888
Views
15
CrossRef citations to date
0
Altmetric
Review Articles

Recent developments in radio frequency drying for food and agricultural products using a multi-stage strategy: a review

& ORCID Icon

References

  • Ahmed, J., H. S. Ramaswamy, S. Kasapis, and J. I. Boye. 2010. Novel food processing: Effects on rheological and functional properties. Boca Raton, FL: CRC Press.
  • Alfaifi, B., S. Wang, J. Tang, B. Rasco, S. Sablani, and Y. Jiao. 2013. Radio frequency disinfestation treatments for dried fruit: Dielectric properties. LWT - Food Science and Technology 50 (2):746–54. doi: 10.1016/j.lwt.2012.07.012.
  • Anese, M., S. Sovrano, and R. Bortolomeazzi. 2008. Effect of radiofrequency heating on acrylamide formation in bakery products. European Food Research and Technology 226 (5):1197–203. doi: 10.1007/s00217-007-0693-x.
  • Awuah, G., H. Ramaswamy, and J. Tang. 2014. Radio frequency heating in food processing: principles and applications. Boca Raton, FL: CRC Press.
  • Azam, S., M. Zhang, C. L. Law, and A. S. Mujumdar. 2019. Effects of drying methods on quality attributes of peach (Prunus persica) leather. Drying Technology 37 (3):341–51. doi: 10.1080/07373937.2018.1454942.
  • Bikin, H., G. L. Jenkins, and H. G. Dekay. 1950. Radio-frequency drying of tablet granulations. Journal of the American Pharmaceutical Association. American Pharmaceutical Association 39 (8):441–3. doi: 10.1002/jps.3030390806.
  • Chen, L., J. Subbiah, D. Jones, Y. Zhao, and J. Jung. 2021. Development of effective drying strategy with a combination of radio frequency (RF) and convective hot-air drying for inshell hazelnuts and enhancement of nut quality. Innovative Food Science & Emerging Technologies 67:102555. doi: 10.1016/j.ifset.2020.102555.
  • Chou, S. K., and K. J. Chua. 2001. New hybrid drying technologies for heat sensitive foodstuffs. Trends in Food Science & Technology 12 (10):359–69. doi: 10.1016/S0924-2244(01)00102-9.
  • Colley, M. I. 1993. Radio-frequency enhanced draft tube spouted bed dryer. Drying Technology 11 (2):355–68. doi: 10.1080/07373939308916824.
  • Dag, D.,. R. K. Singh, and F. Kong. 2019. Dielectric properties, effect of geometry, and quality changes of whole, nonfat milk powder and their mixtures associated with radio frequency heating. Journal of Food Engineering 261:40–50. doi: 10.1016/j.jfoodeng.2019.04.017.
  • Deng, L., A. S. Mujumdar, Q. Zhang, X. Yang, J. Wang, Z. Zheng, Z. Gao, and H. Xiao. 2019. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes – A comprehensive review. Critical Reviews in Food Science and Nutrition 59 (9):1408–32. doi: 10.1080/10408398.2017.1409192.
  • Dev, S., and V. Raghavan. 2014. Radio-frequency drying of food materials. In Radio-frequency heating in food processing, ed. G. Awuah, H. Ramaswamy, and J. Tang, 215–30. Boca Raton, FL: CRC Press.
  • Gong, C., M. Liao, H. Zhang, Y. Xu, Y. Miao, and S. Jiao. 2020. Investigation of hot air-assisted radio frequency as a final-stage drying of pre-dried carrot cubes. Food and Bioprocess Technology 13 (3):419–29. doi: 10.1007/s11947-019-02400-0.
  • Gou, M., Y. Gu, W. Li, J. Zheng, and H. Jiang. 2020. Physicochemical characteristics, antioxidant capacity and thermodynamic properties of purple-fleshed potatos dried by radio frequency energy. Drying Technology 38 (10):1300–12. doi: 10.1080/07373937.2019.1634590.
  • Gu, Y., L. Zhen, and H. Jiang. 2020. Mathematical analysis of temperature distribution uniformity of banana dried by vacuum radio frequency treatment. Drying Technology 38 (15):2027–38. doi: 10.1080/07373937.2019.1611595.
  • Hnin, K. K., M. Zhang, A. S. Mujumdar, and Y. Zhu. 2019. Emerging food drying technologies with energy-saving characteristics: A review. Drying Technology 37 (12):1465–80. doi: 10.1080/07373937.2018.1510417.
  • Hou, L., Z. Huang, X. Kou, and S. Wang. 2016. Computer simulation model development and validation of radio frequency heating for bulk chestnuts based on single particle approach. Food and Bioproducts Processing 100:372–81. doi: 10.1016/j.fbp.2016.08.008.
  • Hou, L., X. Zhou, and S. Wang. 2020. Numerical analysis of heat and mass transfer in kiwifruit slices during combined radio frequency and vacuum drying. International Journal of Heat and Mass Transfer 154:119704. doi: 10.1016/j.ijheatmasstransfer.2020.119704.
  • Huang, Z., L. Chen, and S. Wang. 2015. Computer simulation of radio frequency selective heating of insects in soybeans. International Journal of Heat and Mass Transfer 90:406–17. doi: 10.1016/j.ijheatmasstransfer.2015.06.071.
  • Jiang, H., Z. Liu, and S. Wang. 2018. Microwave processing: Effects and impacts on food components. Critical Reviews in Food Science and Nutrition 58 (14):2476–89. doi: 10.1080/10408398.2017.1319322.
  • Jiang, H., Y. Shen, L. Zhen, W. Li, and Q. Zhang. 2019. Evaluation of strawberries dried by radio frequency energy. Drying Technology 37 (3):312–21. doi: 10.1080/07373937.2018.1439503.
  • Jiao, Y., J. Tang, Y. Wang, and T. L. Koral. 2018. Radio-frequency applications for food processing and safety. Annual Review of Food Science and Technology 9:105–27. doi: 10.1146/annurev-food-041715-033038.
  • Jin, W., A. S. Mujumdar, M. Zhang, and W. Shi. 2018. Novel drying techniques for spices and herbs: A review. Food Engineering Reviews 10 (1):34–45. doi: 10.1007/s12393-017-9165-7.
  • Jin, W., M. Zhang, and W. Shi. 2019. Evaluation of ultrasound pretreatment and drying methods on selected quality attributes of bitter melon (Momordica charantia L.). Drying Technology 37 (3):387–96. doi: 10.1080/07373937.2018.1458735.
  • Jumah, R. 2005. Modelling and simulation of continuous and intermittent radio frequency-assisted fluidized bed drying of grains. Food and Bioproducts Processing 83 (3):203–10. doi: 10.1205/fbp.04291.
  • Koklamaz, E., T. K. Palazoğlu, T. Kocadağlı, and V. Gökmen. 2014. Effect of combining conventional frying with radio-frequency post-drying on acrylamide level and quality attributes of potato chips. Journal of the Science of Food and Agriculture 94 (10):2002–8. doi: 10.1002/jsfa.6516.
  • Liao, M., W. Damayanti, Y. Xu, Y. Zhao, X. Xu, Y. Zheng, and S. Jiao. 2020. Hot air-assisted radio frequency heating for stabilization of rice bran: Enzyme activity, phenolic content, antioxidant activity and microstructure. LWT-Food Science and Technology 131:109754. doi: 10.1016/j.lwt.2020.109754.
  • Liao, M., Y. Zhao, C. Gong, H. Zhang, and S. Jiao. 2018. Effects of hot air-assisted radio frequency roasting on quality and antioxidant activity of cashew nut kernels. LWT-Food Science and Technology 93:274–80. doi: 10.1016/j.lwt.2018.03.047.
  • Lin, W., M. Zhang, Z. Fang, and Y. Liu. 2014. Effect of salt and sucrose content on the dielectric properties of salted duck egg white protein relevant to radio frequency drying. Drying Technology 32 (15):1777–84. doi: 10.1080/07373937.2014.943767.
  • Lin, Y., Y. Liu, Y. Xie, and H. Xiao. 2019. Radio frequency drying of agricultural products and foods. In Advanced drying technologies for foods, ed. A. S. Mujumdar & H. Xiao, 183–204. Boca Raton, FL: CRC Press.
  • Lin, Y., J. Subbiah, L. Chen, T. Verma, and Y. Liu. 2020. Validation of radio frequency assisted traditional thermal processing for pasteurization of powdered infant formula milk. Food Control 109:106897. doi: 10.1016/j.foodcont.2019.106897.
  • Ling, B., T. Cheng, and S. Wang. 2020. Recent developments in applications of radio frequency heating for improving safety and quality of food grains and their products: A review. Critical Reviews in Food Science and Nutrition 60 (15):2622–42. doi: 10.1080/10408398.2019.1651690.
  • Liu, Q., and S. Wang. 2019. Effects of various radio frequency treatment protocols on physicochemical properties and sensory quality of packaged milled rice. LWT-Food Science and Technology 113:108269. doi: 10.1016/j.lwt.2019.108269.
  • Liu, S., H. Wang, S. Ma, J. Dai, Q. Zhang, and W. Qin. 2021. Radiofrequency-assisted hot-air drying of Sichuan pepper (Huajiao). LWT-Food Science and Technology 135:110158. doi: 10.1016/j.lwt.2020.110158.
  • Liu, Y., Y. Sun, H. Yu, Y. Yin, X. Li, and X. Duan. 2017. Hot air drying of purple-fleshed sweet potato with contact ultrasound assistance. Drying Technology 35 (5):564–76. doi: 10.1080/07373937.2016.1193867.
  • Liu, Y., Y. Zhang, X. Wei, D. Wu, J. Dai, S. Liu, and W. Qin. 2021. Effect of radio frequency-assisted hot-air drying on drying kinetics and quality of Sichuan pepper (Zanthoxylum bungeanum maxim.). LWT-Food Science and Technology 147 (3):111572. doi: 10.1016/j.lwt.2021.111572.
  • Mao, Y., P. Wang, Y. Wu, L. Hou, and S. Wang. 2021. Effects of various radio frequencies on combined drying and disinfestation treatments for in-shell walnuts. LWT-Food Science and Technology 144:111246. doi: 10.1016/j.lwt.2021.111246.
  • Mao, Y., and S. Wang. 2021. Simultaneous hot-air assisted radio frequency drying and disinfestation for in-shell walnuts using a two-stage strategy. LWT-Food Science and Technology 151:112134. doi: 10.1016/j.lwt.2021.112134.
  • Merridew, J. N., and W. F. Raymond. 1953. Laboratory drying of herbage by radio-frequency dielectric heating. British Journal of Applied Physics 4 (2):37–9. doi: 10.1088/0508-3443/4/2/302.
  • Mirhoseini, S. M. H., M. Heydari, A. Shoulaie, and A. R. Seidavi. 2009. Investigation on the possibility of foodstuff pest control using radiofrequency based on dielectric heating (case study rice and wheat flour pests). Journal of Biological Sciences 9 (3):283–7. doi: 10.3923/jbs.2009.283.287.
  • Moirangthem, T. T., and O.-D. Baik. 2021. Disinfestation of stored grains using non-chemical technologies-A review. Trends in Food Science & Technology 107:299–308. doi: 10.1016/j.tifs.2020.11.002.
  • Mujumdar, A. S., and L. X. Huang. 2007. Global R&D needs in drying. Drying Technology 25 (4):647–58. doi: 10.1080/07373930701285886.
  • Munoz, I., X. Serra, M. D. Guardia, D. Fartdinov, J. Arnau, P. A. Picouet, and P. Gou. 2020. Radio frequency cooking of pork hams followed with conventional steam cooking. LWT-Food Science and Technology 123:109104. doi: 10.1016/j.lwt.2020.109104.
  • Murphy, A., R. Morrow, and L. Besley. 1992. Combined radiofrequency and forced-air drying of alfalfa. Journal of Microwave Power and Electromagnetic Energy 27 (4):223–32. doi: 10.1080/08327823.1992.11688195.
  • Naidu, M. M., M. Vedashree, P. Satapathy, H. Khanum, R. Ramsamy, and H. U. Hebbar. 2016. Effect of drying methods on the quality characteristics of dill (Anethum graveolens) greens. Food Chemistry 192:849–56. doi: 10.1016/j.foodchem.2015.07.076.
  • Nalawade, S. A., G. K. Ghiwari, and H. U. Hebbar. 2019. Process efficiency of electromagnetic radiation (EMR)-assisted hybrid drying in spearmint (Mentha spicata L.). Journal of Food Processing and Preservation 43 (11):e14190. doi: 10.1111/jfpp.14190.
  • Nelson, S. O. 1996. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Transactions of the ASAE 39 (4):1475–84.
  • Omolola, A. O., A. I. O. Jideani, and P. F. Kapila. 2017. Quality properties of fruits as affected by drying operation. Critical Reviews in Food Science and Nutrition 57 (1):95–108. doi: 10.1080/10408398.2013.859563.
  • Orikasa, T., S. Koide, S. Okamoto, T. Imaizumi, Y. Muramatsu, J. Takeda, T. Shiina, and A. Tagawa. 2014. Impacts of hot air and vacuum drying on the quality attributes of kiwifruit slices. Journal of Food Engineering 125:51–8. doi: 10.1016/j.jfoodeng.2013.10.027.
  • Palazoglu, T. K., Y. Coskun, T. Kocadagli, and V. Gokmen. 2012. Effect of radio frequency postdrying of partially baked cookies on acrylamide content, texture, and color of the final product. Journal of Food Science 77 (5):E113–17.
  • Palazoğlu, T. K., and W. Miran. 2017. Experimental comparison of microwave and radio frequency tempering of frozen block of shrimp. Innovative Food Science & Emerging Technologies 41:292–300. doi: 10.1016/j.ifset.2017.04.005.
  • Pegna, F. G., P. Sacchetti, V. Canuti, S. Trapani, C. Bergesio, A. Belcari, B. Zanoni, and F. Meggiolaro. 2017. Radio frequency irradiation treatment of dates in a single layer to control Carpophilus hemipterus. Biosystems Engineering 155:1–11. doi: 10.1016/j.biosystemseng.2016.11.011.
  • Peng, J., X. Yin, S. Jiao, K. Wei, K. Tu, and L. Pan. 2019. Air jet impingement and hot air-assisted radio frequency hybrid drying of apple slices. LWT-Food Science and Technology 116:108517. doi: 10.1016/j.lwt.2019.108517.
  • Piyasena, P.,. C. Dussault, T. Koutchma, H. S. Ramaswamy, and G. B. Awuah. 2003. Radio frequency heating of foods: Principles, applications and related properties-A review. Critical Reviews in Food Science and Nutrition 43 (6):587–606. doi: 10.1080/10408690390251129.
  • Ptasznik, W., S. Zygmunt, and T. Kudra. 1990. Simulation of RF-assisted convective drying for seed quality broad bean. Drying Technology 8 (5):977–92. doi: 10.1080/07373939008959931.
  • Qiu, L., M. Zhang, Y. Wang, and Y. Liu. 2019. Physicochemical and nutritional properties of wasabi (Eutrema yunnanense) dried by four different drying methods. Drying Technology 37 (3):363–72. doi: 10.1080/07373937.2018.1458318.
  • Rajkumar, G., S. Shanmugam, M. D. Galvao, M. Neta, R. D. D. Sandes, A. S. Mujumdar, and N. Narain. 2017. Comparative evaluation of physical properties and aroma profile of carrot slices subjected to hot air and freeze drying. Drying Technology 35 (6):699–708. doi: 10.1080/07373937.2016.1206925.
  • Ran, X., M. Zhang, Y. Wang, and Y. Liu. 2019. Vacuum radio frequency drying: A novel method to improve the main qualities of chicken powders. Journal of Food Science and Technology 56 (10):4482–91. doi: 10.1007/s13197-019-03933-0.
  • Roknul, A. S. M., M. Zhang, A. S. Mujumdar, and Y. Wang. 2014. A comparative study of four drying methods on drying time and quality characteristics of stem lettuce slices (Lactuca sativa L.). Drying Technology 32 (6):657–66. doi: 10.1080/07373937.2013.850435.
  • Schiffmann, R. F. 1995. Microwave and dielectric drying: Handbook of industrial drying. Boca Raton, FL: CRC Press.
  • Shewale, S. R., and H. U. Hebbar. 2021. Low humidity air and radiofrequency wave based sequential drying of Rosmarinus officinalis for improvement of quality. Industrial Crops and Products 162:113303. doi: 10.1016/j.indcrop.2021.113303.
  • Shewale, S. R., D. Rajoriya, M. L. Bhavya, and H. U. Hebbar. 2021. Application of radiofrequency heating and low humidity air for sequential drying of apple slices: Process intensification and quality improvement. LWT-Food Science and Technology 135:109904. doi: 10.1016/j.lwt.2020.109904.
  • Shinde, A., S. Das, and A. K. Datta. 2013. Quality improvement of orthodox and CTC tea and performance enhancement by hybrid hot air-radio frequency (RF) dryer. Journal of Food Engineering 116 (2):444–9. doi: 10.1016/j.jfoodeng.2012.12.001.
  • Stetson, L. E., R. L. Ogden, and S. O. Nelson. 1969. Effects of radiofrequency electric fields on drying and carotene retention of chopped alfalfa. Transactions of the ASAE 12 (3):407–10.
  • Vega-Mercado, H., M. M. Gongora-Nieto, and G. V. Barbosa-Canovas. 2001. Advances in dehydration of foods. Journal of Food Engineering 49 (4):271–89. doi: 10.1016/S0260-8774(00)00224-7.
  • Von Hippel, A. R. 1954. Dielectric properties and waves. New York: John Wiley.
  • Wang, C., X. Kou, X. Zhou, R. Li, and S. Wang. 2021. Effects of layer arrangement on heating uniformity and product quality after hot air assisted radio frequency drying of carrot. Innovative Food Science & Emerging Technologies 69:102667. doi: 10.1016/j.ifset.2021.102667.
  • Wang, H., M. Zhang, and A. S. Mujumdar. 2014. Comparison of three new drying methods for drying characteristics and quality of shiitake mushroom (Lentinus edodes). Drying Technology 32 (15):1791–802. doi: 10.1080/07373937.2014.947426.
  • Wang, S., G. Tiwari, S. Jiao, J. A. Johnson, and J. Tang. 2010. Developing postharvest disinfestation treatments for legumes using radio frequency energy. Biosystems Engineering 105 (3):341–9. doi: 10.1016/j.biosystemseng.2009.12.003.
  • Wang, W.,. J. Tang, and Y. Zhao. 2021. Investigation of hot-air assisted continuous radio frequency drying for improving drying efficiency and reducing shell cracks of inshell hazelnuts: The relationship between cracking level and nut quality. Food and Bioproducts Processing 125:46–56. doi: 10.1016/j.fbp.2020.10.013.
  • Wang, W.,. W. Wang, J. Jung, R. Yang, J. Tang, and Y. Zhao. 2020. Investigation of hot-air assisted radio frequency (HARF) dielectric heating for improving drying efficiency and ensuring quality of dried hazelnuts (Corylus avellana L.). Food and Bioproducts Processing 120:179–90. doi: 10.1016/j.fbp.2020.01.006.
  • Wang, W.,. W. Wang, Y. Wang, R. Yang, J. Tang, and Y. Zhao. 2020. Hot-air assisted continuous radio frequency heating for improving drying efficiency and retaining quality of inshell hazelnuts (Corylus avellana L. cv. Barcelona). Journal of Food Engineering 279:109956. doi: 10.1016/j.jfoodeng.2020.109956.
  • Wang, Y., L. Zhang, M. Gao, J. Tang, and S. Wang. 2014. Pilot-scale radio frequency drying of macadamia nuts: Heating and drying uniformity. Drying Technology 32 (9):1052–9. doi: 10.1080/07373937.2014.881848.
  • Wang, Y., L. Zhang, J. Johnson, M. Gao, J. Tang, J. R. Powers, and S. Wang. 2014. Developing hot air-assisted radio frequency drying for in-shell macadamia nuts. Food and Bioprocess Technology 7 (1):278–88. doi: 10.1007/s11947-013-1055-2.
  • Wei, X., S. K. Lau, J. Stratton, S. Irmak, and J. Subbiah. 2019. Radiofrequency pasteurization process for inactivation of Salmonella spp. and Enterococcus faecium NRRL B-2354 on ground black pepper. Food Microbiology 82:388–97. doi: 10.1016/j.fm.2019.03.007.
  • Xie, Y., Y. Zhang, Y. Xie, X. Li, Y. Liu, and Z. Gao. 2020. Radio frequency treatment accelerates drying rates and improves vigor of corn seeds. Food Chemistry 319:126597. doi: 10.1016/j.foodchem.2020.126597.
  • Zhang, B., A. Zheng, L. Zhou, Z. Huang, and S. Wang. 2016. Developing hot air-assisted radio frequency drying for in-shell walnuts. Emirates Journal of Food and Agriculture 28 (7):459–67. doi: 10.9755/ejfa.2016-03-286.
  • Zhang, H., C. Gong, X. Wang, M. Liao, J. Yue, and S. Jiao. 2019. Application of hot air-assisted radio frequency as second stage drying method for mango slices. Journal of Food Process Engineering 42 (2):e12974. doi: 10.1111/jfpe.12974.
  • Zhang, M., J. Tang, A. S. Mujumdar, and S. Wang. 2006. Trends in microwave-related drying of fruits and vegetables. Trends in Food Science & Technology 17 (10):524–34. doi: 10.1016/j.tifs.2006.04.011.
  • Zhou, X., H. Gao, E. J. Mitcham, and S. Wang. 2018. Comparative analyses of three dehydration methods on drying characteristics and oil quality of in-shell walnuts. Drying Technology 36 (4):477–90. doi: 10.1080/07373937.2017.1351452.
  • Zhou, X., R. Li, J. G. Lyng, and S. Wang. 2018. Dielectric properties of kiwifruit associated with a combined radio frequency vacuum and osmotic drying. Journal of Food Engineering 239:72–82. doi: 10.1016/j.jfoodeng.2018.07.006.
  • Zhou, X., H. Ramaswamy, Y. Qu, R. Xu, and S. Wang. 2019. Combined radio frequency-vacuum and hot air drying of kiwifruits: Effect on drying uniformity, energy efficiency and product quality. Innovative Food Science & Emerging Technologies 56:102182. doi: 10.1016/j.ifset.2019.102182.
  • Zhou, X., and S. Wang. 2019. Recent developments in radio frequency drying of food and agricultural products: A review. Drying Technology 37 (3):271–86. doi: 10.1080/07373937.2018.1452255.
  • Zhou, X., R. Xu, B. Zhang, S. Pei, Q. Liu, H. S. Ramaswamy, and S. Wang. 2018. Radio frequency-vacuum drying of kiwifruits: Kinetics, uniformity, and product quality. Food and Bioprocess Technology 11 (11):2094–109. doi: 10.1007/s11947-018-2169-3.
  • Zhu, H., L. Yang, X. Fang, Y. Wang, D. Li, and L. Wang. 2021. Effects of intermittent radio frequency drying on structure and gelatinization properties of native potato flour. Food Research International (Ottawa, Ont.) 139:109807. doi: 10.1016/j.foodres.2020.109807.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.