z. L. Wu, L. M. Liu, and H. J. Xu. 2016. A rapid method to authenticate vegetable oils through surface-enhanced Raman scattering. Scientific Reports 6:23405. doi: 10.1038/srep23405.
  • Maggio, R. M., L. Cerretani, E. Chiavaro, T. S. Kaufman, and A. Bendini. 2010. A novel chemometric strategy for the estimation of extra virgin olive oil adulteration with edible oils. Food Control 21 (6):890–895. doi: 10.1016/j.foodcont.2009.12.006.
  • Majchrzak, T., W. Wojnowski, T. Dymerski, J. Gębicki, and J. Namieśnik. 2018. Electronic noses in classification and quality control of edible oils: A review. Food Chemistry 246:192–201. doi: 10.1016/j.foodchem.2017.11.013.
  • Man, Y. B. C. 2013. Analysis of canola oil in virgin coconut oil using FTIR spectroscopy and chemometrics. Journal of Food and Pharmaceutical Sciences 1 (1):5–9.
  • Man, Y. C., and C. P. Tan. 2002. Comparative differential scanning calorimetric analysis of vegetable oils: II. Effects of cooling rate variation. Phytochemical Analysis: PCA 13 (3):142–151. doi: 10.1002/pca.634.
  • Man, Y. C., H. L. Gan, I. NorAini, S. A. H. Nazimah, and C. P. Tan. 2005. Detection of lard adulteration in RBD palm olein using an electronic nose. Food Chemistry 90 (4):829–835. doi: 10.1016/j.foodchem.2004.05.062.
  • Manaf, M. A., Y. B. C. Man, N. S. A. Hamid, A. Ismail, and S. Z. Abidin. 2007. Analysis of adulteration of virgin coconut oil by palm kernel olein using Fourier transform infrared spectroscopy. Journal of Food Lipids 14 (2):111–121. doi: 10.1111/j.1745-4522.2007.00066.x.
  • Mansor, T. S T., Y. B. C. Man, and A. Rohman. 2011. Application of fast gas chromatography and Fourier transform infrared spectroscopy for analysis of lard adulteration in virgin coconut oil. Food Analytical Methods 4 (3):365–372. doi: 10.1007/s12161-010-9176-y.
  • Marikkar, J. M. N., H. M. Ghazali, Y. C. Man, and O. M. Lai. 2002. The use of cooling and heating thermograms for monitoring of tallow, lard and chicken fat adulterations in canola oil. Food Research International 35 (10):1007–1014. doi: 10.1016/S0963-9969(02)00162-X.
  • Marikkar, J. M. N., H. M. Ghazali, Y. C. Man, and O. M. Lai. 2003. Differential scanning calorimetric analysis for determination of some animal fats as adulterants in palm olein. Journal of Food Lipids 10 (1):63–79. doi: 10.1111/j.1745-4522.2003.tb00006.x.
  • Marikkar, J. M. N., O. M. Lai, H. M. Ghazali, and Y. B. Che. 2001. Detection of lard and randomized lard as adulterants in refined‐bleached‐deodorized palm oil by differential scanning calorimetry. Journal of the American Oil Chemists' Society 78 (11):1113–1119. doi: 10.1007/s11746-001-0398-5.
  • Marina, A. M., Y. B. Che Man, and I. Amin. 2010. Use of the SAW sensor electronic nose for detecting the adulteration of virgin coconut oil with RBD palm kernel olein. Journal of the American Oil Chemists' Society 87 (3):263–270. doi: 10.1007/s11746-009-1492-2.
  • Marina, A. M., Y. B. Che Man, S. A. H. Nazimah, and I. Amin. 2009. Monitoring the adulteration of virgin coconut oil by selected vegetable oils using differential scanning calorimetry. Journal of Food Lipids 16 (1):50–61. doi: 10.1111/j.1745-4522.2009.01131.x.
  • Mavromoustakos, T., M. Zervou, G. Bonas, A. Kolocouris, and P. Petrakis. 2000. A novel analytical method to detect adulteration of virgin olive oil by other oils. Journal of the American Oil Chemists' Society 77 (4):405–411. doi: 10.1007/s11746-000-0065-x.
  • Merás, I. D., J. D. Manzano, D. A. Rodríguez, and A. M. de la Peña. 2018. Detection and quantification of extra virgin olive oil adulteration by means of auto fluorescence excitation-emission profiles combined with multi-way classification. Talanta 178:751–762.
  • Mignani, A. G., L. Ciaccheri, L. Conte, M. Marega, H. Ottevaere, and H. Thienpont. 2010. Diffuse-light absorption spectroscopy and chemometrics for discrimination and quantification of extra virgin olive oil adulterants. IEEE Sensors:1640–1644.
  • Mildner-Szkudlarz, S., and H. H. Jeleń. 2008. The potential of different techniques for volatile compounds analysis coupled with PCA for the detection of the adulteration of olive oil with hazelnut oil. Food Chemistry 110 (3):751–761. doi: 10.1016/j.foodchem.2008.02.053.
  • Mildner-Szkudlarz, S., and H. H. Jeleń. 2010. Detection of olive oil adulteration with rapeseed and sunflower oils using MOS electronic nose and SMPEMS. Journal of Food Quality 33 (1):21–41. doi: 10.1111/j.1745-4557.2009.00286.x.
  • Mishra, V., M. Mishra, K. M. Ansari, B. P. Chaudhari, R. Khanna, and M. Das. 2012. Edible oil adulterants, argemone oil and butter yellow, as aetiological factors for gall bladder cancer. European Journal of Cancer (Oxford, England : 1990) 48 (13):2075–2085. doi: 10.1016/j.ejca.2011.09.026.
  • Motghare, M., N. V. Sarma, C. V. Nagaraja, M. R. Grover, and K. S. Kamath. 1985. A simple method for detection of palmolein oil in groundnut oil. Journal of Food Science and Technology (Mysore) 22 (4):287–288.
  • Muhua, L., S. Tong, W. Xiao, and M. Xinxin. 2019. Method and device for detecting content of trans-oleic acid in edible oil. CN Patent 107,389657, filed August 15, 2017, and issued December 17, 2019.
  • Navya, P., K. Raju, and M. K. Sukumaran. 2017. Analysis of food adulterants in selected food items purchased from local grocery stores. International Journal of Advances in Scientific Research 3 (7):82–89. doi: 10.7439/ijasr.v3i7.4299.
  • Ntakatsane, M. P., X. M. Liu, and P. Zhou. 2013. Short communication: rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy. Journal of Dairy Science 96 (4):2130–2136. doi: 10.3168/jds.2012-6417.
  • Obisesan, K. A., A. M. Jiménez-Carvelo, L. Cuadros-Rodriguez, I. Ruisánchez, and M. P. Callao. 2017. HPLC-UV and HPLC-CAD chromatographic data fusion for the authentication of the geographical origin of palm oil. Talanta 170:413–418. doi: 10.1016/j.talanta.2017.04.035.
  • Okeke, J. 2018. Consumers beware of adulterated palm oil. Accessed May 12, 2020 https://thenationonlineng.net/consumers-beware-adulterated-palm-oil/
  • Olaoye, O. A., S. C. Ubbor, and I. G. Lawrence. 2018. Assessment of the effect of different packaging materials on some quality indices of a Nigerian stick meat (Tsire) during storage. Advances in Food Science and Engineering 2 (1):30–37. doi: 10.22606/afse.2018.21004.
  • Oussama, A., F. Elabadi, S. Platikanov, F. Kzaiber, and R. Tauler. 2012. Detection of olive oil adulteration using FT‐IR spectroscopy and PLS with variable importance of projection (VIP) scores. Journal of the American Oil Chemists' Society 89 (10):1807–1812. doi: 10.1007/s11746-012-2091-1.
  • Özdemir, D., and B. Öztürk. 2020. Near infrared spectroscopic determination of olive oil adulteration with sunflower and corn oil. Journal of Food and Drug Analysis 15 (1):40–47. doi: 10.38212/2224-6614.2447.
  • Ozen, B. F., and L. J. Mauer. 2002. Detection of hazelnut oil adulteration using FT-IR spectroscopy. Journal of Agricultural and Food Chemistry 50 (14):3898–3901. doi: 10.1021/jf0201834.
  • Ozulku, G., R. M. Yildirim, O. S. Toker, S. Karasu, and M. Z. Durak. 2017. Rapid detection of adulteration of cold pressed sesame oil adultered with hazelnut, canola, and sunflower oils using ATR-FTIR spectroscopy combined with chemometric. Food Control 82:212–216. doi: 10.1016/j.foodcont.2017.06.034.
  • Parker, T., E. Limer, A. D. Watson, M. Defernez, D. Williamson, and E. K. Kemsley. 2014. 60 MHz 1H NMR spectroscopy for the analysis of edible oils. Trends in Analytical Chemistry: TRAC 57 (100):147–158. doi: 10.1016/j.trac.2014.02.006.
  • Parlak, Y., and N. Güzeler. 2016. Nuclear magnetic resonance spectroscopy applications in foods. Current Research in Nutrition and Food Science Journal 4 (Special-Issue-October):161–168. doi: 10.12944/CRNFSJ.4.Special-Issue-October.22.
  • Peña, F., S. Cárdenas, M. Gallego, and M. Valcárcel. 2005. Direct olive oil authentication: Detection of adulteration of olive oil with hazelnut oil by direct coupling of headspace and mass spectrometry, and multivariate regression techniques. Journal of Chromatography. A 1074 (1-2):215–221. doi: 10.1016/j.chroma.2005.03.081.
  • Peng, D., Y. Bi, X. Ren, G. Yang, S. Sun, and X. Wang. 2015. Detection and quantification of adulteration of sesame oils with vegetable oils using gas chromatography and multivariate data analysis. Food Chemistry 188:415–421. doi: 10.1016/j.foodchem.2015.05.001.
  • Pennr, M. H. 2010. Basic principles of spectroscopy. 1st ed. USA: Springer Science.
  • Pereira, A. G., P. Otero, M. Fraga-Corral, P. Garcia-Oliveira, M. Carpena, M. A. Prieto, and J. Simal-Gandara. 2021. State-of-the-art of analytical techniques to determine food fraud in olive oils. Foods 10 (3):484. doi: https://doi.org/10.3390/foods10030484.
  • Pérez-Castaño, E., C. Ruiz-Samblás, S. Medina-Rodríguez, V. Quirós-Rodríguez, A. M. Jiménez-Carvelo, L. Valverde-Som, A. González-Casado, and L. Cuadros-Rodríguez. 2015. Comparison of different analytical classification scenarios: Application for the geographical origin of edible palm oil by sterolic (NP) HPLC fingerprinting. Analytical Methods 7 (10):4192–4201. doi: 10.1039/C5AY00168D.
  • Pérez-Castaño, E., M. Sánchez-Viñas, D. Gázquez-Evangelista, and M. G. Bagur-González. 2018. Quantification of extra virgin olive oil in dressing and edible oil blends using the representative TMS-4,4'-desmethylsterols gas-chromatographic-normalized fingerprint . Food Chemistry 239:1192–1199. doi: 10.1016/j.foodchem.2017.07.069.
  • Peris, M., and L. Escuder-Gilabert. 2009. A 21st century technique for food control: Electronic noses. Analytica Chimica Acta 638 (1):1–15. doi: 10.1016/j.aca.2009.02.009.
  • Peris, M., and L. Escuder-Gilabert. 2016. Electronic noses and tongues to assess food authenticity and adulteration. Trends in Food Science & Technology 58:40–54. doi: 10.1016/j.tifs.2016.10.014.
  • Philippidis, A., E. Poulakis, A. Papadaki, and M. Velegrakis. 2017. Comparative study using Raman and visible spectroscopy of cretan extra virgin olive oil adulteration with sunflower oil. Analytical Letters 50 (7):1182–1195. doi: 10.1080/00032719.2016.1208212.
  • Picouet, P. A., P. Gou, R. Hyypiö, and M. Castellari. 2018. Implementation of NIR technology for at-line rapid detection of sunflower oil adulterated with mineral oil. Journal of Food Engineering 230:18–27. doi: 10.1016/j.jfoodeng.2018.01.011.
  • Porath, J. 1997. From gel filtration to adsorptive size exclusion. Journal of Protein Chemistry 16 (5):463–468. doi: 10.1023/A:1026357326667.
  • Preedy, V. R. 2016. Electronic noses and tongues in food science. London: Academic Press.
  • Purcaro, G., C. Cordero, E. Liberto, C. Bicchi, and L. S. Conte. 2014. Toward a definition of blueprint of virgin olive oil by comprehensive two-dimensional gas chromatography. Journal of Chromatography. A 1334:101–111. doi: 10.1016/j.chroma.2014.01.067.
  • Qiyong, C., Ge Baokun, L. Tingting, Z. Hua, and Z. Kongxiang. 2014. Method for determining sodium copper chlorophyllin in olive oil. CN Patent 103,969,373, filed May 28, 2014, and issued August 6, 2014.
  • Ramgir, N. S. 2013. Electronic Nose Based on Nanomaterials: Issues, Challenges, and Prospects. ISRN Nanomaterials 2013:1–21. doi:10.1155/2013/941581.
  • Rashvand, M., M. Omid, H. Mobli, and M. S. Firouz. 2016. Adulteration detection in olive oil using dielectric technique and data mining. Sensing and Bio-Sensing Research 11:33–36. doi: 10.1016/j.sbsr.2016.10.005.
  • Ravaglia, L. M., A. B. C. Pizzotti, and G. B. Alcantara. 2019. NMR-based and chemometric approaches applicable to adulteration studies for assessment of the botanical origin of edible oils. Journal of Food Science and Technology 56 (1):507–511. doi: 10.1007/s13197-018-3485-3.
  • Riegel, S. D. 2015. Determination of olive oil adulteration with 60-MHz benchtop NMR spectrometry. American Laboratory 47 (2):16–19.
  • Roca, M., L. Gallardo Guerrero, and B. Gandul-Rojas. 2010. Method for detecting copper complexes of chlorophyll in vegetable oils. ES/WO Patent 2,010,119,162 filed April 17, 2009, and issued October 21, 2010.
  • Rohman, A., and Y. B. Che Man. 2011. Determination of extra virgin olive oil in quaternary mixture using FTIR spectroscopy and multivariate calibration. Spectroscopy 26 (3):203–211. doi: 10.1155/2011/471376.
  • Rohman, A., and Y. B. Che Man. 2012. Authentication of extra virgin olive oil from sesame oil using FTIR spectroscopy and gas chromatography. International Journal of Food Properties 15 (6):1309–1318. doi: 10.1080/10942912.2010.521607.
  • Rohman, A., and Y. C. Man. 2010. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Research International 43 (3):886–892. doi: 10.1016/j.foodres.2009.12.006.
  • Roy, R. B., B. Tudu, R. Bandyopadhyay, and N. Bhattacharyya. 2019. Application of electronic nose and tongue for beverage quality evaluation. In Engineering tools in the beverage industry, ed. A. Grumezescu and A. M. Holban, 229–54. 1st ed. Duxford, UK: Woodhead Publishing.
  • Sairin, M. A., N. H. A. Latiff, S. A. Aziz, and F. Z. Rokhani. 2016. Distinguishing edible oil using dielectric spectroscopy at microwave frequencies of 8.2–12.1 GHz. Paper presented at the 10th International Conference on Sensing Technology, Nanjing, China, November 12.
  • Sánchez-López, E., M. I. Sánchez-Rodríguez, A. Marinas, J. M. Marinas, F. J. Urbano, J. M. Caridad, and M. Moalem. 2016. Chemometric study of Andalusian extra virgin olive oils Raman spectra: Qualitative and quantitative information. Talanta 156-157:180–190. doi: 10.1016/j.talanta.2016.05.014.
  • Santos, P. M., E. R. Pereira-Filho, and L. A. Colnago. 2016. Detection and quantification of milk adulteration using time domain nuclear magnetic resonance (TD-NMR). Microchemical Journal 124:15–19. doi: 10.1016/j.microc.2015.07.013.
  • Semenov, V., S. Volkov, M. Khaydukova, A. Fedorov, I. Lisitsyna, D. Kirsanov, and A. Legin. 2019. Determination of three quality parameters in vegetable oils using potentiometric e-tongue. Journal of Food Composition and Analysis 75:75–80. doi: 10.1016/j.jfca.2018.09.015.
  • Shah, Z. H., and Q. A. Tahir. 2011. Dielectric properties of vegetable oils. Journal of Scientific Research 3 (3):481–492. doi: 10.3329/jsr.v3i3.7049.
  • Shelar, M. K., A. R. Bafna, A. M. Wahile, and S. V. Tupkari. 2011. Evaluation of edible oils for Argemone mexicana seed oil adulteration. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2 (3):927–936.
  • Shi, T., M. Zhu, X. Zhou, X. Huo, Y. Long, X. Zeng, and Y. Chen. 2019. 1H NMR combined with PLS for the rapid determination of squalene and sterols in vegetable oils. Food Chemistry 287:46–54. doi: 10.1016/j.foodchem.2019.02.072.
  • Shi, T., M. Zhu, Y. Chen, XLi Yan, Q. Chen, XLin Wu, J. Lin, and M. Xie. 2018. 1H NMR combined with chemometrics for the rapid detection of adulteration in camellia oils. Food Chemistry 242:308–315. doi: 10.1016/j.foodchem.2017.09.061.
  • Shiqiao, W., and W. Qiang. 2011. Method for identifying edible oil quality through combination of nuclear magnetic resonance and pattern recognition method. CN Patent 102,269,720, filed April 28, 2011, and issued December 07, 2011.
  • Shukla, A. 2002. A Simple Non-Instrumental Technique to Differentiate a Natural Mustard Oil Sample from a Synthetically Made Artificial Mustard Oil. The Journal of the Oil Technologists' Association of India 34:147–148.
  • Shukla, A. K. 2003. Identification of argemone oil and its simple qualitative detection in mustard oil. Brassica 5 (3):75–76.
  • Shukla, A. K., A. K. Dixit, and R. P. Singh. 2005. Detection of in adulteration edible oils. Journal of Oleo Science 54 (6):317–324. doi: 10.5650/jos.54.317.
  • Shukla, A. K., A. Tiwari, and A. Dixit. 2004. Identification of Sanguinarine (Benzophenanthridine Alkaloid): Rapid detection of agremone oil in mustard oil. Science and Culture 70 (5):227.
  • Shukla, A. K., S. S. Johar, A. K. Dixi, R. P. Singh. and R. P. 2004. Identification of physically refined rice bran oil and its simple detection in other oils. Journal of Oleo Science 53 (8):413–415. doi: 10.5650/jos.53.413.
  • Slichter, C. P. 2013. Principles of magnetic resonance. 3rd ed. Berlin Heidelberg, Germany: Springer Science and Business Media.
  • Śliwińska, M., P. Wiśniewska, T. Dymerski, J. Namieśnik, and W. Wardencki. 2014. Food analysis using artificial senses. Journal of Agricultural and Food Chemistry 62 (7):1423–1448. doi: 10.1021/jf403215y.
  • Šmejkalová, D., and A. Piccolo. 2010. High-power gradient diffusion NMR spectroscopy for the rapid assessment of extra-virgin olive oil adulteration. Food Chemistry 118 (1):153–158. doi: 10.1016/j.foodchem.2009.04.088.
  • Song, W., Z. Song, J. Vincent, H. Wang, and Z. Wang. 2020. Quantification of extra virgin olive oil adulteration using smartphone videos. Talanta 216:120920. doi: 10.1016/j.talanta.2020.120920.
  • Sun, X., W. Lin, X. Li, Q. Shen, and H. Luo. 2015. Detection and quantification of extra virgin olive oil adulteration with edible oils by FT-IR spectroscopy and chemometrics. Analytical Methods 7 (9):3939–3945. doi: 10.1039/C5AY00472A.
  • Tan, C. P., and Y. B. Che Man. 2000. Differential scanning calorimetric analysis of edible oils: Comparison of thermal properties and chemical composition. Journal of the American Oil Chemists' Society 77 (2):143–155. doi: 10.1007/s11746-000-0024-6.
  • Tay, A., R. K. Singh, S. S. Krishnan, and J. P. Gore. 2002. Authentication of olive oil adulterated with vegetable oils using Fourier transform infrared spectroscopy. LWT - Food Science and Technology 35 (1):99–103. doi: 10.1006/fstl.2001.0864.
  • Tiryaki, G. Y., and H. Ayvaz. 2017. Quantification of soybean oil adulteration in extra virgin olive oil using portable raman spectroscopy. Journal of Food Measurement and Characterization 11 (2):523–529. doi: 10.1007/s11694-016-9419-8.
  • Tociu, M., M. C. Todasca, and M. D. Stanescu. 2017. Authentication and Nutritional Benefits of Cheeses Based on Vegetable Oils. Revista de Chimie 68 (9):2002–2005. doi: 10.37358/RC.17.9.5810.
  • Todt, H., G. Guthausen, W. Burk, D. Schmalbein, and A. Kamlowski. 2008. Time-domain NMR in quality control: Standard applications in food. In Modern magnetic resonance, ed. G. A. Webb, 1739–174. Dordrecht Springer. doi: 10.1007/1-4020-3910-7_196.
  • Todt, H., W. Burk, G. Guthausen, A. Guthausen, A. Kamlowski, and D. Schmalbein. 2001. Quality control with time domain NMR. European Journal of Lipid Science and Technology 103 (12):835–840. doi: 10.1002/1438-9312(200112)103:12<835::AID-EJLT835>3.0.CO;2-P.
  • Tong, C., L. Ping, X. Zhen, and Z. Hongbin. 2016. The detection method of the chlorophyll copper sodium in liquid chromatogram concatenation GC-MS (LC-MS/MS) detection olive oil. CN Patent 104,678,000, filed December 2, 2013, and September 7, 2016.
  • Uysal, R. S., I. H. Boyaci, H. E. Genis, and U. Tamer. 2013. Determination of butter adulteration with margarine using Raman spectroscopy. Food Chemistry 141 (4):4397–4403. doi: 10.1016/j.foodchem.2013.06.061.
  • Van Durme, J., and J. Vandamme. 2016. Non-thermal plasma as preparative technique to evaluate olive oil adulteration. Food Chemistry 208:185–191. doi: 10.1016/j.foodchem.2016.04.007.
  • Vandamme, J., A. Nikiforov, K. Dujardin, C. Leys, L. De Cooman, and J. Van Durme. 2015. Critical evaluation of non-thermal plasma as an innovative accelerated lipid oxidation technique in fish oil. Food Research International 72:115–125. doi: 10.1016/j.foodres.2015.03.037.
  • Vasconcelos, M., L. Coelho, A. Barros, and J. M. M. M. de Almeida. 2015. Study of adulteration of extra virgin olive oil with peanut oil using FTIR spectroscopy and chemometrics. Cogent Food & Agriculture 1 (1):1018695. doi: 10.1080/23311932.2015.1018695.
  • Vigli, G., A. Philippidis, A. Spyros, and P. Dais. 2003. Classification of edible oils by employing 31P and 1H NMR spectroscopy in combination with multivariate statistical analysis. A proposal for the detection of seed oil adulteration in virgin olive oils. Journal of Agricultural and Food Chemistry 51 (19):5715–5722. doi: 10.1021/jf030100z.
  • Vlahov, G. 1997. Quantitative 13C NMR method using the DEPT pulse sequence for the detection of olive oil adulteration with soybean oil. Magnetic Resonance in Chemistry 35 (13):S8–S12. doi: 10.1002/(SICI)1097-458X(199712)35:13<S8::AID-OMR204>3.0.CO;2-9.
  • Wang, C., H. Zhou, H. Chen, J. Ye, and J. Yuan. 2011. Method for rapid detection and authenticity identification of fatty acid of racy camellia oil by near infrared transmission spectroscopy (NITS). CN Patent 102,252,995 filed June 22, 2011, and issued November 23, 2011.
  • Wenming, C., C. Fengxiang, C. Weidong, D. Danhua, X. Bin, and Y. Chao. 2014. Method for detecting where leached sesame oil is doped in pressed sesame oil. CN Patent 103,389,342, filed May 8, 2012, and issued September 3, 2014.
  • Wrona, M., D. Pezo, and C. Nerin. 2013. Rapid analytical procedure for determination of mineral oils in edible oil by GC-FID. Food Chemistry 141 (4):3993–3999. doi: 10.1016/j.foodchem.2013.06.091.
  • Xiaoxia, D., Li Peiwu, L. Youqian, W. Xiupin, Z. Liangxiao, Z. Qi, and Z. Wen. 2015. Peanut oil adulteration qualitative identification method CN Patent 104,597,193, filed December 31, 2014, and issued May 6, 2015.
  • Xihui, B., G. Yugao, L. Shujuan, L. Huan, and S. Xiaotong. 2015. Method for fast recognizing sesame oil and sesame oil doped with soybean oil through near infrared. CN Patent 105,044,025, filed September 7, 2015, and issued November 11, 2015.
  • Yang, C., J. Gao, S. Du, X. Yu, and Z. Li. 2012. Method for quantitatively detecting adulteration of peanut oil based on ultraviolet spectrum. CN Patent 102,221,533 filed June 9, 2011, and issued August 8, 2012.
  • Yang, J., K. S. Zhao, and Y. J. He. 2016. Quality evaluation of frying oil deterioration by dielectric spectroscopy. Journal of Food Engineering 180:69–76. doi: 10.1016/j.jfoodeng.2016.02.012.
  • Yu, A., and Z. Wang. 2011. Adulterated peanut oil detector and adulterated peanut oil detection method. US Patent 20,110,134,423, filed February 18, 2009, and issued June 9, 2011.
  • Yuelai, H., H. Hanying, L. Xixi, X. Shanbai, and Z. Siming. 2017. A kind of near infrared detection method of rapeseed oil quality and application. CN Patent 105,181,641, filed October 12, 2015, and issued December 22, 2017.
  • Zaroual, H., C. Chénè, E. M. El Hadrami, and R. Karoui. 2021. Application of new emerging techniques in combination with classical methods for the determination of the quality and authenticity of olive oil: A review. Critical Reviews in Food Science and Nutrition:1–24. doi: https://doi.org/10.1080/10408398.2021.1876624.
  • Zhang, L., J. Chen, B. Jing, Y. Dong, and X. Yu. 2019. New method for the discrimination of adulterated flaxseed oil using dielectric spectroscopy. Food Analytical Methods 12 (11):2623–2629. doi: 10.1007/s12161-019-01620-6.
  • Zhang, L., Q. Shuai, P. Li, Q. Zhang, F. Ma, W. Zhang, and X. Ding. 2016. Ion mobility spectrometry fingerprints: A rapid detection technology for adulteration of sesame oil. Food Chemistry 192:60–66. doi: 10.1016/j.foodchem.2015.06.096.
  • Zhang, L., Z. Yuan, P. Li, X. Wang, J. Mao, Q. Zhang, and C. Hu. 2017. Targeted multivariate adulteration detection based on fatty acid profiles and Monte Carlo one-class partial least squares. Chemometrics and Intelligent Laboratory Systems 169:94–99. doi: 10.1016/j.chemolab.2017.09.002.
  • Zhang, Q., A. S. Saleh, and Q. Shen. 2013. Discrimination of edible vegetable oil adulteration with used frying oil by low field nuclear magnetic resonance. Food and Bioprocess Technology 6 (9):2562–2570. doi: 10.1007/s11947-012-0826-5.
  • Zhang, X. F., M. Q. Zou, X. H. Qi, F. Liu, C. Zhang, and F. Yin. 2011. Quantitative detection of adulterated olive oil by Raman spectroscopy and chemometrics. Journal of Raman Spectroscopy 42 (9):1784–1788. doi: 10.1002/jrs.2933.
  • Zhao, Z., Z. Chen, Y. Wang, B. Feng, L. Zhang, Z. Liu, and Y. Liang. 2010. Method and apparatus for assessing purity of vegetable oils by means of terahertz time-domain spectroscopy. U.S. Patent 7,652,769, filed December 28, 2007, and issued January 26, 2010.
  • Zhiyin, D., D. Wei, W. Xiaoping, and Z. Bing. 2015. Raman-spectrum-based method for detecting content of oleic acid, linoleic acid and saturated fatty acid in edible vegetable oil. CN Patent 103,217,411, filed April 15, 2013, and issued March 25, 2015.
  • Zhu, M., T. Shi, Y. Chen, S. H. Luo, T. Leng, Y. Wang, C. Guo, and M. Xie. 2019. Prediction of fatty acid composition in camellia oil by 1H NMR combined with PLS regression. Food Chemistry 279:339–346. doi: 10.1016/j.foodchem.2018.12.025.
  • Zhu, W., X. Wang, and L. Chen. 2017. Rapid detection of peanut oil adulteration using low-field nuclear magnetic resonance and chemometrics. Food Chemistry 216:268–274. doi: 10.1016/j.foodchem.2016.08.051.
  • Zou, M.-Q., X.-F., Zhang, X.-H. Qi, H.-L. Ma, Y. Dong, C.-W. Liu, X. Guo, and H. Wang. 2009. Rapid authentication of olive oil adulteration by Raman spectrometry. Journal of Agricultural and Food Chemistry 57 (14):6001–6006. doi: 10.1021/jf900217s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.